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Hermitian symmetric spaces to more general Kähler metrics
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1. Hermitian symmetric spaces of noncompact type (HS-

SNT) and their compact duals (HSSCT)

2. Symplectic, Kähler and metric properties of Hermitian

symmetric spaces (HSS)

3. Dual Kähler domains and metrics

4. Cartan-Hartogs domains and their duals
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1. HSSNT and HSSCT

Definitions and main properties

An HSSNT is a Kähler manifold (M, g) such that for all p ∈ M
the geodesic symmetry:

sp : expp(v) 7→ expp(−v), ∀v ∈ TpM

is a globally defined holomorphic isometry of (M, g).

Up to homotheties, (M, g) is biholomorphically isometric to a
bounded symmetric domain Ω ⊂ Cn centred at the origin 0 ∈ Cn
equipped with the Kähler metric gΩ whose associated Kähler
form is

ωΩ = −
i

2π
∂∂̄ logNΩ



where

NΩ(z, z) = (V (Ω)KΩ(z, z))
−1
γ

is the generic norm, V (Ω) is the Euclidean volume of Ω, γ

the genus of Ω and KΩ its Bergman kernel.
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NΩ(z, z) = (V (Ω)KΩ(z, z))
−1
γ

is the generic norm, V (Ω) is the Euclidean volume of Ω, γ

the genus of Ω and KΩ its Bergman kernel.

Thus

gΩ =
1

γ
gB

where gB is the Bergman metric with associated Kähler form

given by

ωB =
i

2π
∂∂̄ logKΩ
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Classification. There is a complete classification of irreducible

HSSNT (Cartan domains), with four classical series and two

exceptional cases of complex dimensions 16 and 27, respectively.

Numerical invariants. A Cartan domain Ω is uniquely determi-

ned by a triple of integers (r, a, b) where r represents the rank of

Ω and a and b are positive integers.

The genus γ of Ω is defined by

γ = (r − 1)a+ b+ 2

and the dimension n of Ω can be written as

n = r +
r(r − 1)

2
a+ rb



The Wallach set W (Ω) ⊂ R of a Cartan domain Ω ⊂ Cn is a

subset of R which depends on a and r.



The Wallach set W (Ω) ⊂ R of a Cartan domain Ω ⊂ Cn is a

subset of R which depends on a and r.

More precisely we have

W (Ω) =
{

0,
a

2
, 2
a

2
, . . . , (r − 1)

a

2

}
∪
(

(r − 1)
a

2
, ∞

)
.

(r − 1)a2
0 · · · ·︸ ︷︷ ︸—————————
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The complex hyperbolic space (CHn, ghyp)

The basic example is the unit ball in

CHn = {z ∈ Cn | |z|2 < 1}

where gCHn = ghyp

ωhyp = − i
2π∂∂̄ log(1− |z|2) = 1

n+1ωB

r = 1, a = 2, b = n− 1, γ = n+ 1

KCHn(z, z̄) = 1
(1−|z|2)n+1, NCHn(z, z̄) = 1− |z|2
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The compact dual of HSSNT

To each HSSNT (Ω, gΩ) we can associate a HSSCT (Ω∗, gΩ∗),

namely a compact Kähler manifold Ω∗.

− logNΩ(z, z̄) −→ + logNΩ(z,−z̄)

is a strictly plurisubharmonic on all Cn and so i
2π∂∂̄ logN∗Ω is a

Kähler form on Cn, where N∗Ω(z, z̄) = NΩ(z,−z̄) .

Morever, Cn can be compactified to a compact Kähler manifold

(Ω∗, gΩ∗), the compact dual of (Ω, gΩ), with Kähler form ωΩ∗

such that

ωΩ∗|Cn =
i

2π
∂∂̄ logN∗Ω
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0 ∈ Ω
HC
⊂ Cn Borel

↪→ Ω∗ BW→ CPN

where BW is a Kähler embedding, i.e. BW ∗(gFS) = gΩ∗ and

Ω∗ = Cn tH, where

H = BW−1(Z0 = 0) = Cutp(Ω∗, gΩ∗),Borel(0) = p

Definition. A Kähler manifold (V, g) admits a Fubini-Study

compactification if there exists a holomorphic isometry (V, g)
Ψ→

(CPN , gFS) such that Ψ(V ) is an open and dense subset of a

compact Kähler submanifold P ⊂ CPN .

