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Aim of the talk: Extend the concept of duality between an
Hermitian symmetric spaces to more general Kahler metrics
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1. HSSNT and HSSCT

Definitions and main properties

An HSSNT is a Kahler manifold (M, g) such that for all p € M
the geodesic symmetry:

sp . eXpp(v) = exp,(—v),Vv € TpM
is a globally defined holomorphic isometry of (M, g).

Up to homotheties, (M, g) is biholomorphically isometric to a
bounded symmetric domain 2 C C" centred at the origin 0 € C"*
equipped with the Kahler metric go whose associated Kahler
form is

wQ — —iaé log No



where
No(z,2) = (V(Q)Ka(z2))

is the generic norm, V(L) is the Euclidean volume of €, ~
the genus of 2 and K its Bergman kernel.



where
No(z,2) = (V(Q)Ka(z2))

is the generic norm, V(L) is the Euclidean volume of €, ~
the genus of 2 and K its Bergman kernel.

Thus

1
9gQ — 9B
Y

where gp is the Bergman metric with associated Kahler form
given by

wpRp = i85|09 Ko
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Classification. There is a complete classification of irreducible
HSSNT (Cartan domains), with four classical series and two
exceptional cases of complex dimensions 16 and 27, respectively.

Numerical invariants. A Cartan domain €2 is uniquely determi-
ned by a triple of integers (r,a,b) where r represents the rank of
€2 and a and b are positive integers.

The genus v of €2 is defined by
y=((r—1)a+b+2

and the dimension n of €2 can be written as
r(r—1)

n=r-4+ a-+rb



The Wallach set W(Q2) ¢ R of a Cartan domain Q C C" is a
subset of R which depends on a and r.



The Wallach set W(Q2) ¢ R of a Cartan domain Q C C" is a
subset of R which depends on a and r.

More precisely we have

a a

W(Q) = {o, N 1)%} U ((r -1, oo) |

(r—1)§

o

(O
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The complex hyperbolic space (CH", gp,,,,)

The basic example is the unit ball in
CH"={zeC" | |z]° < 1}

where JcH™ = ghyp
Whypy = —2=08109(1 — |2]?) = —tw
hyp o n+1*B

r=1, a=2, b=n—-1,y=n-+4+1

K@Hn(Z,Z) — (1_|Z?-2)n+1’ NCH”(Zaz) =1- |Z|2
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The compact dual of HSSNT

To each HSSNT (€2,90) we can associate a HSSCT (2%, go*),
namely a compact Kahler manifold 2*.

—log Nq(z,z) — + 109 No(z, —2)

is a strictly plurisubharmonic on all C" and so %&ﬁlog N§G is a
Kahler form on C", where N&(z,z) = No(z,—z) .

Morever, C" can be compactified to a compact Kahler manifold

(%, go+), the compact dual of (2,g90), with Kahler form wos«
such that

wQ*‘@n = é@g l0g N;Z
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where BW is a Kahler embedding, i.e. BW*(gpg) = go+ and
Q*=C"U H, where

H = BW1(Z5 = 0) = Cut,(Q*, gox), Borel(0) = p

Definition. A Kdahler manifold (V,g) admits a Fubini-Study

compactification if there exists a holomorphic isometry (V, g) hd
(CPN, grg) such that W(V) is an open and dense subset of a
compact Kihler submanifold P c CPN.

Example. (Cn,gQ*|Cn) admits a Fubini-Study compactification
by taking W = BW cn : (Cn,gQ*|Cn) — (CPN grg), P = BW(QY).
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The complex projective space (CP", grg)

The compact dual of (CH™, gp,,,) is (CP",gFrg).

CH"C C" = Uy = {Zg # 0} " cpn 4 cpn

Borel(z1,...,2zn) = [1,21, -, 2n]
—log Negn(z,2) = —109(1—|2|) — log N (2, 2) = +10g(1+(2[?)

