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Abstract

This thesis deals with Yau’s theorem (see [Yau77], [Yau78]) about the solution of
Calabi’s conjecture (see [Cal54]). We state both of them below:

Theorem (Calabi’s Conjecture, 1954). Let M™ be a compact and connected
Kahler manifold with Kéhler form w. Then for every closed real (1, 1)-form p €
27[C1(M)] there exists a unique Kéhler form 2 € [w] such that Ric(Q2) = p.

Theorem (Yau, 1978). Let that M™ be a compact Kihler manifold with Kéhler
form w. Let ' € C*°(M) and C' > 0 such that C [ e" dV, = vol(M) . Then
there is ¢ € C*°(M) such that

w4V —100p

defines a Kihler form on M and

(w4 V—=100p)™ = e“Fwm

The goal of this work is to explore the relation between these results and to dis-
cuss each step of Yau'’s proof in detail. In order to achieve this objective, a brief (yet
as much self-contained as possible) introduction to the theory of Kihler manifolds

will be made, starting from the setting of complex geometry.
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Introduction

The concept of Kihler manifolds emerged from the intersection of complex geom-
etry, Riemannian geometry, and symplectic geometry. The origins of Kdhler geom-
etry lie in the study of complex manifolds, which are smooth manifolds equipped
with a complex structure. In the early 20" century, mathematicians such as Elie
Cartan and Henri Poincaré made significant contributions to the understanding of
complex structures and their associated metrics.

The formal notion of what we now call a Kdhler manifold was introduced by
the German mathematician Erich Kahler in 1933 in his seminal paper [K&h32].
Kihler’s work focused on the special properties of complex manifolds equipped
with a Hermitian metric whose fundamental (1, 1)-form is closed. This structure
led to significant simplifications in the study of both the metric and the complex
structure, laying the groundwork for what would later become a central concept
in differential geometry.

In the decades following Kahler’s initial work, mathematicians further explored
the properties of Kdhler manifolds, discovering a wealth of examples and appli-
cations. In particular, Kihler geometry became deeply connected with questions
about the curvature of these manifolds and their cohomological properties.

One of the most influential developments in this field was the conjecture pro-
posed by Eugenio Calabi in the 1950s. Calabi theorized the existence of a Kahler
metric with prescribed Ricci curvature on a compact Kihler manifold. Specifi-
cally, it suggested that for any compact Kihler manifold with Kihler form €2, and

for any closed real (1, 1)-form in the cohomology class of its Ricci form, there ex-



ists a unique Kahler metric with a Kahler form in the cohomology class of €2 that
has the specified form as its Ricci form.

This conjecture represented a pivotal moment in the study of Kiahler mani-
folds, as it connected the geometric properties of the manifold to its topological
data, given by its cohomology class. However, proving the conjecture posed a
formidable challenge and remained an open problem for more than two decades.

A major step toward resolving the Calabi Conjecture was made by Thierry
Aubin in the 1970s: through new analytical techniques, he was able to prove the
existence of Kdhler-Einstein metrics with negative first Chern class, hence clearing
a specific case of the conjecture.

The resolution of the Calabi Conjecture by Shing-Tung Yau in 1978 marked
a turning point in Kdhler geometry. Yau's groundbreaking proof, using methods
from nonlinear partial differential equations and geometric analysis, established
the existence and uniqueness of Kihler metrics satisfying Calabi’s conditions. This
result not only resolved the conjecture but also had profound implications for the

methods applied to find the solution.

The work of this thesis is organized as follows. The first chapter is devoted to
establishing the general framework of complex geometry. We introduce the key
objects that will be central to this thesis, such as complex manifolds, holomorphic
functions, and the complexified structures of a manifold.

In the second chapter, we develop the concept of Kdhler manifolds, examining
the interplay between the structures introduced earlier. Special focus is given to
the intrinsic geometry of Kihler manifolds, culminating in introduction of the first
Chern class.

Finally, the third chapter is dedicated to the study of Yau’s resolution of the
Calabi Conjecture. The proof will be broken down into its essential steps to facil-
itate a clear understanding of the arguments and techniques involved. Particular
emphasis will be placed on the analytic methods and the geometric insights that

form the core of Yau's approach.



Chapter 1

Complex Manifolds

1.1 Basics of Complex Geometry

In this section, we lay the foundation for our work, presenting some notions from
complex analysis and introducing the framework of complex manifolds.

1.1.1 Euclidean setting

Definition 1 (Complex structure on R?*). For any & > 1, we can identify

C* = R?* via the R-linear isomorphism
(21, oy 2k) <= (T1, o, Ty Y1y -+, Yk)

where 2; = z; + v/ —1 y; . Under this identification, the multiplication by y/—1

on C* corresponds to the endomorphism j;, of R?* represented in the standard

0 —I
I, 0

where [ is the identity matrix of order k. The map j; is called the canonical

basis by the matrix

complex structure on R?*, and it satisfies j2 = — I dpos.




open

Under the identification used in Definition 1,amap f: U C C" — C™ can
be uniquely paired with a map F': U C R* — R?™ where if f = (f1,..., fm)
and F' = (F}, ..., Fy,) then for all i

Ji=F+vV—1Fn
We say that f is of class C* (resp. smooth) on U in the real sense if F is of class C*

(resp. smooth) on U. When m = 1, we will denote f € C*(U), k € NU {0} .

Definition 2 (Holomorphic map on the complex space). Let U OEn C. A
function f € C1(U) is called holomorphic at p € U if

2(p)=0 Vi=1,...,n

where the -2’s are the anti-holomorphic Wirtinger operators

o0z"
o ._1(_0 /1.0
) (&zﬂ + 18yi)

f is called holomorphic on U if it is holomorphic at ¢ forall ¢ € U. A map g =

(g1, -5 gm): U — C™ of class C* on U is called holomorphic if its components
gi € C*(U) are holomorphic.

For f = (f1,..., fm) we compute

Ofi — 1 (0F _ OFmyi /"7 (%mii 4 OF,
0zl T 2 (83:} oy’ + 1( oz + By}>

Consequently, the condition ggj- = (O reads

% _ aFm-H' BFm-H _ _%
oxl — 8yj ) OxJ 8yj

These are called the Cauchy-Riemann equations. In the next lemma, we discuss
how these equations connect the canonical complex structure and the holomor-

phic condition.



open
Lemmal. Let f: U C C" — C™beof class C! on U. Then f is holomorphic
on U if and only if V p € U the differential of F' at p satisfies

Jm © (F)sp = (F)ap © jn
Proof. Let J(F)(p) be the Jacobian matrix of F'atp € U, i.e.

) | 55) )
i=1,....,m, j=1,...,n

J(F)(p) = < S

8Fm %
Pusi (p) | 22t ()

By Definition 2, f is holomorphic at p if

=1,....;m, J=1,...,

Ofip)=0 Vi, j
07’
aE . aFm—I—i aFm—I—i o _8E .
— 8ZL'j (p) - ay] (p) ) ax]‘ (p) - 8y] (p> vZ7 J

0 -1, 0 —I,
e (Im 0 )J(F)(p)ZJ(F)(p)<In 0)

& Jm © (F)p = (F)up © Jn
O

Remark 1. It is straightforward from Lemma 1 that the sum and composition of

holomorphic functions is holomorphic (for the latter, use the real chain rule).
Introduce the holomorphic Wirtinger operators
o ._1(.0 /—T1.0
9zt T 2 <8xi B _18yi>
whichacton f = (fi,..., fin) as
0 i i 6F7n 7 8Fm 7 i
aff - % (gfj + 8yj+ +v _1( a:;f - g;)>
We define the complex Jacobian of f at p to be the matrix
Ofi
Je(H)p) = (55p)

Here is a crucial relation between a holomorphic map and its real counterpart.




open
Lemma 2. Let f: U C C" — C” be holomorphic. ThenV p € U

det(J(F)(p)) = |det(Je(f)(p))|

where | - |¢ denotes the complex modulus.

Proof. Adding +/—1-times the bottom blocks to the top and using the Cauchy-

Riemann equations, we get

JF; 1 0F 1
oLy + _1 mti
det(J(F)) = det ( e il

8Fm [ / 8FZ

— 8&0; +v-1 Dz

8Fm+i %

Then adding —+/—1-times the left blocks to the right yields

aFi 6Fm i

OF 1 /=1%o 0 )
aFZ' / 8F‘m @

* ‘ oxi -1 8x;

Now, since f is holomorphic, by the Cauchy-Riemann equations

of; 1 /0F;, OF; oF,+. OF, .
A-3( bvoI(C y Oy

det(J(F)) = det (

0z 2\ O + oxi oxI oxd

OF; OF, i
= -+ v/ —1 .
oxJ + oxJ

Consequently, we compute

Je(f)) = |det(Je(f))IE

[
(e
(@)
-t

—

&

—

kh

SN——

N——
o,
(¢}
-t

—

]

Using Lemma 2, many results valid in the real setting can be proven in the
complex one. In order to address them, we need to study the main properties of

the Wirtinger operators.



Lemma 3. Let f, g € C'(U). Then

of _of  of _ of

0zt 0zt ' 9zt~ 9z
., 9af+Bg daf+Bg _  Of 9g
027 —O‘azz +56z1 ; oz Oz +5ay Va, peC

., 9fg _ ofg _
D2t azzg + 15 9210 o az

If f, g are of class C'! on open subsets of C" and ¢ o f exists, then

Agof)i _ dg; d I
CEP =N (o N+ (R NG
9(gof)i 9g; 0 Afi
= % (o 3+ (20 )35

Proof. Straightforward computations from the properties of -2; F7> 8‘2 [

As anticipated, here is a complex version of the Inverse Function Theorem.

Theorem 1 (Holomorphic IFT). Let U, V OpC_en C" with 0 € U. Suppose
f: U — V is holomorphic with det(Jc(f)(0)) # 0. Then f is bijective in (a
possibly smaller) neighborhood of 0 and f~! is holomorphic.

Proof. By Lemma 2: det(J(F)(p)) # 0, so we can apply the Inverse Function
Theorem to obtain a smooth inverse of F' near 0, that is, f has a smooth inverse

near 0. For all 2, 7, by Lemma 3 we compute near 0

oo 9z _ 0o )i _
N c‘)zj B azﬂ‘ B
af O(f )i
n Z 82”“ 821; * ozk

-
o fyokk -

=3 gt e g
82’“ 623
where we used that f is holomorphic. Hence, near 0 the matrix product



is zero, and since J( f) is non-degenerate near 0 by continuity of the determinant,

we conclude that

Af~1Y; ..
=0 Vi, g

so f~! is holomorphic. O

1.1.2 Manifolds setting
In the following, we identify C* =2 R?* via the R-linear isomorphism
(21, 26) <— (T4, Y1y - o Tp, Ykt

where z; = x; + vV —1y; .

Definition 3 (Complex manifold). Let M be a smooth manifold. Assume there
exists an atlas U = {(Uy, ¢a)}aca of M, where

ba: Us — 6a(Us) C C

andV o, € AwithU, NUz # 0: (Us, ¢0), (Us, ¢p) are holomorphically

compatible, i.e. the transition maps

Pa © ¢,§11 ¢5(Ua NUp) = ¢a(Ua NUp)

are holomorphic. Then, M is called a complex manifold of complex dimension n.

Let us establish some terminology related to Definition 3. The atlas I/ and the
charts (U,, ¢,) are called holomorphic. The components z* of ¢ over C" are called

holomorphic coordinates.

As in the smooth case, a holomorphic atlas uniquely determines another holo-
morphic atlas that contains it and all its holomorphically compatible charts. This

kind of atlas is called a holomorphic structure on the manifold.

10



Definition 4 (Holomorphic map on a complex manifold). Fix a holomorphic
atlasU = {(Uy, ¢a)}aca on a complex manifold M. Amap f: M — C™is
called holomorphicif Vo € A

fodt: ¢o(U,) — C™ is holomorphic

If N is another complex manifold and V = {(Vj, ¥3)}sep is a holomorphic
atlason NV, amap g: M — N is called holomorphicifVa € A, VB € B

Upogody!

is holomorphic whenever it is defined (i.e. when g(U,) C Vj).

The following observations stem from Definition 4 in a manner analogous to

the case of smooth maps on a smooth manifold.

Remark 2. i) The concepts introduced in Definition 4 are inherently local and
independent of the choice of holomorphic atlas within a fixed holomorphic struc-

ture.

ii) By definition, any coordinate system derived from a holomorphic chart is, in

particular, a holomorphic map on the manifold.
iii) The composition of holomorphic maps is a holomorphic map.

iv) It is always possible to choose a holomorphic chart ¢ around a point p that is

centered at that point, i.e. ¢(p) = 0 (just apply a translation).

11



1.2 Complexification

Useful information about a smooth manifold can be obtained by pairing it with
linear-algebraic structures, such as the tangent space, the tangent and cotangent
bundles, etc.

The same is true for complex manifolds. In this section, we extend to the complex
setting, in a natural way, the linear-algebraic structures associated to a smooth

manifold.

1.2.1 Linear setting

We begin in the easier context of linear algebra, exploring the concept of "linear"

complexification. We will always deal with vector spaces of finite dimension.

Lemma 4 (Complexification of a vector space). Let I/ be a real vector space.

The following real vector spaces equipped with their respective products on C:
VeV, (z+v-1y)(v, w) := (zv — yw, yv + zw)
< VeRrC, Av®z)=v® Az

are complex vector spaces. Moreover, there exists a unique C-isomorphism

oy : VaV — V ®g C such that the below diagram commutes:

v

PR

Vav ov sy V or C

where the arrows from V are the standard embeddings
VoVaeVive(v0), VoVeC:uov—oel

Up to isomorphism, the complexification of V is defined as the above complex

vector space and it is referred to as V.

12



Proof. It is a routine check from the definition that the above-defined products
give a complex vector space structure to the underlying space.
Furthermore, assuming ¢y, exists, we compute by C-linearity and commutativity

of the diagram

v (v, w) = v ((v,0) + V=1(w,0)) =
= ¢y (v,0) + vV —1py(w,0) =
=11+ V-1l(wel)=
—v@l+w®v—1

which means ¢y is unique. Now define ¢y by

oy (v,w) =v®1+we\/—1

Clearly, ¢y, makes the diagram commute, and it is R-linear by the identities of the

tensor product of vectors. To see that it is actually C-linear, we compute

ov(V=1(v,w)) = ¢y (~w,v) =
=—wRl+veV-1=
=V-1l(we@VvV-1+vel)=
= V—1¢y (v, w)
Finally, we construct the inverse of ¢y . Consider the R-bilinear map
VxC—->VaV: (vz)— 2(v0)

By the universal property of the tensor product there is a unique R-linear map
oy: VerC—V®VsuchthatV (v,2) € V xC

ov(v® z) = 2(v,0)
In particular ¢y is C-linear since

ov(V=T(0 ®2)) = oy (v @ V=1z) =
=V—12(v,0) = V—1py(v® 2)

13



and it satisfies

(v ody)(v,w) = py(v@1+w®V—1) =
= (v,0) + V~1(w,0) = (v,w)
(Pvopr)(v®z) = oy (2(v,0)) =
=zv®1l)=v®z

which implies gb‘_/l = Qy. [
Remark 3 (Complex decomposition). We observed in Lemma 4 that Vv € V
v—1 (v, 0) = (0, v)

In particular, any z € Vi admits a (unique) decomposition as v + /—1 w. We call

Re(z) := v, Im(2) := w the real and imaginary part of z, respectively.

Lemma 5 (Basis for the complexification). Let V' be a real vector space, and
{e;}, be a R-basis for V. Then {e; ® 1}; = {(e;, 0)}, is a C-basis for V. In
particular dim¢ (Vg) = dimg (V).