Example. (Cn, gΩ∗|Cn) admits a Fubini-Study compactification

by taking Ψ = BW|Cn : (Cn, gΩ∗|Cn)→ (CPN , gFS), P = BW (Ω∗).
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The complex projective space (CPn, gFS)

The compact dual of (CHn, ghyp) is (CPn, gFS).

CHn⊂ Cn = U0 = {Z0 6= 0} Borel↪→ CPn id→ CPn

Borel(z1, . . . , zn) = [1, z1, · · · , zn]

− logNCHn(z, z̄) = − log(1−|z|2) −→ logN∗CHn(z, z̄) = + log(1+|z|2)

ωFS|U0
= i

2π∂∂̄ log(1 + |z|2)
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Similarities between HSSNT and HSSCT

• gΩ and gΩ∗ are both homogeneous and KE (with Einstein

constant −2γ and 2γ, respectively)

• for all p ∈ Ω and v ∈ TpΩ there exists a totally geodesic Kähler

embedding of the polydisk ∆r := CH1 × · · · × CH1 (r-times)

passing through p and tangent to v (polydisk theorem).

• for all p ∈ Ω∗ and v ∈ TpΩ∗ there exists a totally geodesic

Kähler embedding of the dual polydisk (∆r)∗ := CP1× · · · ×CP1

(r-times) passing through p and tangent to v (dual polydisk

theorem).
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• (Ω, ωΩ) is a symplectic dual of (Ω∗, ωΩ∗), i.e. there exists a

smooth diffeomorphism

ϕΩ : Ω→ R2n = Cn Borel
↪→ Ω∗

(called a symplectic duality) such that ϕ∗Ωω0 = ωΩ and ϕ∗ΩωΩ∗|Cn =

ω0 (A. J. Di Scala, L., Adv. Math. 2008).

• Let (g,X) be a KRS∗ on a complex manifold M . If there exists

a holomorphic isometry of (M, g) into (Ω, gΩ) (resp. (Ω∗, gΩ∗),

then g is KE (L. R. Mossa, PAMS 2023).

∗Ricg = λ g + LXg, where X is the real part of a holomorphic vector field.



• let Ω be a bounded symmetric domain of rank ≥ 2 and let

f : (CHn, ghyp)→ (Ω, gΩ)⊂ Cn Borel
↪→ Ω∗ BW→ CPN

be a holomorphic isometric embedding. Then f(CHn) is an irre-

ducible component of BW−1(H) ∩Ω with H hyperplane of CPN

(S. T. Chan, N. Mok, Math. Z. 2017)
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Differences between HSSNT and HSSCT

•(Ω, αgΩ)
ϕα,Ω→ (CP∞, gFS) iff α ∈ W (Ω) \ {0} (L. , M. Zedda,

Math Ann. 2011)

• (Ω∗, αgΩ∗)
ϕα,Ω∗→ (CPNα, gFS) iff α ∈ Z+ (for α = 1 one gets the

BW embedding)

• (Ω, gΩ) and (Ω∗, gΩ∗) are not relatives, i.e. they do not share

a common non trivial Kähler submanifold (A. J. Di Scala, L. ,

Ann. Sc. Norm. Super. Pisa 2010)



• any holomorphic isometry (Ω1, gΩ1
)→ (Ω2, gΩ2

) between boun-

ded symmetric domains with Ω1 irreducible of rank ≥ 2 is totally

geodesic (N. Mok, J. Eur. Math. Soc. 2012)
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Balanced metrics in a nutshell

Let (M, g) be a compact Kähler manifold and [ω] = c1(L), with

L ample line bundle on M . The Kempf distortion function (or

density function in Donaldson’s terminology) is defined by

Tαg(x) =
∑Nα
j=1 hα(sj(x), sj(x)), x ∈M,α ∈ Z+

where s0, . . . , sNα, Nα+ 1 = dimH0(L⊗α) is an orthonormal basis

w.r.t

〈s, t〉α =
∫
M hα(s, t)ω

n

n! , s, t ∈ H
0(L⊗α), Ric(hα) = αω
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Definition (Donaldson, JDG 2001): The metric αg is balanced

if Tαg is a positive constant.

