Dual Kähler metrics

Andrea Loi, University of Cagliari (joint work with Roberto Mossa and Fabio Zuddas)

Differential Geometry Workshop in Lerici April 8-10, 2024 **Aim of the talk:** Extend the concept of duality between an Hermitian symmetric spaces to more general Kähler metrics

1. Hermitian symmetric spaces of noncompact type (HS-SNT) and their compact duals (HSSCT)

1. Hermitian symmetric spaces of noncompact type (HS-SNT) and their compact duals (HSSCT)

2. Symplectic, Kähler and metric properties of Hermitian symmetric spaces (HSS)

1. Hermitian symmetric spaces of noncompact type (HS-SNT) and their compact duals (HSSCT)

2. Symplectic, Kähler and metric properties of Hermitian symmetric spaces (HSS)

3. Dual Kähler domains and metrics

1. Hermitian symmetric spaces of noncompact type (HS-SNT) and their compact duals (HSSCT)

2. Symplectic, Kähler and metric properties of Hermitian symmetric spaces (HSS)

3. Dual Kähler domains and metrics

4. Cartan-Hartogs domains and their duals

Definitions and main properties

Definitions and main properties

An **HSSNT** is a Kähler manifold (M,g) such that for all $p \in M$ the geodesic symmetry:

$$s_p : \exp_p(v) \mapsto \exp_p(-v), \forall v \in T_pM$$

is a globally defined holomorphic isometry of (M, g).

Definitions and main properties

An **HSSNT** is a Kähler manifold (M,g) such that for all $p \in M$ the geodesic symmetry:

$$s_p : \exp_p(v) \mapsto \exp_p(-v), \forall v \in T_pM$$

is a globally defined holomorphic isometry of (M, g).

Up to homotheties, (M,g) is biholomorphically isometric to a bounded symmetric domain $\Omega \subset \mathbb{C}^n$ centred at the origin $0 \in \mathbb{C}^n$ equipped with the Kähler metric g_Ω whose associated Kähler form is

$$\omega_{\Omega} = -\frac{i}{2\pi} \partial \bar{\partial} \log N_{\Omega}$$

where

$$N_{\Omega}(z,\overline{z}) = (V(\Omega)K_{\Omega}(z,\overline{z}))^{-\frac{1}{\gamma}}$$

is the generic norm, $V(\Omega)$ is the Euclidean volume of Ω , γ the genus of Ω and K_{Ω} its Bergman kernel.

where

$$N_{\Omega}(z,\overline{z}) = (V(\Omega)K_{\Omega}(z,\overline{z}))^{-\frac{1}{\gamma}}$$

is the generic norm, $V(\Omega)$ is the Euclidean volume of Ω , γ the genus of Ω and K_{Ω} its Bergman kernel.

Thus

$$g_{\Omega} = \frac{1}{\gamma} g_B$$

where g_B is the **Bergman metric** with associated Kähler form given by

$$\omega_B = \frac{i}{2\pi} \partial \bar{\partial} \log K_{\Omega}$$

Numerical invariants. A Cartan domain Ω is uniquely determined by a triple of integers (r, a, b) where r represents the rank of Ω and a and b are positive integers.

Numerical invariants. A Cartan domain Ω is uniquely determined by a triple of integers (r, a, b) where r represents the rank of Ω and a and b are positive integers.

The genus γ of Ω is defined by

$$\gamma = (r-1)a + b + 2$$

Numerical invariants. A Cartan domain Ω is uniquely determined by a triple of integers (r, a, b) where r represents the rank of Ω and a and b are positive integers.

The genus γ of Ω is defined by

$$\gamma = (r-1)a + b + 2$$

and the dimension n of Ω can be written as

$$n = r + \frac{r(r-1)}{2}a + rb$$

The Wallach set $W(\Omega) \subset \mathbb{R}$ of a Cartan domain $\Omega \subset \mathbb{C}^n$ is a subset of \mathbb{R} which depends on a and r.

The Wallach set $W(\Omega) \subset \mathbb{R}$ of a Cartan domain $\Omega \subset \mathbb{C}^n$ is a subset of \mathbb{R} which depends on a and r.

More precisely we have

The basic example is the unit ball in

$$\mathbb{C}H^n = \{z \in \mathbb{C}^n \mid |z|^2 < 1\}$$

The basic example is the unit ball in

$$\mathbb{C}H^n = \{z \in \mathbb{C}^n \mid |z|^2 < 1\}$$

$$\omega_{hyp} = -\frac{i}{2\pi} \partial \bar{\partial} \log(1 - |z|^2) = \frac{1}{n+1} \omega_B$$

The basic example is the unit ball in

$$\mathbb{C}H^n = \{z \in \mathbb{C}^n \mid |z|^2 < 1\}$$

$$\omega_{hyp} = -\frac{i}{2\pi} \partial \overline{\partial} \log(1 - |z|^2) = \frac{1}{n+1} \omega_B$$
$$r = 1, \ a = 2, \ b = n - 1, \gamma = n + 1$$