Proof. Pick (v,w) € Vi. Denote by v;,w; € R the components of v, w with
respect to {e; };. By Remark 3

(v,w) = (v,0) + V—1(w,0) =
— Z vi(e;, 0) + \/—_12 wi(e;,0) = Z (v; + \/—_11%)(62'» 0)

so (v, w) € span({e;},). Moreover, if ) _ z;(e;, 0) = (0, 0) for some z; € C, the

already done computation yields

(0,0) = (3 Re(zi)ei, 3 Im(z)e;)

thus by linear independence of {¢;};: Re(z;) = Im(z;) = O for all 4, that is,
{(e;,0)}; is linearly independent. N

14



Lemma 6 (Complexification of a linear map). Let f: V' — W be a R-linear
homomorphism between real vector spaces. There is a unique C-linear map

g: VoV = W @ W such that the following diagram commutes:

f

V—m—m W

| |

Voav 2 swWaew

where the vertical maps are the standard embeddings. Moreover, the following
diagram also commutes:

VoV 2L swaw
¢vl lfbw
V or C L% W gy C

Up to natural isomorphisms, the complexification of f is defined as the above map
and it is referred to as fc: Vo — We.

Proof. First, assume that such g exists. By Remark 3 and commutativity of the first
diagram,Vov,w € V

g(v,w) = g(U,O) + \/__19(va) =
= (f(v,0)) + V=1(f(w,0)) = (f(v), f(w))

which means ¢ is unique. Now define g by

g9(v,w) = (f(v), f(w))

Since f is R-linear, the same holds for g. Moreover, g clearly makes the first dia-

gram commutative. In addition, ¢ is C-linear: indeed



and finally, we compute Vv, w € V/

(f & Idcody)(v,w) = f@lde(v®l+w®V=1)=
=f) @1+ flw)@vV-1=
= ow (f(v), f(w)) = (dw o g)(v, w)

that is, g makes the second diagram commute. [

The uniqueness statement in Lemma 6 can be used to easily prove some prop-

erties of the complexification on linear maps.

Corollary 1 (Functorial properties of the complexification). Let U, V|, W

be real vector spaces.
1. (Idy)c = Idy, .

2.1t f: U— YV, g: V— W are R-linear maps, then (g o f)c = gc © fc -

In particular, if f is a R-isomorphism then f¢ is a C-isomorphism and (fc)™ ! =

(fMe.

Proof. 1. Lett: V' — V[ be the standard embedding. Since Idy;. is a C-linear map
such that

Idy. ot =1oldy

by Lemma 6 (uniqueness): (Idy)c = Idy, .

2. Denote by ¢y, Ly, Ly the standard embeddings of U, V, W into their complex-

ification. Since g¢ o fc is a C-linear map such that

(QCOfC)OLUZQCO(LvOf):Lwo(gof)

by Lemma 6 (uniqueness): (g o f)c = gc o fc -

The last claim follows from combining 1., 2. and Lemma 6 (uniqueness). O]

16



Lemma 7 (Complexification of the dual). Let |/ be a real vector space. Con-
sider the complex vector space Homg(V, C), where addition and scalar multi-

plication are defined point-wise. There are C-linear isomorphisms

Y : Home(Ve, C) — Homg(V, C)
F+— F(-,0)

U HOIHR(V, (C) — (HOmR(V7 R))C
f— (Re(f),Im(f))

In particular, (Ve )* 2 (V*)c.
Proof. We first deal with ¢. V F, G € Hom¢(Vg, C),V A\, u € ConehasVv € V
Y(AF 4+ puG)(v) = (AF + uG)(v,0) =

= AF(0,0) + uG(v,0) = (W/(F) + ub(G)) (v)

which implies that ¢ is C-linear. To prove its injectivity pick F' € Ker(v)), and by
Remark 3 and C-linearity of F' one sees Vv, w € V

F(v,w) = F(v,0) +vV=1F(w,0) = ¢(F)(v) + V=19 (F)(w) = 0
that is, F' = 0. Finally, if f € Homg(V, C), consider the map
F:Ve—C:(v,w) = f(v) +V-1f(w)
Notice that F'is R-linear, since V u, v, w,z € V,V a,b € R, the R-linearity of f
gives
F(a(u,v) + b(w, 2)) = F(au + bw, av + bz) =

= f(au + bw) +vV—=1f(av + bz) =
= af(u) + bf(w) + V=1(af(v) + bf(2)) =
= a(f(u) + V=1f(v)) + 0(f(w) + V=1f(2)) =
= aF(u,v) + bF (w, 2)

17



and in particular it is C-linear because V v, w € V
F(V=1(v,w)) = F(~w,v) =
= f(~w) + V=1f(v) = —f(w) + V-1f(v) =
= V-1(f(v) + V=1f(w)) = V=1F (v, w)
By construction: )(F') = f, so 1) is surjective.

Secondly, we deal with V. If f, g € Homg(V, C) and a,b € R, we compute

- U(af +bg) = (Re(af + bg),Im(af + bg)) =
= (aRe(f) + bRe(g), alm(f) + bIm(g)) =
= a(Re(f),Im(f)) + b(Re(g),Im(g)) =
= a¥(f) +b¥(g)
S U(V=1f) = ((Re(vV=1f),Im(v—1f)) =

(—Im(f),Re(f)) =
V=1(Re(f), Im(f)) = vV—1U(f)

which implies that W is C-linear. Injectivity follows readily from the definition of

W. Moreover, from the previous point and using Lemma 5

dimc (Homg(V, C)) = dimc(Home(Ve, C)) =
= dil’n(c(V(c) = dlmR(V) =
= dimg (Homg (V, R)) = dim¢(Homg(V, R))c

Hence W is also surjective. We conclude the proof by observing that W o ¢ is an

isomorphism between (V¢)* and (V*)c. O

With the next result, we generalize Lemma 7 to a broader class of objects. For

the sake of notation, we identify in the natural way

Veyv), (Ve)m=(V™)e

18



Proposition 1 (Complexification of forms). Let |/ be a real vector space. For

all m € N=2, there exists a C-linear isomorphism
Multe((Ve)™, C) = (Multg(V™, R))c
defined by
F == (Re(Flyn), Im(F i)
In particular, ® restricts to a C-linear isomorphism

A (Ve) = (Ax (V))e

Proof. Analogous computations such as those of Lemma 7 show that ® is C-linear.
To prove that & is injective, we first note that for any ' € Multc((Ve)™, C) one
hasV (v, ..., vp) € (Vo)™

F(vy, ..., = Z 1)7 A(Re(V),—j, Im(D);)

Jj=

where the coefficients A(Re(7),,—;, Im(7);) are the sums of the evaluations of F’
on the vectors of V'™ made of m — j real parts and j imaginary parts, each extracted

from one of the vectors vy, ..., v,,. Hence, since if F' € Ker(P)
Flym=0
we see that /' = (0 and P is injective. Surjectivity follows from Lemma 5, observing
dimc(Multc<(V((j)m, C)) = (dlmc(VC))m =

= (dimg(V))™ =

= dimR(MultR(Vm, R)) =

= dim(c((MultR(Vm, R))(C)
Moreover, for any F' € Multc((Ve)™, C) it holds

F is alternating <= Re(F’), Im(F’) are alternating

19



so one has ®(AZL (V) € (Ag (V))c. The equality follows by Lemma 5 again:

ame (A = () -
()

= dimp (/\MV)) = dim¢ <(/\ R(V))C)

Remark 4. The same construction as that of Proposition 1 allow us to identify a

]

complex-linear tensor over V¢ of any type with the complexification of a (unique)

tensor over V' of the same type.
Let p, ¢ € N. We can define a sort of complexified wedge product
+
pe s (NeV)e < (NG V)e = (AEV)

by "extending the real wedge product Ag by C-bilinearity". Thatis, forw € (AR V),
andn € (A§ V), we set

Re(w Ac 17) := Re(w) Ar Re(n) — Im(w) Ag Im(n)
Im(w Ac 17) := Re(w) Ar Im(n) + Im(w) Ag Re(n)

Then Ac coincides with Ag on (AR V) x (AL V), itis
associative, anticommutative, distributive

because these properties hold for Ag, and by the R-homogeneity of Ag and the

complex vector space structure introduced in Lemma 4
Ac is C-homogeneous

Moreover, Ac corresponds to the usual wedge product A on the exterior algebra
Az (Ve), under the isomorphism in Proposition 1. Indeed, for F' € A%(V¢), G €
N&(Ve) , since
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(F N G)|Vp+q = Flvp A G|Vq
we compute

B(F AG) = (Re(F AC)|y,.,) Im(FAG) 1)) =
- (Re(F‘Vp A G‘Vq)’ Im(F‘Vp A G‘V‘Z)) -
= (Re F‘Vp) AR Re(G’Vq) — Im(F’VP) AR Im(G|Vq),
Re(F’Vp) AR Im(G|Vq) + Im(F‘W) AR Re(G|Vq)) =
= ®(F) Nc P(G)
where we used that A = Ap on the real forms on a real vector subspace of V.

With abuse of notation, we denote A¢ and Agr simply by A.

Remark 5. We can “"complexify" the tensor product of tensors and the trace of
tensors with the same procedure, and they will correspond to the tensor product

on and trace in the tensor algebra of the complexified space.

1.2.2 Vector bundles setting

In this subsection, our aim is to complexify the canonical vector bundles associ-
ated with a manifold. The crucial step will be the construction of a suitable vector

bundle structure to employ the theory developed in Subsection 1.2.1.

Here, M denotes a smooth manifold and K € {R, C}.

Definition 5 (Trivializing chart). Let £ I M be a K-vector bundle. A local
chart (U, ¢) of M is called trivializing if there exists a trivialization ¢ of the bundle
defined on 7= (V).

We denote a trivializing chart by (U, ¢, ¢). An atlas of M is said to trivialize

a bundle if each of its charts is trivializing.

Remark 6. Starting from an atlas, one can always obtain a trivializing atlas (just
choose around each point a chart and a trivializing neighborhood and take the

intersection).
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Definition 6 (Transition map). Let £/ Z M be a K-vector bundle of rank r. If
two trivializing charts (Uy, @a, ¢o), (Us, ¢p, @p) overlap (ie. U, N Us # 0),

the composition
(paogolglt (UaﬂUg) x K" — (UaﬂUg) x K"

is smooth. It follows from the definition of trivializations that there exists a

smooth map g,5: Uy, N Uz — GL(r, K) such that

(a0 95" )P, v) = (D, gap(P)v) VpEUsNUs, Vv €K

The map g,z is called a transition map.

Trivializing charts and transition maps actually determine the vector bundle

structure, as we see in the next result.

Proposition 2 (Bundle through trivializations and transition maps). Let £
beaset,and 7: F — M asurjective map. If there exist an atlas A = {(U,, ¢4)}
of M and bijections ¢, : 7' (U,) — U, x K" such that

(@) 7 0 p, = m, where 7 is the projection onto the first factor

(b) for all overlapping charts (U,, ¢n), (Us, ¢p) there exists a smooth map
Gap: Us MUz — GL(r, K) such that

(a0 @z )(p. v) = (D, gap(p)v) VpeEUsNUs Vv eK

then £ = M admits a unique structure of K-vector bundle of rank r such that

the ¢, are trivializations.

Proof. See [AT11], Proposition 3.1.7. O

For any p € M, let m, be the projection of {p} x R" onto R".
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Proposition 3 (Complexification of a vector bundle). Let £ = M a real

vector bundle or rank r. Denote E, := 7 (p), p € M. The set

Ec:= || (Ep)c

peEM

together with the map
nc: Ec = M : mc(x) :=pif z € (E,)c

admits a unique structure of complex vector bundle of rank r over M such that

the property (P) is satisfied V p € M:
(P) "Let (U, ¢, ) be a trivializing chart around p for F. Consider the map

oc: (me) Y (U) - U xC"
defined as follows: for any ¢ € U, if (v, w) € (E,)c
e (v, w) = (g, (g 0 ) (v) + v =1(mg 0 p)(w))

Then (U, ¢, ¢c) is a trivializing chart around p for E¢ (which is called the com-

plexification of (U, ¢, ©)) "
The vector bundle E¢ =5 M is called the complexification of E = M.

Proof. Let (U, ¢, ) be a trivializing chart and let (U, ¢, ¢c) be its complexifica-

tion. Since

(mc) ' (U) = U (Bp)e, UxC =[] ({p}xC)

pelU peU
to prove that ¢ is bijective it suffices to show that V¢ € U
ecl(p,)et (Bgdo — {a} x C
is bijective. But this is true because ¢c| 5 ). = © o (¢|p, )c , Where
(¢l et (Ee = ({a} x R)¢ :

(v, w) = (g, (mg 0 ) (v)), (¢, (g © ) (w)))
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is bijective by Corollary 1 and

0: ({¢} xR")e = {q} x C": ((q.a), (q.b)) = (q;a+ v=1b)

is also bijective. Moreover

« by construction of 7¢ and ¢,V x € Ec

me(z) = p = (m 0 ¢c)(z)
where z € (E,)c

. if (V, 4, n) is a trivializing chart which overlaps with (U, ¢, ¢) and g is a
transition map between the two charts, Vp € U NV andVv € C"

(e ong')(p, v) = ec((n™" o m, ") (Re(v), (n7" om, ) (Im(v))) =
= (p, (mpopo n_l o 7Tp_1>(R€(U>> +
v T(my o pon omy ) (Im(v))) =
= (p, 9(p)Re(v) + V~1g(p)Im(v))
that is, denoting with ¢: GL(r, R) — GL(r, C) the inclusion, the smooth

map gc :=tog: UNV — GL(r, C) satisfies

(pcong')(p. v) = (p, gelp)v)

The claim follows immediately from Proposition 2, picking the atlas of M/ made

of all its trivializing charts (within the differentiable structure on M). U]

Remark 7. Let (U, ¢, ¢) be a trivializing chart. Up to proper identification with
the isomorphism © introduced in Proposition 3, we see that ¢¢ acts on the fibers

(E,)c as the complexification of ¢ introduced in Lemma 6.

We can finally fulfill the goal established in this subsection.
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Example 1 (Complexified bundles for a manifold). The following complex
vector bundles arise from Proposition 3 applied to the canonical vector bundles

associated to M:
1. the complexified tangent bundle Tc M = (T M )¢
2. the complexified cotangent bundle T M = (T*M )¢
3. the complexified k-forms bundle /\(]E M = (N M)¢
4. the complexified (k,1)-tensors bundle TV M := (T*D M)

The sections of Tc M, T¢ M, /\fé M, T(ék’l)M are called complex vector fields, com-
plex 1-forms (or complex covector fields), complex k-forms, complex (k, [)-tensors. We

denote the complex vector spaces of smooth such sections by
xe(M), QL(M), QE(M), T (M)
By Remark 3, any of such sections Z admits a unique decomposition
Z =Re(Z)++/—1Im(Z)

where Re(Z), Im(Z) are sections of the real vector bundle associated to the con-

sidered one. In particular
Z is smooth <= Re(Z), Im(Z) are smooth

In this discussion, we will focus exclusively on smooth sections and refer to

them simply as sections.
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1.3 Almost complex structures

We introduced the canonical complex structure on the Euclidean space, which acts
as the multiplication by v/—1 through the identification C* = R?*. This concept
can be naturally extended to any finite-dimensional real vector space of even di-

mension (see [Huy05]).
Nevertheless, we work directly in the setting of smooth manifolds.
Definition 7 (Almost complex structure). An almost complex structure on a

smooth manifold M is an endomorphism .J: T'M — T'M such that J? = —Id ,
i.e. a smooth map such thatVp € M

Jp: TyM — T,M is R-linear and satisfies Jg =—-Id

The couple (M, J) is called an almost complex manifold.