• If ϕα : M → CPNα, x 7→ [s0(x), . . . , sNα(x)]

ϕ∗αωFS = αω + i
2π∂∂̄ logTαg

• Tαg(x) ∼
∑+∞
j=0 aj(x)αn−j (Tian-Yau-Catlin-Zelditch, TYCZ

expansion)

• a0 = 1 and any aj(x) is a polynomial of the curvature and
its covariant derivatives at x of the metric g (Z. Lu, Amer. J.
Math. 2000).



Let M be a complex domain of Cn with Kähler metric g and

associated Kähler form ω = i
2π∂∂̄Φ. For α > 0



Let M be a complex domain of Cn with Kähler metric g and

associated Kähler form ω = i
2π∂∂̄Φ. For α > 0

Hα = {f ∈ Hol(M) |
∫
M e−αΦ|f |2ω

n

n! <∞}



Let M be a complex domain of Cn with Kähler metric g and

associated Kähler form ω = i
2π∂∂̄Φ. For α > 0

Hα = {f ∈ Hol(M) |
∫
M e−αΦ|f |2ω

n

n! <∞}

• εαg(z) = e−αΦ(z)Kα(z, z̄) = e−αΦ(z)∑
j=1 |fj|2, z ∈M (Rawn-

sley’s ε-function)



Let M be a complex domain of Cn with Kähler metric g and

associated Kähler form ω = i
2π∂∂̄Φ. For α > 0

Hα = {f ∈ Hol(M) |
∫
M e−αΦ|f |2ω

n

n! <∞}

• εαg(z) = e−αΦ(z)Kα(z, z̄) = e−αΦ(z)∑
j=1 |fj|2, z ∈M (Rawn-

sley’s ε-function)

Definition.The metric αg is balanced if εαg is a positive con-

stant.
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associated Kähler form ω = i
2π∂∂̄Φ. For α > 0

Hα = {f ∈ Hol(M) |
∫
M e−αΦ|f |2ω

n

n! <∞}

• εαg(z) = e−αΦ(z)Kα(z, z̄) = e−αΦ(z)∑
j=1 |fj|2, z ∈M (Rawn-

sley’s ε-function)

Definition.The metric αg is balanced if εαg is a positive con-

stant.

• If ϕα : M → CP∞, x 7→ [s0(x), . . . , sj(x), . . . ] then
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ϕ∗αωFS = αω + i
2π∂∂̄ log εαg

• εαg(z) ∼
∑+∞
j=0 aj(z)αn−j (Ma-Marinescu-Englǐs, MME expansion)
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Balanced metrics on HSS

• αgΩ is balanced iff α > γ − 1 (L. , M. Zedda, Math. Z. 2012)

• αgΩ∗ is balanced iff it is projectively induced iff α ∈ Z+ (C.

Arezzo, L. , Comm. Math. Phys. 2004)

• the coefficients aj of MME expansion of Rawnsley’s ε function

of the metric gΩ are constants; the coefficients a∗j of TYCZ

expansion of Kempf distortion function of the metric gΩ∗ are

constants and

aj = (−1)ja∗j (L. , M. Zedda, Manuscripta Math. 2015)
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1.the Kähler potential − logNΩ(z, z̄) for gΩ is the Calabi’s dia-

stasis function at the point 0 ∈ Ω ⊂ Cn for the metric gΩ.

2. the Kähler potential logN∗Ω(z, z̄) := + logNΩ(z,−z̄) is the

Calabi’s diastasis function at the origin 0 ∈ Cn for the metric

gΩ∗|Cn, Cn Borel↪→ Ω∗.

Among all the potentials the Calabi’s diastasis function (Calabi,

Ann. Math. 1952) is characterized by

D
g
0(z) =

∑
|I|,|J |≥0

aIJz
I z̄J , aJ0 = a0J = 0
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Definition. We say that (U∗, g∗) is the Kähler dual of (U, g) and
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D
g∗
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Example. Let (Ω, gΩ) be a bounded symmetric domain. Then

its Kähler dual is given by (Cn, gΩ∗|Cn).
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Example. Consider the compact flag manifold SU(3)
S(U(1)3)

.