The basic example is the unit ball in

$$\mathbb{C}H^n = \{z \in \mathbb{C}^n \mid |z|^2 < 1\}$$

$$\begin{split} \omega_{hyp} &= -\frac{i}{2\pi} \partial \bar{\partial} \log(1 - |z|^2) = \frac{1}{n+1} \omega_B \\ r &= 1, \ a = 2, \ b = n - 1, \gamma = n + 1 \\ K_{\mathbb{C}H^n}(z, \bar{z}) &= \frac{1}{(1 - |z|^2)^{n+1}}, \ N_{\mathbb{C}H^n}(z, \bar{z}) = 1 - |z|^2 \end{split}$$

To each HSSNT (Ω, g_{Ω}) we can associate a **HSSCT** (Ω^*, g_{Ω^*}) , namely a compact Kähler manifold Ω^* .

To each HSSNT (Ω, g_{Ω}) we can associate a **HSSCT** (Ω^*, g_{Ω^*}) , namely a compact Kähler manifold Ω^* .

 $-\log N_{\Omega}(z,\bar{z}) \longrightarrow +\log N_{\Omega}(z,-\bar{z})$

To each HSSNT (Ω, g_{Ω}) we can associate a **HSSCT** (Ω^*, g_{Ω^*}) , namely a compact Kähler manifold Ω^* .

$$-\log N_{\Omega}(z,\overline{z}) \longrightarrow +\log N_{\Omega}(z,-\overline{z})$$

is a strictly plurisubharmonic on all \mathbb{C}^n and so $\frac{i}{2\pi}\partial\bar{\partial}\log N^*_{\Omega}$ is a Kähler form on \mathbb{C}^n , where $N^*_{\Omega}(z,\bar{z}) = N_{\Omega}(z,-\bar{z})$.

To each HSSNT (Ω, g_{Ω}) we can associate a **HSSCT** (Ω^*, g_{Ω^*}) , namely a compact Kähler manifold Ω^* .

$$-\log N_{\Omega}(z,\overline{z}) \longrightarrow +\log N_{\Omega}(z,-\overline{z})$$

is a strictly plurisubharmonic on all \mathbb{C}^n and so $\frac{i}{2\pi}\partial\bar{\partial}\log N^*_{\Omega}$ is a Kähler form on \mathbb{C}^n , where $N^*_{\Omega}(z,\bar{z}) = N_{\Omega}(z,-\bar{z})$.

Morever, \mathbb{C}^n can be compactified to a compact Kähler manifold (Ω^*, g_{Ω^*}) , the **compact dual of** (Ω, g_{Ω}) , with Kähler form ω_{Ω^*} such that

$$\omega_{\Omega^*|\mathbb{C}^n} = \frac{i}{2\pi} \partial \bar{\partial} \log N_{\Omega}^*$$

$$0 \in \Omega \stackrel{HC}{\subset} \mathbb{C}^n \stackrel{\text{Borel}}{\to} \Omega^* \stackrel{BW}{\to} \mathbb{C}P^N$$

where BW is a Kähler embedding, i.e. $BW^*(g_{FS}) = g_{\Omega^*}$ and
 $\Omega^* = \mathbb{C}^n \sqcup H$, where

 $H = BW^{-1}(Z_0 = 0) = Cut_p(\Omega^*, g_{\Omega^*}), Borel(0) = p$

$$0 \in \Omega \subset \mathbb{C}^n \xrightarrow{BW} \Omega^* \xrightarrow{BW} \mathbb{C}P^N$$

where BW is a Kähler embedding, i.e. $BW^*(g_{FS}) = g_{\Omega^*}$ and $\Omega^* = \mathbb{C}^n \sqcup H$, where

Roral

DII

HC

$$H = BW^{-1}(Z_0 = 0) = Cut_p(\Omega^*, g_{\Omega^*}), Borel(0) = p$$

Definition. A Kähler manifold (V,g) admits a **Fubini-Study** compactification if there exists a holomorphic isometry $(V,g) \xrightarrow{\Psi}$ $(\mathbb{C}P^N, g_{FS})$ such that $\Psi(V)$ is an open and dense subset of a compact Kähler submanifold $P \subset \mathbb{C}P^N$.

$$0 \in \Omega \subset \mathbb{C}^n \xrightarrow{BW} \Omega^* \xrightarrow{BW} \mathbb{C}P^N$$

where BW is a Kähler embedding, i.e. $BW^*(g_{FS}) = g_{\Omega^*}$ and $\Omega^* = \mathbb{C}^n \sqcup H$, where

Roral

DII

HC

$$H = BW^{-1}(Z_0 = 0) = Cut_p(\Omega^*, g_{\Omega^*}), Borel(0) = p$$

Definition. A Kähler manifold (V,g) admits a **Fubini-Study** compactification if there exists a holomorphic isometry $(V,g) \xrightarrow{\Psi}$ $(\mathbb{C}P^N, g_{FS})$ such that $\Psi(V)$ is an open and dense subset of a compact Kähler submanifold $P \subset \mathbb{C}P^N$.