Being a vector bundle endomorphism, an almost complex structure can be

naturally paired with the (1, 1)-tensor
J: QM x x(M) = C®(M) : (w, Y) = w(JY)
such that .J(w, JY) = —w(Y') . With abuse of notation, we denote .J by .J.

Remark 8. The dimension of an almost complex manifold has to be even: any
endomorphism of an odd-dimensional real vector space has a real eigenvalue (by

the intermediate value theorem), so it could not square to -1.

As the name suggests, a complex manifold is in particular an almost complex

manifold in a natural way.

Example 2 (Natural complex structure). Let /M be a complex manifold and

choose holomorphic coordinates z* = z* + v/—1 y* on an open U. Setting

Ju () = (‘)iyiv JU(a%) ==
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gives rise to an almost complex structure .JJ;; on U. It extends to a well-defined
almost complex structure J on M. Indeed, on two overlapping charts (U, ¢),

(V, ¢), forallp € U NV: Lemma 1 results into

Jn © Qsp © (w*p)il =jno(¢o wil)*d/(p) =
= (¢ 0™ )upp) © Jn = bup © (Yup) " 0

while by definition
Gsp © Ju(p) o (Cb*p)il = Jn = Yup O Jv(p) o <¢*p)71

Hence ¢, © Ju(p) o (1/’*17)_1 = Qup © Jv(p) o (w*p)_l yand Jy(p) = Jv(p). Jis

called the natural complex structure on M.

When dealing with a complex manifold, we always assume that it is equipped
with its natural complex structure, unless otherwise stated.
It is natural to ask whether the presence of an almost complex structure on a

smooth manifold can grant the existence of a holomorphic atlas.

Definition 8 (Integrability). An almost complex structure on a smooth mani-
fold is called integrable, or simply complex structure, if it arises from holomorphic

charts.

A deep result of Newlander and Nirenberg (see [NN57]) states that the integra-

bility condition can be expressed in analytic terms as follows.

Theorem 2. An almost complex structure JJ on a smooth manifold M is inte-

grable if and only if its Nijenhuis tensor

NY(X,Y):=[X, Y]+ J[X, JY]|+ JJX, Y] -[JX, JY], X,Y € x(M)

vanishes.
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1.4 The complex exterior algebra

In this section, we dig into the richness of the complex environment, discussing
how the structure of complex manifold influences the linear-algebraic structures
associated with the underlying space. M will denote a complex manifold of com-
plex dimension n.
Pick holomorphic coordinates z' = z' + v/—1 3. A local frame for T'M is
given by
{2, 2 00
oxl’ 3y17"'7 ozn) Oyn
By Lemma 5, the latter is also a local complex frame for 7z M. Hence, a new local
complex frame for T M is
{2 09 2
6217"‘7azn7 8217"'7azn

where

o .1/ 8 / 0 0 ._ 1/ 0 \/ 9

These complex vector fields are called the holomorphic coordinate vector fields and
anti-holomorphic coordinate vector fields, respectively. Furthermore, alocal complex

frame for 7T{* M is given by
{dzt, ..., dz"dz", ..., dz"}
where
Az =do' +/—1dy', dz' = da’ — /=1 dy’
o) o)

0zt 9zt
are called the holomorphic coordinate covector fields and the anti-holomorphic coor-

since these are the 1-forms dual to

respectively. These complex 1-forms

dinate covector fields, respectively.
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1.4.1 Splitting of complex vector fields

The complex structure J can be fiberwise complexified using Lemma 6, obtaining

an endomorphism J¢ of Tz M that satisfies (see Corollary 1)
(J(C)Q = (J2)(C = (_-[dTM)(C == _-[dT@M

With abuse of notation, we denote J¢ by J. Letp € M. If TpLOM, Tz?’lM are the
v/—land —+/—1 eigenspaces for J,,Vi=1, ..., n

o)
Ozt

1,0 0
, € THOM,

0,1
o7 | € Tp M

It follows by the dimensional equation that locally

TYOM = spang (%), TO'M = span(c(%)
and one has the pointwise splitting

TeM =TYM & TO' M

TYOM, T%' M are called the holomorphic tangent bundle and the anti-holomorphic
tangent bundle respectively. The splitting of 7 M induces the splitting of complex

vector fields
xc(M) = x" (M) ® x> (M)

where Y'0(M), x%!(M) are the complex vector spaces of sections of T"0M,
T M respectively. They are called the spaces of holomorphic vector fields and of

anti-holomorphic vector fields.

1.4.2 Splitting of complex covector fields
Take J*: TEM — T3 M the dual endomorphism of J, defined in ¢ € M by
(J7)q(wq) (Xg) = wy(JgX,)

With abuse of notation, we denote J* by J. Let p € M and let /\113’0 M, /\g’1 M
be the v/—1and — /—1 eigenspaces for J, . By duality, Vi =1, ..., n
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i 1,0 —i 0,1
d='|, € \,” M, dz|p€/\p M
Thus, as in the previous case, one has the pointwise splitting
M =N Ma \' M

/\1’0 M, /\0’1 M are called the holomorphic cotangent bundle and the anti-holomorphic
cotangent bundle respectively. The splitting of 7* M induces the splitting of com-

plex covector fields
Qg (M) = QY(M) ® Q™ (M)

where Q10(M), Q%'(M) are the complex vector spaces of sections of \"* M,
/\0’1 M respectively. We call them the spaces of holomorphic covector fields and of

anti-holomorphic covector fields.

1.4.3 Splitting of complex forms

Fix k > 2. Let x € M. A C-basis of (/\fé M), is
dz| Ao Nd2| AN A NdZY s ptg =k,
1<y <<, <n, 1< <~ <jg<n

We define for (p, ¢q) # (0,0)

Wiy Nwes ANwiy, Ay A= A
A2 M = spang 1,0 0,1
w;, € /\MV?”, n;, € /\MVS

which has the C-basis
dz"| Ao Ad2P| ANdE| A AdE
xX xX xr xr
1<y <- < <n, 1< <~ <jy,<n

Hence, we have the pointwise splitting

AEM = @ N

pt+q=k
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We call A”? M the (p, q)-forms bundle, and (p, q) is called bigrading (or type). The
splitting of /\(’fj M induces the splitting of complex forms

QE(M) = @ 1(M)

p+q=k
where QP9 M) is the complex vector space of sections of A\”? M, called the space

of (p, q)-forms.

1.4.4 Splitting of the exterior derivative

Using Lemma 6, we can define a complexified exterior derivative
de: QEM — QEF'M |, k=0,...,2n—1

by "extending the real exterior derivative d by C-linearity". Explicitly, d¢ is given
onw € QLM by

dew = dRe(w) + v/—1dIm(w)

Then d¢ coincides with d on real forms and it is C-linear, by Lemma 6. It satisfies
(dc)? = 0 because d* = 0; furthermore, if w € QEM, n € QLM

de(w A n) = d(Re(w) ARe(n) — Im(w) Alm(n)) +
+VTd(Re(w) A Tm(n) + Tm(w) A Re(n)) =
= dRe(w) A Re(n) + (—1)F Re(w) A dRe(n) +
— dIm(w) A Im(n) — (—=1)* Im(w) A dIm(n) +
+ v/—1(dRe(w) A Im(n) 4 (—1)* Re(w) A dIm(n) +
+ dim(w) A Re() + (~1)* Im(w) A dRe(n)) =
=dew AN+ (=1)FwAden

which means that d¢ satisfies the Leibniz rule. With abuse of notation, we denote

d¢ simply by d.
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Let p, ¢ € N and consider the projections on the summand

[Pta. Qgé+q+1M — QPtLaps

Hp,q+1: Q%éJqurlM N Qp,qHM

The splitting of complex forms induces on each bigrading the splitting of the ex-

terior derivative
d=0+0
where for all p, ¢ € N, we define the Dolbeault operators

0 :=T11P" o d: QPIM — QPFTLIN
0 =TI o d: QPINM — QPITNf

Due to the properties of d and the splitting of complex forms, it follows readily

that both 0, 0 are C-linear and satisfy the Leibniz rule. Furthermore
0=d=0+0 +00+00
Thus, since 92, 52, 00 + 00 take values in different bigradings, we have
?=0,9"=0,00+090=0

Remark 9. By different bigrading: d = 0 <= 9 =0 = 0.

1.4.5 Splitting in local coordinates

For our purposes, it is useful to compute objects such as the exterior derivative in
local coordinates. When dealing with a complex manifold, an effective choice often
turns out to be to pick holomorphic coordinates in order to exploit the complex

structure and its properties, such as the splittings studied so far.

In this subsection, we discuss some examples of these computations, for which

we pick holomorphic coordinates 2* = 2% + /—1 3.
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Example 3. For f: M — C smooth, we have

df = dRe(f )+\/—_dlm(f) =

> 5w a‘ée;f)
vy P S i <
v (aRan(if) N alze_;ﬂ) ),
.\ \/_(81{;; ) alg;(if)) —\/—_1(622" —df"))+
. \/_Z 31(1;121 8I;n§(if)) (dz";d?) N
+\/—(01m(l ) alg;(if)) —\/—_1(d2zi —d?)) _

dz" dz’
Z 0zt -+ Z oz
Moreover, by definition of 0, d
8f=2§j§ 2, Of = >3 o 47

Example 4. Let o € Q)”)]. To ensure notational clarity, in the following we use

the multi-index convention
0 o 0 0 0 o 0 0
0z N9z "9z ) 9zt T\ gz §zda
dzl i=dz" AN ANd2P, dZT =dE A A dF

for any I, J strictly-ordered multi-indices over {1,...,n}, of length p, ¢ respec-

tively. As observed, o admits a local decomposition

a= Y apd NdZF
|J=p,|K|=q
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where o ;7z: M — C are the smooth functions a(%, ) . Since
z

e
EEJ

one gets applying the Leibniz rule

do= > dogndy NdES =
\71=p, 1K|=q
= Y (LR g QU gy ) g =
— Ozt 0z
J=p, |K|=q i
oo —
- Z a—‘]f dz" Adz? A dzE+
l=p, [Kl=¢,i _°
oo .
+ Z OIE =i A do? A dzE

0z
|J|=p, |K|=q, i

and again by definition of 0, 0
oo %
v — IK 1 J A =K
o) E = dz" Ndz" Ndz
|J|=p, |K|=q, i

do= Y aa—jfd?/\dz‘%dzf(

-0z
|J|=p, |K|=q, i

Throughout this work, the following special kind of (1, 1)-forms will play a

crucial role.

Example 5. Let f: M — R be smooth and consider the (1, 1)-form /—199f .
By different bigrading, the conditions d(dz*) = d(dz") = 0 imply

o(dz") = 0(dz") = 0(dz*) = 9(dz') = 0
Hence, we compute

f

o2 ) )
—~— dz? NdZ'
029 0z" : :

= of i
\/—_188f:\/—_18< o= dz> :\/—_1;
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An important detail regarding the kind of form exhibited in Example 5 is that
it is actually a real form. The computation done may not highlight this fact, so we

introduce a new concept in order to prove it.

For the remainder of this subsection, let X € {TcM, T¢M, /\fé M, Téa’b)M} .

Definition 9 (Conjugation). The conjugation of X is the C-antilinear automor-
phism C of X defined for p € M by

Cp(Vp) = Re(V;) — v=1Im(V;)

C induces naturally a C-antilinear automorphism on the space of (smooth) sec-

tions of X, also called conjugation and denoted by C, as follows:

C(w) := Re(w) — v/—1Im(w)

To simplify the notation, we denote C(w) by @. The following properties arise

readily from Definition 9.

Lemma 8 (Properties of conjugation). Let w, 7 be sections of X.
L. u=w <= Imw) =0, @W=—-w <= Re(w)=0
If w, n are complex forms on M

2. WA =WAT

3. 0w = Ow
Proof. The first claim holds because
2y/—1lm(w) =w—-w, 2Re(w)=w+w

For the second claim, we compute
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w A1 = Re(w) ARe(n) — Im(w) A Im(n) +
+V/=1(Re(w) A Im(n) + Im(w) A Re(n)) =
= Re(w) A Re(r7) — Im(w) A Im(n) +
— V=1(Re(w) A Im(n) + Im(w) A Re()) =
(
(

— Re(w) A Re(n) — (~Im(w)) A (—Im(y)) +
(-

+ V=1(Re(w) A (=Im(n)) + (~Im(w)) A Re(n)) =
=TAT
For the third claim, pick holomorphic coordinates 2, ..., 2™ We first consider

the case where w = f: M — C is a smooth function. By Example 3 and the

second claim

and we compute

27 = %%ii - V—_la%mem — V/=Tim(f)) =
- %(alng) B 8I;ny(if) _ \/—<3I;nx(2f) N a};jzf))) B
L (Ot i), A1)
- %%ii +\/—_18%)(Re(f) +v/~1Im(f)) = gfz

Thus, by Example 3 we conclude
of = of
Now consider w a (p, ¢)-form on M. Notice that by the second claim
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= — A K _ = Jz/ K
=y, wrddNdZ"= ) wgpdz' Ndz
|J=p, |K|=q |J1=p, |K|=q

so that w is a (¢, p)-form. By Example 4, the second claim and the the previous

case one has

o= > O AdE AdK =
|7|=p, |K|=q
= Y JmpAdy ndER =
|7|=p, |K|=q
= Z 0w e AN dz? N dZX = 0w
|7|=p, |K|=q
Finally, for any complex form w, the third claim holds by the splitting in bigraded
forms and linearity of 9, 0, C . [

Using Lemma 8, we can show easily that for f: M — R smooth: /=190 is

a real form. Indeed, since f is real, the third point of Lemma 8 yields

V—=100f = V/-100f =
— _J/T1o0] =
= —/—100f = v/—100f

which by the first point of Lemma 8 means Im(y/—199f) = 0.
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Chapter 2

Kahler manifolds

Here, M always denotes a complex manifold of complex dimension n and J its

natural complex structure.

2.1 Hermitian metrics

In this section, we begin our journey into the intersection between complex ge-
ometry and Riemannian geometry. Our goal is to analyze the interplay between
the two objects that represent these branches, that is, a complex structure and a

Riemannian metric.

Definition 10 (Hermitian metric). A Riemannian metric g on M is called

Hermitian if for all X, Y real vector fields

g(JX, JY)=¢g(X,Y)

The triple (M, J, g) is called a Hermitian manifold.

The following object, which arises naturally from a Hermitian metric, will be

the main focus of this section.
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Definition 11 (Fundamental form). Let g be a Hermitian metric on M. Setting
wX,Y):=g(JX,Y), X, Y realvector fields

gives a real 2-form on M. Indeed, w is C*°(M )-bilinear because of the C*>°(M )-
bilinearity of g and the C°°(M )-linearity of .J. Moreover, for all X, Y real vector

fields one has

w(Y, X) = g(JY, X) = —g(JY, J’X) = —g(JX, V) = —w(X, Y)

so that w is skew-symmetric. w is called the fundamental form of g.

We readily see from Definition 11 that the fundamental form w satisfies the

three following properties:

« w is positive definite, in the sense that for any X # 0 real vector field
w(X, JX) >0
This holds because w(X, JX) = g(JX, JX) and g is positive definite.
+ w is non-degenerate, in the sense that V p € M: if for X, € T,M
wy(Xp, Yp) =0 VY, € LM

then X, = 0. This holds because for any p € M, if X, € T),M satisfies the

condition, then
9p(Xp, Xp) = 9p(SpXp, JpXp) = w(X,, [, X)) =0
so X,, = 0 because g is everywhere non-degenerate.