WES|U, = 2=00109(1 + |2[?)
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Similarities between HSSNT and HSSCT

e go and go+ are both homogeneous and KE (with Einstein
constant —2~ and 2+, respectively)

e for all p € Q2 and v € TyS2 there exists a totally geodesic Kahler
embedding of the polydisk A" := CH! x ... x CH! (r-times)
passing through p and tangent to v (polydisk theorem).

e for all p € 2* and v € T,Q2* there exists a totally geodesic
Ké&hler embedding of the dual polydisk (AT)* :=CPl x...xcpP!
(r-times) passing through p and tangent to v (dual polydisk
theorem).



o (,wq) is a symplectic dual of (2%, wo+), i.e. there exists a
smooth diffeomorphism
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wo (A. J. Di Scala, L., Adv. Math. 2008).



o (,wq) is a symplectic dual of (2%, wo+), i.e. there exists a
smooth diffeomorphism

Borel
0o Q>R =C" < QF

(called a symplectic duality) such that p&wg = wq and QO*Q(,UQ*KCTL =
wo (A. J. Di Scala, L., Adv. Math. 2008).

o Let (g, X) be a KRS* on a complex manifold M. If there exists

a holomorphic isometry of (M,g) into (£2,90) (resp. (2%, go*),
then g is KE (L. R. Mossa, PAMS 2023).

*Ricy = X g+ Lxg, where X is the real part of a holomorphic vector field.



e let €2 be a bounded symmetric domain of rank > 2 and let

Borel
£ (CH™, ghyp) = (2, 90)C € "3 @ Y cp

be a holomorphic isometric embedding. Then f(CH™) is an irre-
ducible component of BW~Y(H) N Q with H hyperplane of CPN
(S. T. Chan, N. Mok, Math. Z. 2017)
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Differences between HSSNT and HSSCT

o(Q, agn) X (CP™, gpg) iff « € W()\ {0} (L., M. Zedda,

Math Ann. 2011)

Pa,Q0* .
o (2%, agery+) il (CPNe grg) iff a € ZT (for o = 1 one gets the

BW embedding)

o (Q2,90) and (2*, go+) are not relatives, i.e. they do not share
a common non trivial Kdhler submanifold (A. J. Di Scala, L. ,
Ann. Sc. Norm. Super. Pisa 2010)



e any holomorphic isometry (21, gq,) — (£22,90,) between boun-
ded symmetric domains with S21 irreducible of rank > 2 is totally
geodesic (N. Mok, J. Eur. Math. Soc. 2012)
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Balanced metrics in a nutshell

Let (M, qg) be acompact Kahler manifold and [w] = ¢1(L), with
L ample line bundle on M. The Kempf distortion function (or
density function in Donaldson’s terminology) is defined by

Tog(z) = X721 ha(sj(2),;(2)), € M,a € ZT

where sq, . ..,sN,, Na+1=dim HO(L®%) is an orthonormal basis
w.r.t

(s:t)a = Jarha(s, )2y, 5,1 € HO(LE®), Ric(ha) = ow
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Definition (Donaldson, JDG 2001): The metric ag is balanced
if Tag IS @ positive constant.

o Ifpo: M — CPNo gz [sg(2),.. ., SN, ()]
YrLWRS = aw + %&ﬁlog Tag

o Tuy(z) ~ z;;og aj(x)a™J (Tian-Yau-Catlin-Zelditch, TYCZ
expansion)

e ag =1 and any aj(a:) is a polynomial of the curvature and
its covariant derivatives at x of the metric g (Z. Lu, Amer. J.
Math. 2000).
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Let M be a complex domain of C" with Kahler metric g and
associated Kahler form w = 5-00®. For a >0

Ho = {f € HOI(M) | [ye “P|f]2< < oo}

n!

o cag(z) = e PEK(2,2) = e PR Y1 |f]% 2 € M (Rawn-
sley’s e-function)

Definition. The metric ag is balanced if ey IS a positive con-
stant.

o Ifpq:M— CP® x> [so(x),...,s;(x),...] then
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prwpg = aw + %85 l0g €ng

o cag(z) ~ Z;"zog aj(z)a”—j (Ma-Marinescu-Englis, MME expansion)
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Balanced metrics on HSS

e ago is balanced iffa>~—1 (L., M. Zedda, Math. Z. 2012)

e ago+ is balanced iff it is projectively induced iff « € ZT (C.
Arezzo, L., Comm. Math. Phys. 2004)

e the coefficients a; of MME expansion of Rawnsley’s € function
of the metric g are constants;, the coefficients a;f of TYCZ
expansion of Kempf distortion function of the metric go+ are

constants and

a; = (—1)%}5 (L., M. Zedda, Manuscripta Math. 2015)
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1.the Kahler potential —log No(z,z) for go is the Calabi’s dia-
stasis function at the point 0 € 2 C C™ for the metric gq.