One can write Calabi’s diastasis function for the general SU(3)-

invariant Kahler metric g using Alekseevsky-Perelomov coordina-

tes centred at a point p:

D
g
0(z) = c1 log ∆1(z) + c2 log ∆2(z), z ∈ C3, c1, c2 ∈ R+
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∆2(z) = log[1 + |z2|2 + |z3|2]

−Dg
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Thus the metric g does not admit a dual.
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with the Grassmannian G2(C4) = SU(4)
S(U(2)×U(2)).

By analogous calculations, one get that the diastasis of a homo-

geneous Kähler metric g at a point p is given by:

D
g
0(z) = c log[1 + |z1|2 + |z2|2 + |z3|2 + |z4|2 + |z1|2|z4|2+

+|z2|2|z3|2 − z2z3z̄1z̄4 − z1z4z̄2z̄3], z ∈ C4, c ∈ R+

−Dg
0(z,−z) = −c log[1−|z1|2−|z2|2−|z3|2−|z4|2 + |z1|2|z4|2+

+|z2|2|z3|2 − z2z3z̄1z̄4 − z1z4z̄2z̄3] ∈ R



Conjecture: We believe that if a homogeneous Kähler metric

on a flag manifold admits a Kähler dual then the flag manifold

is an HSSCT.



Some properties of dual Kähler metrics



Some properties of dual Kähler metrics

Theorem. (L., R. Mossa, F. Zuddas, 2024) Let (U∗, g∗) be the

Kähler dual of (U, g). Then



Some properties of dual Kähler metrics

Theorem. (L., R. Mossa, F. Zuddas, 2024) Let (U∗, g∗) be the

Kähler dual of (U, g). Then

• g is extremal† ⇔ g∗ is extremal

†The (1,0)-part of the Hamiltonian vector field associated to the scalar curvature of g is
holomorphic.



Some properties of dual Kähler metrics

Theorem. (L., R. Mossa, F. Zuddas, 2024) Let (U∗, g∗) be the

Kähler dual of (U, g). Then

• g is extremal† ⇔ g∗ is extremal

• g is KE with Einstein constant λ ⇔ g∗ is Einstein with Einstein

constant −λ

†The (1,0)-part of the Hamiltonian vector field associated to the scalar curvature of g is
holomorphic.
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Theorem. (L., R. Mossa, F. Zuddas, 2024) Let (U∗, g∗) be the

Kähler dual of (U, g). Then

• g is extremal† ⇔ g∗ is extremal

• g is KE with Einstein constant λ ⇔ g∗ is Einstein with Einstein

constant −λ

• a∗j(x) = (−1)jaj(x)
†The (1,0)-part of the Hamiltonian vector field associated to the scalar curvature of g is
holomorphic.
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Cartan-Hartogs domains (CH domains in the sequel) are a 1-

parameter family of noncompact nonhomogeneous domains of

Cn+1, given by:

MΩ,µ :=
{

(z, w) ∈ Ω× C | |w|2 < N
µ
Ω(z, z̄)

}
⊂ Cn+1

where Ω ⊂ Cn is a Cartan domain, called the base of MΩ,µ, and

µ > 0 is a positive real parameter

We endow MΩ,µ with the complete Kähler metric gΩ,µ whose

associated Kähler form is given by

ωΩ,µ = −
i

2
∂∂̄ log

(
N
µ
Ω(z, z̄)− |w|2

)
(A. Wang, W. Yin, L. Zhang, and W. Zhang, Asian J. Math.2004)



Remark A CH domain is homogeneous iff Ω has rank one, i.e.

Ω = CHn is the unit ball in Cn and µ = 1. In this case MΩ,µ =

CHn+1 and gΩ,µ = ghyp.
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(4) (CH-polydisk theorem) The Cartan-Hartogs polydisk theo-
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following facts are equivalent

(a) (MΩ,µ, gΩ,µ) = (CHn+1, ghyp)

(b) the aj coefficient of TYCZ expansion for the metric gΩ,µ is

constant, for some j ≥ 2 (M. Zedda, Abh. Math. Semin. Univ.