« w preserves J, since for all X, Y real vector fields

w(JX, JY) = g(J2X, JY) = g(JX, Y) =w(X, Y)
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Remark 10. If w is a real 2-form on M that satisfies the above three properties,

then setting
9(X,Y):=w(X, JY), X, Y realvector fields
defines a Hermitian metric on M with fundamental form w.

Consider a Hermitian metric g with fundamental form w. Using Proposition
1 and Remark 4, we can "extend g and w by C-bilinearity". Explicitly, for X, Y

complex vector fields, the complexifications gc, wc are given by

g9c(X, V) = g(Re(X), Re(Y)) — g(Im(X), Im(Y")) +
+V=1(g(Re(X), Im(Y)) + g(Im(X), Re(Y)))
we(X, V) = w(Re(X), Re(Y)) — w(Im(X), Im(Y)) +
+ V=1 (w(Re(X), Im(Y)) + w(Im(X), Re(Y)))

Then Proposition 1, Remark 4 and the properties of g, w result in the following:
+ gc, we coincide with g, w on real vector fields;
* gc, we are C*°(M, C)-bilinear and preserve .J;
+ gc is symmetric and wc is skew-symmetric;
«we(X,Y) =gc(JX, Y)forall X, Y complex vector fields.
With abuse of notation, we denote g¢ by g and w¢ by w.
Lemma 9. g satisfies the following relations:
1.VZ € xe(M)~{0} : g(Z, Z)isareal positive function

2.¥YZ, W exe(M) : g(Z, W)=g(Z, W)

3VX, Y ex" (M), VU, Vex*" (M) : ¢gX,Y)=gU V)=0
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Proof. For the first claim, just notice that for any complex vector field Z

9(27 ?) = 9<Re(Z>’ RC(Z)) - g(lm<Z)7 _Im(Z)) +
+V=1(g(Re(Z), —Im(Z)) + g(Im(Z), Re(2))) =
= g(Re(Z), Re(Z)) + g(Im(Z), Im(Z))

which is positive whenever Z # 0, because g is positive definite on real vector

fields. For the second claim, compute

9(Z, W) := g(Re(Z), Re(W)) — g(~Im(Z), ~Im(W)) +
+vV=1(g(Re(Z), ~Im(W)) + g(—Im(Z), Re(W))) =
= g(Re(Z), Re(W)) — g(Im(Z), Im(W)) +
— V=1 (g9(Re(Z), Im(W)) + g(Im(Z), Re(W))) =
—9(Z, W)

For the third claim, if X, Y are holomorphic vector fields then

Thus, (X, Y) = 0. This relation also holds for anti-holomorphic vector fields,
by the second claim. [

Pick holomorphic coordinates 2!, ..., 2™ By Lemma 9 (3.), if we set
95— 9 (%7 %)
then g,z = gg; by symmetry and g admits the local decomposition
9="> g;5 (d @ dz" + dzF © d27)
ik

Moreover, g can be pointwisely represented by the symmetric matrix of order 2n

(0 |
(9) : ((gjk)T ‘ )
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Let us further analyze the matrix ( ng), which has order n. By the symmetry

of g and Lemma 9 (2.), one also has for all j, k

R R BN
gjﬁzg(@a@):
0 0
=955 g7 =
o 0

= 9(@7 ﬁ) = Y9x5

which means that (gjg) is a Hermitian matrix. For a complex vector field X, let

Xl,(]
[X]z = [XM]

be the 2n-column vector of its components with respect to the local frame

where X0 X0! are the n-column vectors of the components of the (1,0) and

(0,1) parts of X. For all X, Y complex vector fields, we have at each point

9(X, V) = [X]Z (9) [Y]; =
_ (XLO)T (ng) Yol 4 (XO,I)T (ng)T y10

In particular, since for any anti-holomorphic vector field X

X], = [ O] and [X], = [X—]

X0 0

it holds by Lemma 9 (1.)
___\T —
(X°1) (g;0) X! = 9(X, X) >0

which implies that (g,7) is positive definite at each point.
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The matrix representation of g clearly yields

(det(gjg))2 = det(gc) = det(gr)

where the latter holds because g¢ coincides with gr on real vector fields. Conse-

quently, we can write

(det(g;))” = det(g)

with no risk of misunderstanding.
Due to the connection between g and w, the matrix (g,z) is useful to compute

the fundamental form. Indeed, by Lemma 9 (3.) see that for all 7, j

o 0 o 0
oz a0 = Vg0 5) =0
o 0 o 0
oz ) = V0G5 =0

so w admits the local decomposition

w= w(, %) dz? NdzF = /=13 g5 d2? A dZ
Gk

.k
We notice that wis a (1, 1)-form, and being (g,7) Hermitian gives
W=—V-12gzd& NdzF = V=13 g;dz" NdZ =w
Ik ak
so by Lemma 8: w is a real form.

Remark 11. Sometimes, it is useful to consider a normalized local expression for

the fundamental form w:

w= */leZngdzj/\dgk
ik
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2.2 Kahler metrics

This section is devoted to present the main type of object we deal with in this work.
Its importance lies in the richness of its geometry: a first example can be found in

Proposition 4 below.

Definition 12 (Kidhler metric). A Hermitian metric g on M is called Kdihler if

its fundamental form is d-closed, i.e.
dw =0

In this case, w is called the Kdihler form of g and the couple (M, g) (equivalently
the couple (M, w), by Remark 10) is called a Kéhler manifold.

We refer to the condition dw = 0 as the Kdhler condition. Although it is a global
condition, during computations it is useful to apply its local equivalent, which is

our next result.

Lemma 10 (Kdhler metrics in local coordinates). Pick holomorphic coordi-

nates z', ..., 2" Then
6g T 8gi— . . 8g T 6g i7 . .
dv=0 <= ZhF=7F Vi, jk < 5 =2% Vi, jk

Proof. Since w is real, by Lemma 8
Oow = 0w = Ow
which implies together with Remark 9

do=0 < Jw=0 < Jw=0
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From Example 4 we have

0w =+v— Z gjkdz AdZ A dzF =

1,5,k
=v-1)_ (a_z]z‘ azk)d Ad2 A dz*
i<j, k
0
Jw=V-1Y_ a‘q;”“ dz' A dzi A dzF =
2,5,k Z
09z 09 :
= V-1 (agf a; ) dz Adz' A dZ
7, 1<k

Hence, the 9-closure and O-closure of w translate respectively into

99;5 09z

I — () Vi< k
0z¢ 027 v<J
09,7 09

. ~ — =0 Vj i<k
ozt oz hrs

. .. 09.¢
The claim holds for all 7, j, k because of the symmetry of the conditions 89 o =
agzk — 89]-;
029 a*l - 6Ek

with respect to 7, Jj and with respect to ¢, k. [

The following is one of the key concepts introduced by Erich Kihler in his
seminal paper [Kdh32], where he demonstrated their importance in simplifying

the local geometry of Kihler manifolds.

Proposition 4 (Normal coordinates). Let g be a Kihler metric on M. Around

any point p € M, there are holomorphic coordinates z', ..., 2" such that V j, k

. 0g.¢ 09 .~
95(0) =65, Vi:ZZE(p)=7E(p)=0

where d;, = 0if j # kand d;, = 1if j = k (called normal coordinates at p).

Proof. First, note that it suffices to show that there exist holomorphic coordinates
2% ..., 2" centered at p such that the local expression of the fundamental form w

with respect to these is
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w=+/=15 (6;1+ O(]z]?)) d27 A dz*
Gk

where O(|z]?) denotes terms which are at least quadratic in z°, Z'. Indeed, this
condition is equivalent by uniqueness of components to
— 2
955 = 05 + O(|2[°)

Assume the latter is satisfied: then for all 7

0g.— 0g.~
SE=0(|2]), 5% = 0(|2])

where O(]z|) denotes terms which are at least linear in 2, Z'. The claim then
follows from the chart being centered at p. We proceed by steps.

(i) Pick any holomorphic coordinates system v'

,...,v" centered at p and de-
note by g}’E the components of the metric with respect to these coordinates. Since
( 9% (p)) is a Hermitian matrix of dimension n, by the Spectral Theorem there ex-

ists U € U(n) such that

U* (¢-(p)) U = diag(Aq, ..., \pn)

J
where \; € R are the eigenvalues of (g;.’E(p)), and \; > 0 for all [ because (g;E(p))
is positive definite. Hence, there exists C' € G L, (C) such that

C* (g5(p) C = I

where [, is the identity matrix. Therefore one computes

() e (3f5)-
(25 e (2315

(ii) We can define new holomorphic coordinates w', . .., w™ by pointwise ap-

plying a C-linear isomorphism to the frame

A el 0 0 0
Vi={zr - o 30 -+ » T}
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because C-linear maps on the complex space are holomorphic, linear maps can be
naturally identified with their differential at any point, and we can retrieve the real
coordinates from the complex ones by

r . w4w" b= w—w"
)

a = 2 To2y/—1

Being C' invertible, such C-linear isomorphism can be given by

], - (o) lov),
{%L: (g f) [a(zk]v

The new chart is still centered at p, by linearity. Denote by g;% the components of

the metric with respect to J}. We compute

w B 0 0 B
50) = 9053 - | ) =
o] 0
:%] (9(29))[?]:
L Vv Ply
- AT _ T —
[ 01T (o olc\[a|] _
_&ﬂp_v Clo0 9P C‘() (%kpv
- 1T
To g (o]m) o] -
_(%J ol ]n‘ 0 (%kp .
T

p

Tol [o

| Ovd ovk
L v

Therefore, Taylor’s approximation yields

where aji;, ayy; € Cforallid, j, k. In particular, the chart being centered at p

implies that for all [

0g*- 09"~
2 2
811])1 (p) = ajum , ijl (p) = a;‘k:l



_ Y
and Lemma 10 reads a;x = aij, ajy, = ayy, - Furthermore, by Lemma 9

5w pTI w
ng3 Bgﬁ _ 8gﬁ

owt — Ow? ow*

SO Gkji = @y, - Also notice that @jp; = iy = aj; -
(iii) Finally, define a holomorphic map ¢ = (z',..., 2") by

koo k1 o
2P i=w +§Zamww
]7Z

Notice ¢(p) = 0. For all k, [ one finds

0zF

0zF
% (p)

% = 5kl

= (SkI + Z ki wj 5il -

j7i

SO det(giwi(p)) # 0. The chart is centered at p, so ¢ defines a holomorphic chart
by the Holomorphic Inverse Function Theorem (up to choosing a smaller neigh-

borhood of p). Differentiation and conjugation give

dzF = dw* +Za3k1w3dw dz" = dw* + 3 aj,; W dw’

J,?

Consequently, it holds up to term of order at least two
V-1 Z dzF N dzh =
k
— V= Z (dw” /\dwk+z (a0 W dw') A dw"+

75t

+dw* A ap, W dw') =
— V-1 Z](;ﬂf dw’ A dw” + Z O ajp w') dw’ A dwt+
+y Z“ﬂm w]/\dw) |
— \/lezgjk dw’ A dw’ =
i,k

thatls,gf—ék—i—O(]zP). O
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Remark 12. The possibility of finding around a point holomorphic coordinates

centered at that point such that with respect to these
— 2
9i5 = 05k + O(|2[°)

is referred to as "the metric g osculates in the origin to order two to the standard metric".

In Proposition 4 we showed that

g osculates

= T

Kihler condition 3 normal coordinates

This diagram can be closed so that the properties are equivalent, i.e. the existence

of normal coordinates implies the metric is Kdhler. Indeed, let p € M and pick

normal coordinates 2!, ..., z" at p. Then
89 ik 897'7
52 (p) = 0= Z%(p)

and we can apply Lemma 10.

In addition to their geometric meaning, normal coordinates are a powerful tool
to simplify computations. We will use them extensively throughout this work for
this purpose.

An immediate application can be found in the next property. By Lemma 2, M
admits a natural orientation: choose the holomorphic structure as the atlas that
gives positive orientation.

If g is a Kdhler metric on M, we can describe the volume form of g with respect

to the natural orientation of M in terms of the Kidhler form. More precisely:

Proposition 5. Let (M, g, w) be a connected Kahler manifold. Then 7 is the
volume form of g with respect to the natural orientation of M, where w™ is the

wedge product of w with itself n-times.

Proof. Pick normal coordinates 2! = ' + v/—1y" at p € M. Then det(g(p)) = 1

and the volume form of g at p is given by
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vol,(p) = /l\ dz'|, A dy'|,
Notice that for all ¢
dat A dy' = Y7 d2P A dF
which implies
voly(p) = (52)" /\ d|, AdZ|
On the other hand (see Remark 11), in normal coordinates
Wy = @ > dz'|, A d7|p

Hence, by the Multinomial Theorem

n n n! ) =1 i
G- 2 prog AL AEL)

ki tkn=n
V-1 ; »
- (T) n!/\dz |p/\dz ’p:n! vol,(p)

where we used that (dz'|, A d7|p)ki = 0 whenever k; > 2. O

Remark 13. We could apply the Multinomial Theorem in Proposition 5 because A
is commutative on 2-forms. We can also use it to compute (in normal coordinates
atp)forl <a <n

—1 ! oo .
V-l 3 —lak!/\(dz’}p/\dzﬂp)’“:

k... /
kit +hn=a i=1

:(g)“a! > N de

r1<---<rq =1

A dzZ"
p p
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2.3 Intrinsic geometry of Kihler manifolds

Throughout this section, we explore the more geometric side of Hermitian and
Kahler manifolds, focusing on developing the complex version of the tools that

describe the intrinsic geometry of a Riemannian manifold in the real case.

We need the following preliminary construction. We can "extend the Lie bracket

[-, ] by C-bilinearity": that is, for X, Y complex vector fields, we set

[X, Y]c := [Re(X), Re(Y)] — [Im(X), Im(Y)] +
+ V=1 ([Re(X), Im(Y)] + [Im(X), Re(Y)])

Then [, -]¢ coincides with |-, -] on real vector fields, it is C-bilinear and skew-

symmetric. For U, V|, W complex vector fields, we compute explicitly

“Re([U, [V, Wicle) = [Re(U), [Re(V), Re(W)]] — [Re(U), [Im(V'), Tm(W)]]+
— [Im(U), [Re(V), Im(W)]} — [Im(U), [Im(V'), Re(W)]]

[Re(V), Re(W)]] = [Im(U), [Im(V'), Tm(W)[]+

+ Re(U), Re(V), Im(W)]] + [Re(U), [Im(V'), Re(W)]]

El
S|
<
=
a,
e
Il
g
=
=
By

from which we deduce that [-, -|c satisfies the Jacobi identity. Furthermore, let

f: M — R be smooth. We compute for X, ¥ complex vector fields

— Im(X)(f)Im(Y) = f[Im(X), Im(Y)] =



which means [X, fY]c = X(f)Y + f[X, Y]c. Then, for g: M — C smooth

(X, g¥]c = [X, Re(9)Y]e + V-1[X, Im(g)Y]c =
= X(Re(9))Y + Re(g)[X, Y]c +
+vV=1(X(Im(g))Y +Im(g)[X, Y]c) =
= X(9)Y +g[X, Y]c

Moreover, it readily follows from the definition that

[X> Y](C = [Xv Y](C

With abuse of notation, we denote |-, -|c simply by [+, -].
Lemma 11 (Schwarz). Pick z!,. .., 2™ holomorphic coordinates. For all 7, j
1 B =l &= 1 =0
* [%v J%] - [%7 J%] - [%’ Jazﬂ] [Jaz” GZJ] =0
o Tn] = [‘](ﬁ” T = [‘](ﬁﬂ J%] =0

Proof. By Schwarz’s lemma

0zk7 0237 “0xk’ Ox oyk’ OyI

FV T (g 55+ e ) =

The others relations of the first point are similar; the claim follows by C-bilinearity
of [, -] and the fact that holomorphic and anti-holomorphic coordinate vector

fields are eigenvectors for .J. U

The next result is deduced because the complexified exterior derivative and Lie

bracket satisfy the same formal properties of their real counterparts.
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Corollary 2. Let w be a complex k-form. Then dw is given on complex vector
fields X1, ..., Xj1 by the formula

dw(le SR Xk+1) =
k+1
_Z D Xo(w(Xhs oy Xiy oy Xpg)) +

+Z ZJFJUJ Xl,X] Xl?"'aX’h"')Xj;-"7Xk+1)

1<J

2.3.1 The Levi-Civita connection and the Kahler condition

From now on, let ¢ be a Hermitian metric on M with fundamental form w. The
Levi-Civita connection V of g can be "extended to the complex tensor algebra":
that is, for X complex vector field and 7" complex tensor, we set
VST = Viex)Re(T) — VimxyIm(T) +
+ V —1 (VRe(X)Im(T) -+ V[m(X)RC(T))

Then VC coincides with V on real vector fields and tensors. Since V is a connec-

tion, we have the following properties for V°:

« VCis C*>°(M, C)-linear on the first entry and C-linear on the second entry.