2. the Kdahler potential log N&(z,z) := +10g No(z, —z) is the

Calabi’s diastasis function at the origin O € C" for the metric

Borel
QQ*|Cnr Ch —  QF.

Among all the potentials the Calabi’s diastasis function (Calabi,

Ann. Math. 1952) is characterized by

_ I=J _
Dy(z) = >, apjzz’, ajg=ag; =0
1],|J]>0
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Let (U,g) and (U*,g*) be complex domains of C" containing the
origin with real analytic Kahler forms w = 5=900D} and w* =
. _ g*

5-00D}) .

Definition. We say that (U, ¢*) is the Kahler dual of (U, g) and
g* is a Kahler metric dual to g (and viceversa) if

D(g) (2,2) = —Dg(z, —2)

Example. Let (2,90) be a bounded symmetric domain. Then
its Kdhler dual is given by (Cn,gQ*‘Cn).
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SU(3)
S(U(1)3)

Example. Consider the compact flag manifold

One can write Calabi’s diastasis function for the general SU(3)-
invariant Kahler metric g using Alekseevsky-Perelomov coordina-
tes centred at a point p:

Dg(z) = c110gA1(2) +crlog As(z), z € (CS, Cc1,Co € RT
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An(z) = log[1 + |2]% + |23]?]
—DP(z,—z) = —c1 A% (2)—co A5 (2)
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A1(z) = 10g[1 + |21]% + |22|° + |211%]23]% + 227123 + 2221 23]
Ao(z) = log[1 + |22]? + |23|]
—Dg(z, —z) = —c1 Al (2)—cpA5(2)
3 (2) = log[1—|z1]%—|2|? + |z1|?|23|% + 227123~ Z02123] ¢ R
5(2) = log[1—|zo]?—|23]?].

Thus the metric g does not admit a dual.
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Example. The above example should be compared for example

with the Grassmannian Go(C%) = S(U?Q%SB(Q))'

By analogous calculations, one get that the diastasis of a homo-
geneous Kahler metric g at a point p is given by:

D{(2) = clog[1 + |21|? + |22|% + |23]% + |2a]? + |21]|?|2a]?+

+|22|?|23|% — 20237174 — 212472%3], 2 € C*,c € RT

~D{g(z,—2) = —clog[1—|z1[*~|22]|*~|23]°— 24| + |21]|2a]*+

+|22]%|23|% — 20237124 — 212422%3] € R



Conjecture: We Dbelieve that if a homogeneous Kahler metric
on a flag manifold admits a Kahler dual then the flag manifold
is an HSSCT.
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Theorem. (L., R. Mossa, F. Zuddas, 2024) Let (U*,g*) be the
Kahler dual of (U,g). Then

e g is extremall < g¢* is extremal

e g is KE with Einstein constant A < ¢* is Einstein with Einstein
constant —A\

e a;(x) = (—1)aj(x)

fThe (1,0)-part of the Hamiltonian vector field associated to the scalar curvature of g is
holomorphic.
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Cartan-Hartogs domains (CH domains in the sequel) are a 1-
parameter family of noncompact nonhomogeneous domains of
cnrtl given by:

Mg, = {(z,w) € 2 x C| |w|> < N4(z,2)} c C"T!
where €2 C C" is a Cartan domain, called the base of Mg ,, and

u > 0 is a positive real parameter

We endow Mg , with the complete Kahler metric g , whose
associated Kahler form is given by

1 = _
W = —Eaalog (Ng(z, zZ) — |w|2>

(A. Wang, W. Yin, L. Zhang, and W. Zhang, Asian J. Math.2004)



Remark A CH domain is homogeneous iff €2 has rank one, i.e.
2 = CH" is the unit ball in C" and p = 1. In this case Mq , =
CH" 1 and go = gnyp.
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Theorem A. Let (Mg ,,90,) be a CH domain, ~ the genus of

€2 and n its complex dimension. Then the following facts hold
true:

(1) 9q,, is Einstein (with negative scalar curvature) iff p = %

(A. Wang, W. Yin, L. Zhang, and G. Roos, Sci. China Ser,
2006)

(2) 9q,. Is extremal iff it is Einstein (M. Zedda, Int. J. Geom.
Methods Mod. Phys., 2012)