Hambg, 2015)

(c) αgΩ,µ is a balanced metric some α ∈ R+ (L. , M. Zedda,

Math. Z. 2012)
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Given a CH domain (MΩ,µ, gΩ,µ) and p = 0 ∈MΩ,µ then

D
gΩ,µ
0 = − log(Nµ

Ω(z, z̄)− |w|2)

is Calabi’s diastasis function at 0

(U, g) = (MΩ,µ, gΩ,µ), (U∗, g∗) = (Cn+1, g∗Ω,µ) with associated

Kähler form given by

ω∗Ω,µ = + i
2∂∂̄ log

(
N
µ
Ω(z,−z̄)+|w|2

)
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a dual CH domain. Then the following facts hold true:

(1) g∗Ω,µ is Einstein (with positive scalar curvature) iff µ = γ
n+1

(2) g∗Ω,µ is extremal iff it is Einstein

(3) (Cn+1, αg∗Ω,µ)→ CPN iff α, µ ∈ Z+

(4) (dual CH-polydisk theorem) The dual Cartan-Hartogs poly-

disk theorem holds true if Ω is of classical type
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There exists a symplectic duality between (MΩ,µ, gΩ,µ) and

(Cn+1, ω∗Ω,µ), i.e. a smooth diffeomorphism ϕ : MΩ,µ → R2n+2

such that ϕ∗ω0 = ωΩ,µ and ϕ∗ω∗Ω,µ = ω0, iff (Cn+1, g∗Ω,µ) =

(Cn+1, gFS) iff Ω = CHn, µ = 1.

Theorem. (L., R. Mossa, F. Zuddas, 2024) There exists a λ-

symplectic duality between (MΩ,µ, gΩ,µ) and (Cn+1, ω∗Ω,µ), i.e. a

smooth diffeomorphism ϕ : MΩ,µ → R2n+2 such that ϕ∗ω0 =

λωΩ,µ and ϕ∗λω∗Ω,µ = ω0, iff Ω = CHn and λ = µ = 1.
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(a) (Cn+1, g∗Ω,µ) = (Cn+1, gFS) (⇔ Ω = CHn, µ = 1)

(b) the a∗j coefficient of the TYCZ expansion for the metric g∗Ω,µ
is constant for some j ≥ 2

(c) αg∗Ω,µ is balanced, for some α ∈ R+

(d) αg∗Ω,µ is KE and projectively induced for some α ∈ R+

(e)
(
Cn+1, g∗Ω,µ

)
admits a Fubini–Study compactification
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• A CH domain (MΩ,µ, gΩ,µ) and its dual (Cn+1, g∗Ω,µ) are not

relatives if µ ∈ Z+

• Let (g,X) be a KRS on a complex manifold M and Ωi, i = 1,2

be Cartan domains. If there exists a holomorphic isometry of

(M, g) into (MΩ1,µ1
, gΩ1,µ1

) and into (Cn+1, g∗Ω2,µ2
), with µ1, µ2 ∈

Q+, then g is KE
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Theorem.(L., R. Mossa, F. Zuddas, 2024) Let MΩ,µ be a CH

domain and g̃Ω,µ be its Bergman metric, Then the Kähler dual

(U∗, g̃∗Ω,µ) can be defined (U∗ 6= Cn+1 in general). Moreover the

following conditions are equivalent

• Ω = CHn and µ = 1

• g̃Ω,µ is Einstein

• (Cn+1, g̃∗Ω,µ) admits a Fubini-Study compactification
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Another Kähler metrics on Cartan-Hartogs domains

Theorem.(L., R. Mossa, F. Zuddas, 2024) Let MΩ,µ be a CH

domain. Then

ω̂Ω,µ := ωΩ,µ −
i

2π
∂∂̄ logNµ

Ω(z, z̄)

defines a Kähler form on MΩ,µ. Moreover, the associated Kähler

metric ĝΩ,µ satisfies the following properties.

• ĝΩ,µ is complete and never Einstein

• (MΩ,µ, ĝΩ,µ) has a Kähler dual (Cn+1, ĝ∗Ω,µ) which admits a
Fubini-Study compactification



Thank you for your attention!