+ (Leibniz rule) If f: M — R is smooth, we compute for X complex vector

field and 7' complex tensor

VSST = Vie(x) [Re(T) = Vim(x) fIm(T) +
+ V=1 (Viep) fIm(T) + Vimx) fRe(T)) =
= Re(X)(f)Re(T) + fVrex)Re(T) +
— Im(X) (/)Im(T) = fVime)Im(T) +
+V=1(Re(X) (N)Im(T) + fVre(x)Im(T) +
+1Im(X)(f)Re(T) + fVimRe(T)) = X (f)T + VKT
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Then, for g: M — C smooth we have

VST = VS$Re(9)T + vV —1V$Im(g)T =
= X (Re(g))T + Re(g9)VET+
+ V=1 (X(Im(9))T + Im(g)VXT) =
= X(9)T + gV§T

« For g: M — C smooth

V%9 = VrexRe(9) = Vimx)Im(g) +
+ V=1 (Vre()Im(9) + Vim(x)Re(g))
= Re(X)(Re(g)) — Im(X)(Im(g)) +
+ v/ =1 (Re(X)(Im(g) + Im(X)(Re(g))) = X(g)

+ (Leibniz rule) For X real vector field and T, S complex tensors

*Re(VET ® S) = VxRe(T ® S) =
= (VxRe(T)) ® Re(S) + Re(T) ® (VxRe(9)) +

— (VxIm(7T)) ® Im(S) — Im(7) ® (VxIm(S)) =

=Re((VKT) ® S+ T @ (V$9))
*Im(VGT ® S) = VxIm(T ® S) =
= (VxRe(T)) ® Im(S) 4+ Re(T) @ (VxIm(S)) +
+ (VxIm(T)) ® Re(S) + Im(T") ® (VxRe(S5)) =
=Im((V$T) ® S+ T ® (VSS))

which means that

VET @ S = (VET)® S+ T @ (VS9)
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Then, for Y complex vector field

VIT® 8 = Ve T ® S +vV-1ViyT ® S5 =
= (Vemr) D) ® S+ T & (Vigy)S) +
+ V-1V T) ® S + T ® (Vi S)) =
= (VST)® S+ T ® (VS)

« Let tr be a contraction (k+1, [+ 1) — (k, ). Then, for X complex vector
field and 7" a complex (k + 1, [ + 1)-tensor

tr(VET) = tr(Veex)Re(T) = VimxyIm(7T)) +
+ \/—_1tr((VRe(X)Im(T) + Vimx)Re(T))) =
= Vi) tr(Re(T)) — Vi tr(Im(7)) +

+ V=1 (Vi) tr(Im(T)) + Vi(xytr(Re(T))) ) =
= V§tr(T)

From the properties described so far, it follows as in the real case that

« (P) for w complex 1-form and X, Y complex vector fields
VEw(Y) = (VEw)(Y) +w(V§Y)

« (E) for a complex (k, [)-tensor T, if X is a complex vector field, then for

any [ complex vector fields Y; and k£ complex 1-forms w;

(VST (wr, ..y we, Ya,..., 7)) =

= X(T(wi, ..., wg, Y1,..., 1)) +

k
_Z T(wl,...,ngj7...,wk,Y1,...,Y})+

=) T(wr,.we Vi, VYL Y)

i=1
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Furthermore, since V is, in particular, the Levi-Civita connection, we have the

following relations.
« (VC is symmetric) For X, Y complex vector fields
VSY = VEX = Veex)Re(Y) — VigxIm(Y) +

— Vrev)Re(X) + VipyyIm(X) +
+ V=1 (Vi) Im(Y) + Vim(xyRe(Y) +
— Vrer)Im(X) + Vimy)Re(X)) =

= [Re(X), Re(Y)] = [Im(X), Im(Y)] +
+V=1([Re(X), Im(Y)] + [Im(X), Re(Y)]) =

=[X, Y]

« (V€ is metric) For X real vector field and Y, Z complex vector fields

A
A

*Re(Vig(Y, Z)) = Vxg(Re(Y), Re Vxg(Im(Y), Im(Z)) =
= g(VxRe(Y), Re(Z)) + g(Re(Y), VxRe(Z)) +
— g(VxIm(Y), 1m(2)) — g(Im(Y), VxIm(Z)
— Re(g(VSY, Z) + 9(Y, VE2))
*Im(V5g(Y, Z)) = Vxg(Re(Y), Im(Z)) + Vxg(Im(Y), Re(Z)
= g(VxRe(Y), Im(Z)) + g(Re(Y), VxIm(Z)) +
+ g(VxIm(Y), Re(2)) + g(Im(Y), VRe(Z)) =
=Im(g(V}Y, Z) +g(Y, Vx2))

(2)) -
(2))

)=

)=
)

which means V$g(Y, Z) = g(V$Y, Z) + g(Y, V$Z). But then for W
complex vector field
Virg(Y. Z) = Ve 9(Y, Z2) + V=1V g(Y, Z) =
= 9(VieenYs Z) +9(Y, Vi 2) +
+ V=1V, Z2) + 9(Y, Vigu)Z)) =
= 9(VwY, 2)
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From these relations, it follows as in the real case the Koszul formula

9VSY, 7) = S(X(o(Y, 2)) + V(97 X))~ Z(g(X, V) +

—9(X, [Y, Z]) +9(Y, [Z, X]) +9(Z, [X, Y]))

where X, Y, Z are complex vector fields. Finally, it is clear from the definition

that for X complex vector field and 7' complex tensor

VST = VET
With abuse of notation, we denote VC with V. When dealing with a Hermitian
manifold, we always consider it equipped with its Levi-Civita connection.

We are now ready to analyze the strict interplay among the many structures

that we have introduced.

Proposition 6. For all X, Y, Z complex vector fields, the following identities
hold:

D) dw(X,Y, Z) = g(Vx J)Y, Z2) + g((Vy)) Z, X) + g((V2]) X, Y)

2) 29((VxJ)Y, 2) = dw(X,Y, Z) — dw(X, JY, J Z)

Proof. The claim regards tensorial identities, so it is sufficient to prove it for a local
frame, thanks to the local behavior of d, V. Moreover, by Lemma 11, it is sufficient

to prove the equations for X, Y, Z complex vector fields such that
X, Y Z, JY, JZ all commute

Then, by Corollary 2 one has
a) dw( XY, 7)) =Xw,2))+Y(w(Z, X))+ Z(w(X,Y))
b) dw(X,JY,JZ) = X(w(JY, JZ))+ JY (w(JZ, X))+ JZ(w(X, JY))
On the other hand, for all U, V' complex vector fields it holds
VoV = (VuJ)V +JVyV (J)
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Indeed, for all  complex 1-forms and U, V' complex vector fields, by (E) and (P)
(Vo )V) = (VuJ)(n, V) =
=VuJm, V)= Jmn, VoV) = J(Vun, V) =
=Vun(JV) = (Vun)JV =n(JVyV) =
=n(VuJV) =n(JVyV) =n(VyJV = JVyV)
so (VyJ)V =VyJV — JVyV. Since w is skew-symmetric and V is metric and
symmetric, one computes
XwY,2)+Y (w(Z,X))+ Z(w(X,Y)) =
=Vxg(JY, Z)+Vyg(JZ, X)+Vz9(JX,Y) =
=g(VxJY, Z)+w(Y, VxZ) +
+ 9(VyJZ, X)+w(Z, VyX)+
+ g(VzJX,Y)+w(X, VzY) =
=g9((VxJ)Y, Z)+w(VxY, Z)+w(Y, VxZ)+
+ 9(Vy))Z, X)+w(VyZ, X)+w(Z, VyX)+
+ 9(V2)X, V) +w(VzX, V) +w(X, VzY) =
=g((Vx))Y, Z)+w(VxY, Z) +w(Y, VzX)+
+ g(Vy)Z, X) +w(VyZ, X)+w(Z, VxY)+
+ g(V2 )X, Y) +w(VzX, V) +w(X, VyZ) =
=9(Vx )Y, Z) +9((VyJ)Z, X) + g((V2])X,Y)
which proves 1) because of a). As for 2), observe that since g preserves .J
o(Vx )Y, 2) = (VY. Z) ~ g(J(VxY), 2) =
=g9(VxJY, Z)+ g((VxY),JZ)
By the Koszul formula we then get
2(VxJY, ) = X(g(JY, 2)) + JY (97, X)) - Z(g(X, J¥)) =
=Xw, Z)—-JYw(JZ, X)+ Zw(X, Y)
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and also

29(VxY,JZ) = X(g(Y,JZ2)) + Y (9(JZ,X)) — JZ(9(X,Y)) =
= — Xw(JY, JZ)+Yw(Z, X) — JZw(X, JY)

Using b), we consequently have
20((Vx )Y, Z) =Xw(Y, Z) — JYw(JZ, X)+ Zw(X, Y) +

— Xw(JY, JZ)+Yw(Z, X) = JZw(X, JY) =
= dw(X,Y,Z) — dw(X,JY, ] Z)

]

Corollary 3. g is Kahler if and only if ] is parallel with respect to V,ie. V.J = 0.

In this case, it holds for any complex vector fields X, Y
VxJY = JVxY

Proof. 7 = 7 By Proposition 6 (2)), one has for all X, Y, Z real vector fields
9(VxJ)Y,Z) =0
and since the real g is positive definite, it follows for all X, Y real vector fields
VIX,Y)=(VxJ)Y =0

Due to C-linearity, we conclude that V.J = 0. In this case, from (.J) of Proposition

6 we have for all U, V' complex vector fields
VuJV = JVyV

2

< 7 Itis a direct application of 1) of Proposition 6. [
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2.3.2 Curvature

Here, we define the objects related to the curvature of a Kahler manifold, using
the Levi-Civita connection of its metric. For our purposes, we focus on a local

description of such objects.

For the remainder of this section, assume ¢ is Kdhler. We adopt the following

notational convention: denote

Vo=V,Vo=V;,2%=0,2=0
oz ozt

i B » 97 ¢

and let (¢'/) denote the transpose-inverse to (9:7), e

; 9%97 = dij , ; 9" 945 = 0

Definition 13 (Christoffel’s symbols). From Corollary 3, one has
JV ;0 =V,;J0, = v/—1V,0

Hence, V ;0j, is a holomorphic vector field. The holomorphic Christoffel’s symbols

F; ;. of the Levi-Civita connection on )M are defined by

Similarly, since V50 is an anti-holomorphic vector field, the anti-holomorphic
Christoffel’s symbols I" ;/k are defined by

V;0F = Z I OF
Notice that the mixed terms Vz0,, V,0; have not been considered. They are

not relevant: as in Definition 13, for all j, k&

+ V50 is a holomorphic vector field

. V;ﬁ; is an anti-holomorphic vector field

but Lemma 11 and the symmetry of V yield V;0;, = V.5, so these equal 0 be-

cause of the splitting of complex vector fields.
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Remark 14. Since V preserves conjugation, we see that

i Ti
I‘jfk—ij

In particular, V is locally completely determined by I' ; i Furthermore, by Lemma

11 and the symmetry of V we have V;0;, = V,0;, which translates to

[i, =T}, and [T, =T

It is clear from the definition that the Christoffel symbols are strictly related to

covariant derivation. The next examples highlight this fact.
Example 6. Fix i, j, k. Differentiate d2"(9;) = d; with respect to V; to obtain
0= Vi(dz*0;) = (Vidz")0; + d2*(V,0;) = (Vidz")0; + T},
which means
(Vidz*)0; = —T'};
On the other hand, since V;0; = 0 and V;dz"(9;) = 0, we deduce from above
(V,»dzk)(% =0
Thus, V;dz* isa (1,0)-form and it admits the local decomposition

V,dzF = —Z Ffj dz?
J
By conjugation, V;dz" is a (0, 1)-form and it admits the local decomposition
Vidz* = —3 TE dz
J
The mixed terms V;dz" are 0: for all j

LV =0 B (Videb)g; =0
LA (V) =0 B (VMo =0

J

By conjugation, V;dz* = 0.



Example 7. Let Z a; - dz* ® dz’ be a tensor. By Example 6 and the Leibniz rule,

we compute for any D
-V (Z a; dz' ® dz') =

Z b a5) d2' @ dZ + ag(V, d2') @ d2 + a5 d2' @ (V, d) =

—Z 5) dz’ ®dz]—a(ZF;ldzl)®d§j:
l
= Z (Opa;z — Z I‘fm ;) dz' @ d7’
ij l
. V;,(Z ag; dz' ® dz’) =

i.j
:Z(& 5)dz' @ d7 + a5(Vpdz') @ d77 + a5 dz' @ (VdZ) =
]

=Y (Gpag)dt 047 —agat e (Z 7 d§l> i
0, !

= Z 5 Q5 Z ij a;) dz' @ dz’
0,J l

Lemma 12. In terms of the coefficients g, the Christoffel symbols are given by
P = 229" 0194

Proof. Since V is metric, for all p one has V,,g = 0. In holomorphic coordinates,

this reads by Example 7
0= ap 9ik — Z ng Yok
Consequently

Xll gilajgki = ZZ F?k Yal 9" = ZZ F?k Oia = F;‘k
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In Riemannian geometry, one interpretation of the curvature tensor is the mea-
sure of commutativity between covariant derivatives. In Kahler geometry, we

adapt this concept to the complex structure on the manifold.

Definition 14 (Curvature tensor). Using Corollary 3, we see that
(ViV; — V;V})0; is a holomorphic vector field
The (1, 3)-curvature tensor is defined in holomorphic coordinates by

(VeVi = ViV)0; =3 Ry 0
J

To better understand the meaning of the curvature tensor, let us find its relation

to the metric. Since we compute
(ViV; = ViV)0; = Vi V7 0; — ViV,0; =
=-V; <Z Fii aj) =
J
==Y ((ViT})0; + T4,V 0;) = => 0T, 0;
J J

by uniqueness of components, we can express the (1, 3)-curvature tensor in terms

of the Christoffel symbols as
Ry = =0 Fii
Furthermore, by Lemma 12 and the Leibniz rule
Ry == 0 (¢ giq) =
q
==> (0 9Ok giz) + 970y O giq)
q
Again, by the Leibniz rule
0=0,(39"9) = 2 (8 9")915 + 9" (O 915)
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which leads to

O g = (990 =

k

— Z 77( &gkq )k = _Z ¢’P &gkp

.k

Applying this to the previous expression, we can express the (1, 3)-curvature ten-

sor in terms of the coefficients g as

RZ Kl — _Z gjq& ak Gig + Z grqg]p ak gzq)(& grp) (Rl)

p,r.q

Now consider the (0, 4)-curvature tensor, defined "lowering the second index of the

(1, 3)-curvature tensor through the metric": that is, in holomorphic coordinates

zgkl Z gtg i kz

Then (R1) becomes
Ry =010k g5+ > _ 90 9:2) (91 9,5) (R2)
r,q

Picking normal coordinates around p € M results into

R 13(p) = Riu(p) = — (0% 0; 957)(p)
Hence, we deduce the following.