(3) (Mg 1y 090 1) — (CP™, gpg) iff (a+m)u € W(2)\ {0} for all
integer m >0 (L. , M. Zedda, Math Ann. 2011)

(4) (CH-polydisk theorem) The Cartan-Hartogs polydisk theo-



rem holds true if Q2 is of classical type (R. Mossa and M. Zedda,
Geom. Dedicata, 2022)
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Theorem B. Let (Mq ,,90,) be a CH domain. Then the
following facts are equivalent

(a) (May s 90,,) = (CH™ 4, gpyp)

(b) the a; coefficient of TYCZ expansion for the metric g , is
constant, for some j > 2 (M. Zedda, Abh. Math. Semin. Univ.
Hambg, 2015)

(c) agq, is a balanced metric some o € Rt (L., M. Zedda,
Math. Z. 2012)
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Dual Cartan-Hartogs domains

Given a CH domain (Mg ,,9q,,) and p=0e¢c Mq , then
g _
DOQ’“ = — Iog(Né(z,z) — |w|?)
is Calabi’'s diastasis function at O

U,9) = (Ma90,), (U*g*) = (C"Fhgg ) with associated
Kahler form given by

wa’u = —|—%85|09 (Ng(z, —Z)—|—|w|2)
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Theorem. (L., R. Mossa, F. Zuddas, 2024) Let (C" 11, g% ) be
a dual CH domain. Then the following facts hold true:

(1) g’;z,u is Einstein (with positive scalar curvature) iff u = ni—|—1
(2) g}}u is extremal iff it is Einstein
(3) (crtl aga“) — CPN iff a,p € 2T

(4) (dual CH-polydisk theorem) The dual Cartan-Hartogs poly-
disk theorem holds true if €2 is of classical type
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Theorem.(R. Mossa, M. Zedda, Ann. Mat. Pura Appl. 2022)
There exists a symplectic duality between (Mg ,,90,) and
(C”"‘l,w;}’“), i.e. a smooth diffeomorphism ¢ : Mg , — R2"T2
such that ¢*wg = wgq,, and go*wau = wp, Iff ((C’”H'l,ga#) =
(CrT1 gro) Iff Q =CH", pn = 1.

Theorem. (L., R. Mossa, F. Zuddas, 2024) There exists a A-
symplectic duality between (Mq ,,, 9. ,) and (Cn_l_l’w??,u)' i.e. a
smooth diffeomorphism ¢ : Mg, — R?"T2 such that ¢*wg =
Awgy , and go*)\w’g"z’u = wq, IfFQ2=CH"™ and \=u=1.
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Theorem. (L., R. Mossa, F. Zuddas, 2024) Let (C"T1, g& ) be
the dual of a CH domain. Then the following facts are equivalent

(a) (€L, g5 ) = (€, gpg) (& Q= CH" u=1)

(b) the a}'f coefficient of the TYCZ expansion for the metric g& N
is constant for some 53 > 2

(c) agg, ,, is balanced, for some a € RT
(d) ozg?zlu is KE and projectively induced for some o € Rt

(e) (C”+1,g§2 u) admits a Fubini—Study compactification
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e A CH domain (Mg ,,90,) and its dual (C™*1, g& ,) are not
relatives if u € Z1

o Let (g, X) be a KRS on a complex manifold M and €;, i = 1,2
be Cartan domains. If there exists a holomorphic isometry of
(M, g) into (Mg, 41y, 90;,u,) and into (C*Fh g5 ), with pg, po €
QT, then g is KE
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Theorem.(L., R. Mossa, F. Zuddas, 2024) Let Mg, be a CH
domain and §Q,M be its Bergman metric, Then the Kahler dual
(U*,§&,,) can be defined (U* # cnt1 in general). Moreover the
following conditions are equivalent

e Q=CH" and n=1

® g, IS Einstein

o (C"T1 g% ) admits a Fubini-Study compactification
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Another Kahler metrics on Cartan-Hartogs domains

Theorem.(L., R. Mossa, F. Zuddas, 2024) Let Mg, be a CH
domain. Then

- T .= _
OQ = W — %88 log Ng%(z, Z)

defines a Kahler form on Mg, ,. Moreover, the associated Kahler
metric Q\Q,M satisfies the following properties.

® g0, IS complete and never Einstein

o (Mg ,,G0,) has a Kahler dual (C"t1, g& ) Which admits a
Fubini-Study compactification



Thank you for your attention!