Remark 15 (Geometric meaning of the curvature tensor). The curvature ten-
sor measures the obstruction, for the chosen holomorphic coordinates, to be nor-
mal coordinates (around a specific point).

By Remark 12, this indicates the deviation of the metric from the Euclidean

metric, up to second order, in the selected chart.
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Lemma 13 (Symmetries of the curvature tensor). The (0, 4)-curvature ten-

sor enjoys the following symmetries:
Rﬁki = Rﬁk} = Rk}ﬂ = Rkh‘j
Proof. Forany i, j, k, [, by Lemma 10, Lemma 11 and (R2)

“ Rz = 07 O g5 + Z 9" (O 9i)(0; 9,3) =

T7q

= 0;0; gy + Z 9"%(0; giq) (0 95) = Ryji

7‘7q

R = 0O 95 + Z 9" (Ok 9iq) (0; 9r7) =

7’7q

= E); 0; g7 + Z 9"%(0; gkﬁ)(&j 9:1) = Rkh}

T7q

]

The following objects play a crucial role in the study of Kihler manifolds, as

they encode not only geometric but also significant topological information about

the underlying space.

metric tensor. That is, in holomorphic coordinates

Rz = ; 9" Ry

Definition 15 (Ricci curvature). The Ricci curvature is defined to be the con-

traction over the third and fourth indices of the (0, 4)-curvature tensor with the

A characteristic fact regarding the Ricci curvature of a Kdhler manifold is that,

unlike in the Riemannian case, its components can be expressed in a nice way as

functions depending only on the coefficient g 7.
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Lemma 14. In holomorphic coordinates it holds
= —0; 05 log det(g,7)

Proof. For an invertible Hermitian matrix A = A(z), Jacobi’s formula states
0; log det(A) = tr(A™1 §;A)

Consequently, by Lemma 11, Lemma 12, Lemma 13
—0; 05 log det(gyg) = —05 Z (9"70; gyg) =
- _Z 05 T, =
= Z Ry 5=
p
- Z gpl Rﬂﬁ -
p,l
- Z g" Ry =1t
p,l
O

Definition 16 (Ricci form). The Ricci form Ric(w) is the (1, 1)-form defined in

holomorphic coordinates by
Ric(w) := /=1 R;; dz* N dZ’
Notice that by Lemma 14 and Example 5

Ric(w) = —v/—1 00 log det(g,7)

Then Ric(w) is a closed form. Moreover, it is real since (g,7) is a positive definite
Hermitian matrix, so it defines a cohomology class in the De Rham cohomology of

M. Furthermore, if wy,, w, are two Kahler forms on M

Ric(wy) — Ric(w,) = —v/—1 90 lo je‘t(g
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Since the determinant of the metric transforms under a change of holomorphic

coordinates by the formula
det(g;E) = det(J~")? det(g,z)

det(hjg) .
det(gjg)

where J is the complex Jacobian matrix of the change of coordinates,

globally defined function. This means that

Ric(wy,) — Ric(w,) is an exact form
and the two Ricci forms define the same cohomology class.
Definition 17 (First Chern class). The De Rham cohomology class

(M) == - [Ric(w)] € H*(M, R)

uniquely determined by any Ricci form on M, is called the first Chern class.
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Chapter 3
Calabi’s conjecture

This chapter is devoted to present the solution proposed by S. T. Yau ([Yau77],
[Yau78]) of the Calabi conjecture [Cal54].

Throughout this chapter, M always denotes a compact, connected Kihler man-

ifold of complex dimension m > 2 with Kahler metric g and Kahler form w.

3.1 Preliminary tools

In this section, we develop the necessary tools to address the resolution of Calabi’s

conjecture.

Lemma 15 (00 lemma). If ¢ and 7 are two real (1, 1)-forms on M in the same

cohomology class, then there is a smooth map h: M — R such that
n=¢+v—190h
Proof. Since ¢, nare cohomologous 2-forms, there exists a real 1-form « such that

n=¢+da

In particular, since ¢, 7 are (1, 1)-forms the same holds for da. If we split @ =

at? 4+ a%tintoits (1, 0) and (0, 1) parts, by different bigrading
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Dt = Fab = 0
and consequently
n= ¢+ 0ot + dal?

The function

a0 = =3 ¢/F Vi q;

ik

has zero integral on M, so (see [Szé14], Thm. 2.12 p. 33) there is a smooth map
f: M — C such that

oo = Af=—-0"0f

which implies 9*(a' + 9f) = 0. Moreover, since d(a'® + df) = 0, then
al? 4 9f is a O-harmonic form; but g is Kihler, so the form is also O-harmonic

and in particular it is O-closed. This means
0a’ = —90f
Notice that a®! = a0 because « is real. Hence
n—¢=-00f—00f =00(f — [) = v-109(2Im(f))
]

Theorem 3 (Maximum principle). The only subharmonic maps on M are the

constant maps.

Proof. Recall that for f, g smooth maps on M

A(fg) = A(f)g+ fA(g) +29(V [, Vg)

By Stokes’ theorem

A(f

0= ], 8
&

A(f)g dV, +/ fA(g) dV, —l—/ 29(Vf, Vg)dV,
M
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Now let f € C'°°(M) be subharmonic. First, assume f > 0 on M. Applying the

above relation with g = % f gives

o= [ A av, 2 [ (A = [ (s

which implies ||V f||, = 0 on M, and f is constant being M connected. In the

general case, being M compact

1Ar}f(f) eR

The map f — i]\r}f( f) is then subharmonic and non-negative on M, hence constant.

This implies that f is constant. 0
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3.2 The Monge-Ampere equation

We have seen that necessary conditions for a (1, 1)-form to be the Ricci form of
some Kahler metric are to be real, closed and represent the first Chern class in
cohomology. We now reduce Calabi’s conjecture to a complex partial differential

equation through these conditions (and an ulterior hypothesis).

Let 1) be a closed real (1, 1)-form on M such that [n] = 27¢i(M). If n =
Ric(w') for some Kéhler metric ¢’ on M, then

= —/—100 log det(g;%)
and being 1), Ric(w) cohomologous, by Lemma 15 there is F' € C°°(M) such that

_ ' )
V=190F = Ric(w) — 1 = v/~ 100log 1.

— det(g’
o9 (F-@%) ~ 0
det(g’y)

that is, log detlg) — F'is harmonic on M. By Theorem 3, for a constant ¢ € R
Ik

It follows that

det(g’7)

det(gjk) =r T

log
or equivalently
det(g;E) = Ce’det(g;z)

Notice C' > 0. If we further assume that w, w’ are cohomologous, then by Lemma

15 there is ¢ € C*°(M) such that

V=100 = ' —w

In holomorphic coordinates, this becomes (recall Example 5)

V= Z@éhpdz NdZ = /- Z(gf—gﬁ)dzi/\dzj
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Thus, by uniqueness of components, we can write the previous equation as
det(g;7; + 8; O @) = Cedet(g;3) (M-A)

Equation (M -A) is called the Monge-Ampére equation. We just proved that if the
existence part of Calabi’s conjecture is verified, then (M- A) has a solution ¢ that

is smooth.
Conversely, let 7) be a closed real (1, 1)-form on M such that [n] = 2mw¢; (M).
Set (M-A), where F' € C*°(M) is given by
V—100F = Ric(w) — 7

If for some constant C' > 0 we can solve (M-A) for a smooth ¢ such that the

tensor given in local coordinates by

> (957 + 05 05 ) (do! @ dz* + dZ* @ d27)
7,k

defines a Kihler metric ¢’ on M, then
e W —w=+/—100¢
+ proceeding backwards in the above discussion, we have

(9;;)

de (ng)

= —V/~109 log det (g,7) + v/—~10dlog det (¢'7) =
= Ric(w) — Ric(w')

Ric(w) — n = v/—190 log

det
t

which means that w’ € [w] and n = Ric(w’), and the existence part of Calabi’s

conjecture is solved.

Also note that by construction, the uniqueness part of Calabi’s conjecture cor-
responds to the uniqueness of the smooth solution of (M -A) such that the above

expression defines a Kdhler metric.
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Remark 16. In fact, there is only one possibility for the constant C' in (M- A).
Indeed, if W' — w = d¢, then

(WP =w+dp ANw+wAdo+ (dp)* = w? + dip

that is, (w')? — w? are cohomologous. Inductively, we get by Proposition 5 that

dVy = () dV, = 7 are cohomologous

m!

Therefore, we compute by Stokes’ theorem

/ CefdV, = Z / a; Cef'\/det(g) dz* A - AN dy™ =
M i (Uz)
= Z / a; Cet det(g;z) det A - Ndy™ =
i U)

= Z / ; det(g;%) dz' Ao Ndy™ =
i (Us)

=Y [ e vdalg) e ne ndy” -
i U)

_ / avy = / av,, = vol(M)
M M

where we picked a holomorphic atlas {(U;, v; = (z%, y%))}; and a partition of

unity {«; }; subordinated to it in order to compute the integral.
Remark 17. Since g is a Kdhler metric, the expression

> (957 + 05 0 ) (do! @ dZ* + dZ* @ d27)

.k
already defines a symmetric tensor ¢’ compatible with J and whose fundamental
form satisfies the Kihler condition. Hence, ¢’ is actually a Kihler metric if and only
if ¢’ is positive-definite.

For the remainder of this work, we say in this case that ¢ is g-positive.
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3.2.1 The strategy

We plan to solve (M - A), using the continuity method. To do this, we need a priori
estimates of . For this purpose, we make a few arrangements. We can translate F'

by a constant so that
C=1

and the relation v/— 100 F = Ric(w)—n still holds, because only the second-order
derivatives of F' are involved. Similarly, we can translate ¢ by a constant because
the relation w’ — w = v/—100yp involves only the second-order derivatives of (.

In particular, we can assume

fMQDdVg:O

and then translate again ¢ during our discussion, when necessary.
To simplify the notation, we will omit the evaluation on the point during the
upcoming computations. Furthermore, we will make most of our calculations us-

ing the following.

Lemma 16 (Special coordinates). Around p € M, we can choose normal co-

ordinates with respect to ¢ such that the matrix (0; 05 ¢) (p) is diagonal.

Proof. Start with normal coordinates w?, . .., w™ with respect to g around p. De-
note the coefficients of g, ¢’ and the partial derivatives of ( at p with respect to

these coordinates by

Since (0; O ¢"*) = (( g’);%) — (gwa> is Hermitian, by the Spectral Theorem exists
C € U(m) such that

where Ay, ..., A\, € Rare the eigenvalues of (0; 0 ¢"). Then

o (g%a) C=1,, C* (@’)ﬁ) C = In + diag(M, - . )

J

74



As described in Proposition 4, take the holomorphic coordinates 2, ...,z

obtained by the linear change of coordinates
o1 _(0]|C 0
049 ], A\ clo ow’ |,
.- (o)
7", \ clo ot |,

m

Denote the coefficients of g, ¢’ and the partial derivatives of  at p with respect to

the new coordinates by

QJZ-E ; (gl)jg ;050 ¢

1

Then, since w", ..., w" are normal coordinates, we compute at p

. forall j, k

par( o0 ()T 2]
= 5], C*(g}%)C‘ 0 |, = O

« foralle, j, k

- (3 [3]) 2]
[ w2,

[aln (o[-

where we used that the components of the new vector fields with respect to

the previous ones are constant. By conjugation: 0; g]% = (O foralls, j, k.
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This means that z', ..., 2™ are normal coordinates at p. Furthermore, denot-

ing diag(A1, - . ., Ayy) by D, we compute at p

(95 = {ai}w (W[5 -

_{ﬁﬁT 0 |L.+D {a} IS
~lowly\ 1.+D] 0 awt |, T

This means that ((¢’ )JZE) is diagonal. Hence, the same holds for (9; d;; ¢°). O]

Here we present some useful relations regarding the normal coordinates given

by Lemma 16, which we call special coordinates.

Let p € M and pick special coordinates around p. Then ( g;E) is diagonal and

(9'-) =1+ 0; 0; ¢ forall j

27

In particular, the 1+ 3; 05 s are the eigenvalues of ( g;E), which is Hermitian and
positive definite. Hence
14 0; 0; 0 € R7 forall j

We then also have

0<Y (1400 ¢) =m+ Ag

J

where A is the Laplacian with respect to g, and for all 7, j
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3.2.2 Second Order Estimates

For this step, we follow [Yau78] and look for an upper estimate of Ap. Pick holo-

morphic coordinates. Rewrite (M -A) as
log det (g;; + 0; 95 ¢) — log det (g;5) = F

We differentiate it with respect to Jy by Jacobi’s formula, obtaining

O F = Z VI (D955 +0,0;000) =3 g7 (D gg)  (ED)

Recall that we computed

0 (9")7 = =2 (9™ (0 (9)m) ()"

t,n

Therefore, differentiating (£1) with respect to d; gives

O O F =
:_Z (97 (¢)™ (O g + 0 O Oy ) (Ok g5 + 0; 05 0 ) +
i,5,t,n
+Z( ') (O &gzg—i_&iaj‘ak%(ﬂ)_" (£2)
+ Z 9" 9™ (0 9) (O 9:5) — > _ 9" (0 0; gi5)
2,7,t,m 1,7
If A is the Laplacian with respect to ¢/, then by the Leibniz rule
A (Ayp) = Z )M Ok Oy (Z g7 0, &w)
= Z Vg7 9; 0 O Oy +
,7,k,l
+ > (9 (@ 0 97)(0: 05 ) + (E3)
0,9,k,1
+ D (@) (O g0 05 0 0) +
,7,k,l
+ 3 () (8 97)(0; 05 01 )
1,7,k,l
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Now fix p € M. Since the Laplacian is independent of the choice of coordinates,

we can pick special coordinates around p. Consequently, the following hold:

* 95 = g7 = 0ij

* O g5="0r9;=0

« O g7 == g™ (O gm)g" =0, g7 ==Y g"(O gm)g
t,n tn

y Rijki = —0k O 95

0; 050 =0ij 0; O; ¢

and we compute
O 0 g7 = —0y (Z 9" (0 gtn)gtj) =
= —Z (O 9™) (O gim) 97 =D g™ (0 Oy gim) 9
t,n

- Z 9™ (0 gim) (O 97) = =0k O g3 = Ry

t,n

We apply these relations to (£2), obtaining

AF:ZakaEF:

5in
=— > 1+8t - (0: 0= O ) (03 05 O ) +

i,5,t,n,k 1—{—61(3;@
+Z1+a ~Ri + 00500 0p 0) + > i (Rizr)
1,5,k
=-> ! L 0.0 ©) (0; 05 01 ©) +
~1+0;050 140007

1
+;1+aia; —Rei + 05 05 0y, 0; +ZRM
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and to (£'3), obtaining

, Okl
i,j,kl

kl
- e 61 i - —
+i§jk:l 1+8ké}l(p(Rjzkl)< Ja &LQO)
1
"2 A e

1
Then, we combine (£'4) and (E5) to get
A(Ap) — AF =

— 8&67“ ( zzkk)(al& )
Zl—f—ak > 14+ 0 Op ¢ *

(0,0 05 ) (95 9 0, )
;( 1+ 0, &cp)(l%—a &gp)

Z 1+ az a; © Z Rzzkk

(&&& )(6?-&8;C 4,0)
(1+8 05 0)(1+0; 0; p)

10 82& ) Rﬁi
+Z 1ikak +;—1+aik%¢—;Riikk

The left-hand side of (E6) is a real number, so it can be estimated. In particular, by

Lemma 8, Lemma 11, ¢ being real and g;; being Hermitian, we see for all ¢, j, k

© 0;0;0=0;0;, 0 =0;0, 0 =0; O; ¢

+ 0,0:059) (00,06 ¢) = (0;0:00.¢) (0,0, 05 ) = (0, 005 9) (0505 0k )

* Rir = =0k O 9 = —Op O 95 = —Ok O 95 = Rgx

so each summand on the right-hand side of (£6) is a real number, and it can be

estimated separately. We compute by Lemma 13
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i) (0i 0; ) Rz
Z(lfai& PR )

ik ik v ik
_82 O 909
Z LY az (’w o, aw)

_1(2 0, 0; (32&90 akzm)
2 TR 1+ 0, 0; ) (1 + O O )

az& asz O w)

l<z 35}90(3 0; o — O kso)

2
3&903&%0 31#958@)

1<Z ,,,,(aza; <8z-a;so—akaw)
2 4 (140, 0: ) (14 Ok O )
3k<9w(<‘3k3w—8¢0;90))):
(1+0; 05 0)(1 + Ok O @)
7_2 (O Op @ — 05 05 p)? -
WK (148, 0: 9)(1+ O Op ) =

(14 0k O )°
) (Zk 150,0-0) (14 0h 0 )

(D1)

v
5
pay
&
=
o

(1+8 8 p)2
+Z<1+8 0 L+ 0 0 )

_ Z (L+0: O p)1+0:0r )\ _
(1+0; 05 0)(1 4 Ok O )

. 140;0; ¢ 5
= inf(R- 1 E et S
Zl;lk( ) ( . E m*)
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We insert (D1) into (£/6), obtaining

(0; 05 O )(8-&%@)
(140, &90)(1+8 [0 X0%)

A(A¢)>AF+Z

(D2)
i _ 1+ al azL 2 9
Let C' > 0 be a constant to be determined later. By the Leibniz rule
A'(e % (m + Ay)) =
1 _Co
= T A A A
2 Ty MO (et ag) =

= ; o —Coy —Cy .

=X Traas & (70T PO m+ Ag) + O 0 () =
(ET)

— (2 C% (Z (9 g(g’; ?) > (m+ Ap) +

_Cefcgoz( ) (05 (Ap)) + (0 (Ap))(9; ¥)

1+0;0; ¢ "

i

—Ce 9 (Np)(m+ Ap) +e7 99 N(Ap)

The left-hand side of (£7) is a real number, thus it can be estimated. In particular,

by Lemma 8 and being ¢ real, we see for all ¢
* (0:9)(9;9) = (8 9)(0i )

« (0: 0) (05 (Ap)) + (9 (Ap))(F; ) = (T 0)(0; (Ap)) + (0; (Ap))(0; ¢)

so each summand on the right-hand side of (E'7) is a real number and can be esti-

mated separately. By the triangular inequality

)+ (9 (A9))(9; ¢) <
(0 0)(9; (Ap)) + (9 (Ap
= 1(9: 9)(0; (Ap)) + (9; (Ap
(0 ) (% ( +

81



where we used (0; ¢)(0; (Ag)) = (0; (Ap))(0; ¢), since ¢ is real. We estimate

using Young’s inequality
Cl(9 ¢)(9; (Ap))lc =
01 ple(m + Ap)? 10; (Ap)le(m + Ap) = <

(C?10; ¢l2(m + Ap) +10; (Ap)[2(m + Ap)™!) =

<

0 (A0) =D 0 (70, 05 ) =

Therefore

—Cy (9 0)(9; (Ap)) + (9 (Ap))(5; ¢)
e 1400, -

> (2 0¢ (Z —(f f;%t)) ) (m + Ay) +

12 9 0 O ot

_ o C¢ -1
e (; 150,00 )(m+A<p)

We insert this inequality and (D2), using also Lemma 8, in (¥'7) to obtain

.

A€ (m+ Ap)) = —=C e™ % (Ayp)(m + Ap) +

2= 05 Ok O 2

O (et M) Y

|8137(9k <P‘<QC (D3)
N D ey ey
1-1—61‘6;@

inf(R-7) (S - ¥ e
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Observe that by the Schwarz inequality and being ¢ real

!;%%%m%
Ap)~t =
(m+A¢) ; 1+0;0; ¢

=4m+A@*§:ﬂ+@%@*x

aak 1
E: 1+ 0 0 @

< (m+ Asﬁ)’lz ( +0; 0 0) 7" x

i

(D Traaty )gé) <Z(1+8k3w)5§:> -
(1400, )" (Z |?fgk’”'@> <

|&@k¢k
(1+0;0; )~ =
X T5g0,

|0; 05 O 90|<c
(140:0; 0)(1 4 0; 05 ¢)

IN

s.M S.M

<

??‘

17.]

where the last inequality holds because we added non-negative terms. Moreover

0; 0; ¢ 1
A/ — (2} — _
i ;1—1—8@-@-@ " ;1—1—&-8;@
Applying this and (D4) to (D3), we get

A& (m+ Ap)) 2 e (AF —m*inf(Rp) +
B 1+0;0;¢
Co - f o § R et

—mC e (m+ Ap) + Ce™™ (m+ Ay) (Z 1+81-&s0)

)
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and since

1+ 0, 0r
Zl+aia{90z<zk: ‘ ks&)z(erA@)
— 1+0,0pp - 140,00 —1+0;0; ¢
then (D5) becomes

A'(e % (m+ Ap)) > e (AF — m2i;1£(RﬁkE)) +

— mC 6—C<p (m + A(,O) + (D6)

1
. o _C(p
+(C+ 11;Iél£(R“kk)) e (m+ Agp) ( E 15550 ) 8;30)

7

Observe that in special coordinates, (M -A) reads
e’ = det(diag(1 4 0; 0 ©)) det(,,) ™t =TI (1 + 9; 0: ¢)

Thus, by the Multinomial Theorem, since m > 1 we see

1 m—1 __

%

kpteethm=m—1 L me

(m—1)! 1
= E 11 >
kil k! s (140505 0)8 =
1

> (m—1)! I—7—-=>

> (m );#iuraja;np— (D7)
1

> 1400, p)ll —————— =

;1+8i&“0_m+Ag0

T 1400 o

Being M compact, we can now choose C' such that

C + inf(inf(Ryz)) > 1
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Then C' depends only on M. With this value of C, insert (D7) into (D6) to obtain
Al(e™“? (m+ Ap)) > e P (AF — m*inf(Rz5)) +
A o

—mC e (m+ Ap) +e Pent(m+ Ap)tnrt

Recall that (D8) is valid at any point of M. Since M is compact, the continuous

map e~ % (m + Ay) achieves its maximum at a point ¢ € M. Then at ¢
A€ (m+ Ap)) <0
which by (D8) yields
(m+ A < o5 (i Rog)) - AF ) +
+ mC’e%(m + Ap) <

sup(F)
< et <m25up <inf(Riikk>> + sup(—AF)) +
i#£k M

M

(D9)

sup(F)

+ mCe%(m + Ap)

Observe that by denoting

sup(F)
A= et (mQSup <inf(Riikk)> + sup(—AF)>
M \i#k M

sup(F)
M

b:=emnT1 | y:=(m+Ap)

then A, b are independent of ¢ and (D9) is an inequality of the type

yn-1 < A+ by
which lead to the cases
<A = y< (AT A<y = y< @)

In particular, y can be estimated only in terms of A, b. In our case, for a constant

C depending only on sup(—AF), sup(inf(R;z)), sup(F'), M
M M ik M
m+ Ap < C4 (D10)
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Recall that (D10) holds at q. Being ¢ a point of maximum for e=“% (m + Ay), we
have forallp € M

e~ (m + (A9)(p) < D (m + (Ag)(g) < Cre HY

which gives
C'(su —inf
(m+ Ap) < C e (Mp(w) inf(¢)) (D11)

Inequality (D11) gives the required estimate for Ay if we have an upper estimate

for sup(y) and a lower estimate for iJI&If(gp), that is, we need to estimate ||¢||co.
M

Remark 18. We have only searched for an upper estimate of Ay, because we

already have a lower estimate given by
Ap > —m

Furthermore, the estimate for Ay also grants an estimate for the mixed derivatives

of ¢ due to the inequality

Dy
021077

Oy <
g7 + WHg Strg | 95+

):m+A<,0

We deduce that ¢’ is uniformly equivalent to g, since the coefficients of ¢’ involve

only the second-order derivatives of (.
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3.2.3 (" Estimate

For the estimate of sup((), we follow [Yau78]. For the estimate of i]\r}f(gp), we com-

M
bine the approaches reported in [Yau78] and [Tia00]. The reason behind this choice

will be clarified while developing the result.

Let G be Green’s function of A on M (see [Aub82] for details). The properties

of GG that we need are the following:
« G is smooth on (M x M) \ diag(M)

« ifp € C°(M), then forallz € M

1
7 [ ot [ G aea,

+ G is defined up to a constant. In particular, we can assume G' > 0

ola) = -

For all p € M, since ¢ has zero integral over M and m + Ap > 0

wmz—/am»AWMSm/iwnmn (D12)
M M

Since G is smooth on (M x M) \ diag(M) and the integral is defined up to mea-

sure zero sets, the map
xGMrg/ G(z, -) dV,
M

is smooth on M, which is compact, so A := sup(©) < oo and A depends only on

M
M. We then get from (D12)

sup(p) < mA (D13)
M

which is the desired estimate for sup(¢).
M

We now begin to search for an estimate for iﬂr}lf(go). First, notice that since ¢

has zero integral over M

sup(p) > 0
M
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Indeed, if sup(p) < 0 we would have
M

/wd‘/gg/sup(w)d%<0
M M

M

We can then estimate |||| 1 using (D13) as follows:

[ relavy< [ Jsupte) = el av,+ [ fsuplio)l av; <
M M M M M

< Gsup() vol (1)~

p dV, + (sup(¢)) vol (M) < (P14
M M

<2mvol(M) A
Having already estimated sup() from above, in the upcoming computations we
M

can assume up to translation that
sup(p) < —1
M
Notice that here we lose the fact that ¢ has zero integral over M. We are reduced

to finding an upper estimate of sup(—), where
M

sup(—) = —inf(p) > 1
M

(The change of reference). At this point, in [Yau78] the author proceeds to
find the desired estimate by means of the Mean Value Theorem, after stating that
there is a constant C’ > 0 such that

—Cinf(p)
sup([Vipl) < ' (M7 + gl ) ()
M
The author asserts that (X) is a straightforward consequence of (D11) and (D13),
after applying the following Schauder Estimate ([Mor64], p. 156 inequality 5.5.23)

lellcre < D (l|Ag|coe + [lel]Lr)

where @ > 0, and D > 0 is a constant independent of . However, it is unclear
how (X) can actually be deduced as described. The description suggests that the
Holder norm is controlled through the C° norm, but this is generally not possible.

Hence, for the remainder of this subsection, we follow [Tia00].
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Let p € R=2. Starting from (D14), we look for estimates for ||||r». Using

Proposition 5, we can rewrite (M -A) as
(w/)m — eCme (E8)

Since A commutes on 2-forms, we compute

= (W —w) A <Z (W)™ A wil) = (E9)

— VT00(—¢) A (Z W)™ A w>

The following three relations will be crucial throughout this step. Let f € C*°(M).

i) By Example 3 and Remark 13, we compute in normal coordinates

V=Imof NOf Aw™ = (vV/=1)"m! x

m—1

X (Zﬁjfﬁgfdzj/\d?“) /\< > N deindz
,J

r1<-<rm-—1 =1

~—
I

= (V=1)" m (Z 0;f 05 N\dz' A dzi) =

- (Z I9jf|?c> (VT mt \det ' = (Z Iajf|%> o

J

J

but since in normal coordinates we have for all j, k&

o 0 o 0 o 0

g(%, @) :g<a_yk7 a_yj) = 20; , 9(@7 a_yj)

we then have

= 1
\/—1(9f/\8f/\wm_1:%HVfo]wm (x1)

Notice that (x1) is independent of the choice of coordinates.
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ii) By the Leibniz rule and the Kéhler condition
AFOf N Y (W) AW =
=0f /\ Af A (W)™ AW+ FOOFADY (W) AW
Thus, Stokes’ theorem gives

/ VEIOf ADFA S (@) AW =

Y i (+2)

- —/ VETFOOF A Y (@) Aw !
M i

iii) Let 1 < a < m. By the Multinomial Theorem, in special coordinates we have

(W) = (V=1)"a! Z /a\ g 2" N dZT =

r1<---<rq i=1

=(W/=-1)"a ) H G /\ dz" N dzZ"
i=1

r1<--<rq j=1

Hence, for any b such thata + b < m

a+b
(W) AW’ = (V=1 (@+b)! Y ., [\ d"Adzh
Iy < <lgyp i=1

where the coefficients «ay, ., ., are sums of products of the gi= s, hence positive.

Consequently, we obtain as in i)

Although this expression is coordinate-dependent, it tells us that there is a non-

negative map (; € C°*°(M) such that

V=1Of NOf A (W)™ AW = B w™ (*3)
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We can now estimate ||p||z2. Being ¢ smooth and M compact of real dimension

2m > 2, we can apply the Poincaré inequality (see [Heb99] p. 40 Theorem 2.10)

lp = @llr2 < DI[Vel|r2 (P)
where ¢ := L g Ig(’ Ad/[‘)/g and D > 0 is a constant independent of (. Then combining
(P), (x1), (x2), (x3), (F9) and ¢ < —1 results into

[l 1 | [1 pdVy]
ol — —— < |lllpe — =L =
\/vol(M) vol(M)

= llellze = llglle < [l — @llre <

m\ 3
<D|V - D VoY) =
<D Velle = ' ([ 1912 )

=D (/ \/—18g0/\5g0/\wm1> <
M

D=

<D (/ V—10p A dp A Z (W)™ A wi_l) = (D15)
M i

N

=D (—/ \/—_19085@/\Z(w’)m_i/\wi_l) =

=D (/ (=) (—v—=1) 90(—p) A Z (W)™ A wi_1> -

[NIES

M
1
w™\ 2 1
:DN( |SO| (eCF_l) _> SDW“@Hil
M

m!
where D" > (0 depends only on m, sup(F’). From (D15) and (D14), we have a
M

constant Cy depending only on m, sup(F") such that
M

|2 < Cs (D16)

For p > 2, we will make use of the following Sobolev inequality on compact man-
ifolds (see [Heb99] p. 32 Theorem 2.6)

lall 2m; < Bl (s)
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where v € C°°(M) and B > 0 is a constant independent of . Combining (),
(x1), (¥2), (x3), (F9) and —p > 1, we have forallp > 1

([ 1 S — [ PP <
<B [ IV (-0F) 155 -
=5 [ Vo= ) A3 ((-)F) num =

=B (41 [ (ol VT 0(—) A B A <

<B'(p+ 1)2/ V=1 (=) 0p A O(—p) Aw™ ! < (D17)
M

<B"(p+ 1)2/ (—@)PT /=100 A Op A Z W)™ AW =

M

M

=B (o417 [ (oP T (VD) B0 A Y @) A =

=B"(p+ 1)2/ (=Pt (e“F —1)w™ <

M

<5+ 1 [ (—opt

M

where B” > ( depends only on M, sup(F'). It follows that for a constant C5 that
M
depends only on M, sup(F)
M

_2
1=l g < (Cs 0+ 1)7T]| = gl 1o (D13)
Setpo = land forany: > 1
m
;o — ——\Pi— 1)—1
p m—l(p 1+1)

Then for all i: p; > 1 and p; < p;4+1 . By repeated applications of (D18), for all ¢

| = ollppirr < H (Cs (pj + pﬁl | =l (D19)
=0
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Being M compact, we can pass to the limit in ()19) obtaining

1= ¢llco = lim || = ]| rsr < (H (Cs (p; + 1))”]’“) = elle (D20)
j=0

Observe that

H 03 Dj + ]_ PJ+1 _ €log(H7 o (C3 (p]+1))pj+1) _
Jj=0

oo Qlog(CHlog(pj +1)

—e j=0 pj+1

and by the choice of the p; ’s

log(C) p3+1| m—1<1
pj+1 + 11og(C) m
log(pj+1+1) pj+1 |

pisi+1 log(p; +1)

Hence, by the ratio test we have the convergence of both the series

i 5108(C) i 5log(p; +1)
e p;+17 = p;+1
which implies the convergence of Z;io 2%%. Consequently, (D20)
yields the desired estimate
| = ¢lleo < Ca (D21)
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3.2.4 Third Order Estimates

We look for an estimate of the mixed third-order derivatives 0; (9; O . We follow

[Yau78] for this exposition. In order to proceed smoothly, we denote
Pijk = 0 C% Ok ¢

and similarly for the other derivatives. Consider the smooth function
T sj Kkt
> 9797 " o e
0,9,K,7,8,t

which does not depend on the choice of coordinates, being the contraction of a

tensor through the metric. Choosing normal coordinates, we see
_ 2
S = Z |90i3k|<c
Z"j7k
so S is real and non-negative. To simplify the next calculations, we introduce the

following equivalence relations. Let A, B € C*°(M) . Then
« A~B < |A-B|<C, VS +
« AxB < |[A—B|<C358+Cy VS +Cs

where C'y, Cs, C3, Cy, Cs are constants that can be estimated independently of

A, B. We compute in special coordinates
A'S =" ()" (—(
— ()P

—(9)" ()Y
kt

9P ()7 (9 @ PrjpPrst +
(9 (9" @ Crjperst +
( ) ( ) §0qu @z]kgprst—i_

+g7 g”g %kb ert +97 97 9" O Orap)a ~ (E10)
~> (9) ()P (9)7 ()7 ()™ Qi Pimmat +
— (97" (g ) 7 (0) () s Pijeerst) T
T sj kt

g9 949 (szjkb Orst T Pijk gprstb)]
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where the sum is over ¢, 7, k, p, q, 1, s, t, a, b. Then, expanding (#'10), we obtain

NS~ (d)" 209 (97 ()T (9)7 (9 Poda o P Prst +
+2(0)7 (¢)F (9")" (9")7 (9 Peda P i Prst +
+2(9)7 ()7 (9) (9)° (9™ Peda P s Pii Prst +
+2(9)7 (") (9")7 (9")* ()" Peda Pgs Ciji Prsi +
—2(9)" ()" (97 (9 (Lopba Pii Crst +

t Pupp Pijka Prst T Papb Pijk Orsia) +
+ (g ()T (G (9T () eda O35 i Prst +

+ ()7 ()7 (@) (9) T (9 Peta Pt Pz st + (E11)
+ ()7 ()7 (0 () (9 Peda O3t P st +

+ ()7 (97 (97 (9 (0)" Peda Py Pz Prst +

- (g/>ZF (g/)pj (g )Sq (g )k (spqua, Pijk Prst +

+ Oy Pijha Prst T Pygs Pii Prsta) +

— 2()" ()" ()7 () Geaa + (9)7 ()7 (9) () ota) X
X (@i Prst T e Prsi) + (9)7 (9)7 ()™ x

X (Pikta Prst + Pijis Prsia + Pijka Prsis + Pijk Protra)]

where the sum is over ¢, 7, k, p, q, 1, s, t, a, b, ¢, d. Differentiating (E£2) with

respect to 05 , we get

D () grie ~ D (I () s i +
ivj . (E12)
+ Fyj + (Z(g')“ (9)" et P )

where the two last sums are over all indices except s, [ . We rewrite and expand
(E'12) as
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a,b a,b
(9)" apk Pani + Fint
+ (Z(g’)” (9)" Py s%-)
= @)D" Pk Parig + Figut (E13)

+> (@) (9 Py Papin

and we insert (£/'13) together with (E£2) into (£/11), finding

NS~ ()" [2(9)F ()7
+2(4)? (g)q (9)" (g
+2(9)7 ()7 (9")7 (
+2(4)7 (4" (¢
2> ()7 (g

()7 (97 (9 eda P i Prst +
9" (97 (9" Peda g Cigr Prsi +
)99 (9 et P Pk Prst +
g (g <g Yeda Pypb Pijk 90?33]_'—
) qr gl)sj (g/)kf «
(E14)

WYeda Pyih Pijk Prst T
Peda Pgjs Pijk Prst T

pq Pijk Prst +

+ (9™ Py Pigha Prst T (9) Cpgs i Prsta) +
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+ 2Re[ > (9)7 (97 (9" prat ((9)T ()" 0y Catiy + Figie +
— (g (" (g ) Pedk Py Pari — (O (9) (9™ Cear Pyz; Paii +
( ) (g ) quk Spabz + (g )pb (g )aﬁ @pﬁj Soaﬁk)] +

Y ()™ ()T (D) @) (L5 Prsta + Piska Pre)
Insert the diagonal expression for the coefficients ¢*¥ into (£'14), and obtain

NSm Y (l+m) (4o (1+e5) " (L+en) 7" x
X (L4 9pp) ™ (14 ¢4g) ™ (2 Pipa Papm P Py +
+2 Opa Paia Pige Paip + 2 Pra Piaa Piji Pipk) +
—2Re[ > (1+@aa) " (14+95) " (1495 (14 ¢5) " X
X (1+ )" (Ppiia Pijha Ppik T Pipa Pijk Pipka T
+ Pipa %-jk CpiFa)] T
+) 1+ 9w 1+ 90) (1495 (1 + o) ' x
X (|90¢3;m|<c + lpiralt) =
=Y (4 0a) (1400 L+ 05 1+ o5 %

’(pz]ka Z Pipk (ija 1+ @pﬁ)71|% +

(E'15)

+ ke — Z (Cria Py + i Poia) (L + 045) 2]
P
On the other hand, (£6) does not depend on the chosen coordinates. In special
coordinates, since we have estimated Ay, we find a constant C” independent of ¢

such that
N(Ap) > (14 95) " (1495 ewgle — € (D22)
igk
Combining (F£'15) and (D22), for some positive constants C7, C, Cy independent

of ¢
AN(S+Cr Ap) > Cs S — Cy (D23)
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where we estimated v/S by means of S because
2VS < (VS +1=S5+1
Let p € M be a point of maximum for S + C7 Ap. Then (D23) reads
0=A'(S+ Cr Ap)(p) = Cs S(p) — Co (D24)
For any ¢ € M, by (D24) and the estimate of Ay

Cs S(q) = Cs (S(q) + C7 Ap(q)) — Cs Cr Ap(q) <
< Cs (S(p) + Cr Ap(p)) + Cio <
< Co+ C++Chy

which implies that there is a constant C'; independent of ¢ such that

sup(S) < Cpy (D25)
M

We can then use (D25) to estimate the mixed third-order derivatives of .
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3.2.5 Uniqueness of the solution

Here we discuss the result that will provide the uniqueness of the g-positive smooth

solution of (M -A). We follow [Yau78].

Theorem 4. Let ¢, ¢ be two g-positive C?-solutions of (M/-A). Then ¢ — ¢ is

constant.

Proof. By (M-A), we have

which can be rearranged as

det(g;; + 55 + (¢ — ¢);5) det(g;; + 5) ' =1

As in Lemma 16, being ¢, ¢ both g-positive, we can construct holomorphic coor-

dinates that at a point diagonalize the matrices

(95) = (95 +¥3), (95) = (95 + 5+ (6 —9)7)
Since (E'8) shows that (M -A) does not depend on the choice of coordinates, the

above relation reads
-1 —
1=T1 @) IT (s5) =1I (g% @)
i j k
By the arithmetic-geometric mean inequality, we have

m+Ap—9) (@) (@—9hmt+l

(-9t 9 .

> (H (92% (g’)’“E> )m =1

from which we deduce that A’(¢ — ¢) > 0. By Theorem 3: ¢ — ¢ is constant. [
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3.2.6 The continuity method

As anticipated, we solve (M -A) as in [Yau78] by applying the continuity method.
Fix @ € (0, 1) . Consider W}, k > 3, the subset of [0, 1] made of the parameters
t such that

2

0%p _ !
det (954 50 ) (Genlog) ™ =vottan) ([ ) e

has a g-positive solution in C**1¢(M). Then 0 € W}, because ¢ = 0 is a solution
of

2

0
det (954 50 ) (deog) ™ =1 0

and (g;7) is positive definite being g a Kahler metric. Notice that (M/-A) corre-
sponds to (*;), so we want to show that 1 € W} . Being [0, 1] connected, it

suffices to prove that W}, is open and closed in [0, 1].

We begin by proving that W}, is open. Consider the open subspace of C¥*1:%( M)
A= {nec C"(M) : nis g-positive }

and its subset

AO::{¢€A:/ YdV, =0}

M
Furthermore, consider the affine subspace of C*~12( M)
B:={fecCFtM): / fdVy =vol(M)}
M

Consider the map

2

‘ ‘ 0 -1
G: A— B: @ det (gij + 82@?) (det(g;5))

Then G is independent of the choice of coordinates (recall the well-definition of

the Ricci form) and well-defined (recall Remark 16). Notice that if we set
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vol(M) ,p
fM ol F

then f; € B because I’ is smooth, and

fi =

teW, < f; € Im(G)
Hence, we want to show that for any ¢, € W}, there is € > 0 such that
|t—t0| <€ — ftEB

To do this, we prepare to use the Inverse Function Theorem in Banach spaces (see
[Sch69], p. 15 Theorem 1.20). Let ¢ € A and pick any segment ¢ + s7 through ¢.
We compute by Jacobi’s formula

d

% G<¢ + 877)‘5:0 =

_ ¢ d(¢ + sn)
= det (gij MEERE ) (det(g;7)) Z zaaz ( ds

a,b

= det(g77) (det(g;7)) ™" Agn

where we used the subscript ¢ to denote the usual objects defined using ¢. This
proves that G is Frechet-differentiable. Observe the following facts:

« Since B is an affine space, its tangent space at any point is its underlying

vector Space

By ::{feCk‘l""(M):/Mdeg:O}

On the other hand, being A open in a vector space, its tangent space at any
point is C*+1 (M) itself,

« Integrating by parts, we see that a necessary condition for the equation
Agn = f

to have a weak solution is that f Y f dV, = 0. Inacompact Kihler manifold,
the converse is true (see [Szé14], p. 33 Theorem 2.12).
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- By elliptic regularity, any weak solution of Ayn = f is in C*™*(M) when

f € C*12(M). Being k > 3, a weak solution is also a classical solution.

Thus, the differential of G at ¢ is surjective if and only if for any f € By the

equation

Agn = (det(g)) ™" det(gg) f (L)

has a (weak) solution, and this condition is equivalent to

_ P\\—1 _ _
0= [ (delsf)) " dextog) £ avi = [ pav,

But the latter is always verified on By, so the differential of (G is surjective at any
point. Moreover, by Theorem 3 any two solutions of the same equation (L) differ

by a constant, which implies that
the differential of (G is bijective at the points of A,

Also notice that Im(G) = G(Ay) , since for any ¢ € A

_Ju? vy _ i St D
¥ vol(M) €A, CGW)=C (7/J vol(M) )

Finally, let ¢y € W}, . Then f;, € G(Ap), and by the Inverse Function Theorem,
there is an open neighborhood U of f;, in B which is contained in Im(G). On a

compact manifold, we have the continuous inclusion
CH(M) — 1 (M) (1)
Consequently, the map
v: R — CF (M) it f,
is continuous. Therefore, there is € > 0 such that
Y(to — €, to+€) CU
that is, for [t — to| <€ : f; € B.

102



We now prove that W is closed. Let { ¢, }, € W}, be a sequence that converges

to t. Consider the sequence { ¢, }, of solutions of (*,). Up to normalizing, assume

/gpqd%:()

Fix ¢. Differentiating (x,) with respect to =5, Jacobi’s formula results into

('9 P’
8290(] ab 82 890(1
det (gij * aziazj) %:gq 92907 (%) -

= vol(M) ( /M eth> h % (¢ det(g;7))

where we used the subscript ¢ to denote the metric defined by ¢,. Note that
D*p ;02
det ( g7 + ——— ab
(g“ RERE] > Zb 9 9apzh

defines a second order operator 7. Since its coeflicients are given by sums and

products of the coefficients g,; with the second-order derivatives of ¢,, the fol-

lowing properties are satisfied:
« T is uniformly elliptic, thanks to the second order estimates for ¢, and ¢,
being g-positive.
« The coefficients of T" are in C%*(M) (recall k > 3 and (I)). Moreover, they

are uniformly bounded due to the third order estimate for ¢,.

On the other hand, the right-hand side of the equation is a smooth map. We can
then apply the Schauder estimate (see [Szé14], p. 32 Theorem 2.10) from which we

have a constant C’ independent of % such that
I I
1555 lloze < C' (K + 11570 10)

where K is an upper bound for the a-Holder norm of the right-hand side of the
equation. Using the mean value theorem, we can estimate | | 2|1 by the second-

order estimate. Therefore, we have a constant C" independent of ¢, for which

|| ||cw <C”
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A similar kind of estimate for || % ||c2.« is obtained by differentiating accordingly
(*,). Consequently, we can proceed by bootstrapping: the recently found estimates

imply that
the coefficients of T are uniformly bounded in C**( M)

then by the Schauder estimate we have the bounds independent of ¢,
Dioq
||@||037a <Dy, ||8_||C3’a < D,
and these estimates imply that

the coefficients of T are uniformly bounded in C**(M)

We iterate this process, together with elliptic regularity, to obtain that ¢, € C**2( M)

and estimate ||, ||cx+2.0 independently of ¢,. Then
{ ¥4}, is uniformly bounded in C*+2( M)
Since M is compact, we have the compact inclusion
CH+2a () «y OFHL(1)

Thus, up to asubsequence, thereis p € C*t1:2(M ) such thatp, — @in C*1(M)
ast, — to. By continuity of GG, -y, which we introduced to show that ¥/}, is open,

we have that
 is a solution to ()

Furthermore, the convergence also gives for ¢ the same a priori estimates that hold

for any ¢,. Denoting the tensor ¢’ constructed using ¢, by Remark 18
g, ¢’ are uniformly equivalent

o (p is g-positive, proving that ty € Wy.
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3.3 Conclusion

We have therefore proved that (M- A) has a g-positive C*-solution for any k > 3.
We can also require that each of these functions has zero integral over M. Then,
by Theorem 4, these solutions actually coincide, resulting in a smooth g-positive

solution for (M- A) and proving Calabi’s conjecture.
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