Example. $(\mathbb{C}^n, g_{\Omega^*|\mathbb{C}^n})$ admits a Fubini-Study compactification by taking $\Psi = BW_{|\mathbb{C}^n} : (\mathbb{C}^n, g_{\Omega^*|\mathbb{C}^n}) \to (\mathbb{C}P^N, g_{FS}), P = BW(\Omega^*).$

The compact dual of $(\mathbb{C}H^n, g_{hyp})$ is $(\mathbb{C}P^n, g_{FS})$.

The compact dual of $(\mathbb{C}H^n, g_{hyp})$ is $(\mathbb{C}P^n, g_{FS})$.

$$\mathbb{C}H^n \subset \mathbb{C}^n = U_0 = \{Z_0 \neq 0\} \stackrel{Borel}{\hookrightarrow} \mathbb{C}P^n \stackrel{id}{\to} \mathbb{C}P^n$$

The compact dual of $(\mathbb{C}H^n, g_{hyp})$ is $(\mathbb{C}P^n, g_{FS})$.

$$\mathbb{C}H^n \subset \mathbb{C}^n = U_0 = \{Z_0 \neq 0\} \stackrel{Borel}{\hookrightarrow} \mathbb{C}P^n \stackrel{id}{\to} \mathbb{C}P^n$$
$$Borel(z_1, \dots, z_n) = [1, z_1, \cdots, z_n]$$
The complex projective space $(\mathbb{C}P^n, g_{FS})$

The compact dual of $(\mathbb{C}H^n, g_{hyp})$ is $(\mathbb{C}P^n, g_{FS})$.

$$\mathbb{C}H^n \subset \mathbb{C}^n = U_0 = \{Z_0 \neq 0\} \stackrel{Borel}{\hookrightarrow} \mathbb{C}P^n \stackrel{id}{\to} \mathbb{C}P^n$$

$$Borel(z_1,\ldots,z_n) = [1,z_1,\cdots,z_n]$$

 $-\log N_{\mathbb{C}H^n}(z,\bar{z}) = -\log(1-|z|^2) \longrightarrow \log N_{\mathbb{C}H^n}^*(z,\bar{z}) = +\log(1+|z|^2)$

The complex projective space $(\mathbb{C}P^n, g_{FS})$

The compact dual of $(\mathbb{C}H^n, g_{hyp})$ is $(\mathbb{C}P^n, g_{FS})$.

$$\mathbb{C}H^n \subset \mathbb{C}^n = U_0 = \{Z_0 \neq 0\} \stackrel{Borel}{\hookrightarrow} \mathbb{C}P^n \stackrel{id}{\to} \mathbb{C}P^n$$

$$Borel(z_1,\ldots,z_n) = [1,z_1,\cdots,z_n]$$

 $-\log N_{\mathbb{C}H^n}(z,\bar{z}) = -\log(1-|z|^2) \longrightarrow \log N^*_{\mathbb{C}H^n}(z,\bar{z}) = +\log(1+|z|^2)$

$$\omega_{FS|U_0} = \frac{i}{2\pi} \partial \bar{\partial} \log(1 + |z|^2)$$

Similarities between HSSNT and HSSCT

Similarities between HSSNT and HSSCT

• g_{Ω} and g_{Ω^*} are both homogeneous and KE (with Einstein constant -2γ and 2γ , respectively)

Similarities between HSSNT and HSSCT

• g_{Ω} and g_{Ω^*} are both homogeneous and KE (with Einstein constant -2γ and 2γ , respectively)

• for all $p \in \Omega$ and $v \in T_p\Omega$ there exists a totally geodesic Kähler embedding of the polydisk $\Delta^r := \mathbb{C}H^1 \times \cdots \times \mathbb{C}H^1$ (*r*-times) passing through *p* and tangent to *v* (polydisk theorem).

Similarities between HSSNT and HSSCT

• g_{Ω} and g_{Ω^*} are both homogeneous and KE (with Einstein constant -2γ and 2γ , respectively)

• for all $p \in \Omega$ and $v \in T_p\Omega$ there exists a totally geodesic Kähler embedding of the polydisk $\Delta^r := \mathbb{C}H^1 \times \cdots \times \mathbb{C}H^1$ (*r*-times) passing through *p* and tangent to *v* (polydisk theorem).

• for all $p \in \Omega^*$ and $v \in T_p\Omega^*$ there exists a totally geodesic Kähler embedding of the dual polydisk $(\Delta^r)^* := \mathbb{C}P^1 \times \cdots \times \mathbb{C}P^1$ (*r*-times) passing through *p* and tangent to *v* (dual polydisk theorem). • $(\Omega, \omega_{\Omega})$ is a symplectic dual of $(\Omega^*, \omega_{\Omega^*})$, i.e. there exists a smooth diffeomorphism

$$\varphi_{\Omega}: \Omega \to \mathbb{R}^{2n} = \mathbb{C}^n \stackrel{Borel}{\hookrightarrow} \Omega^*$$

(called a symplectic duality) such that $\varphi_{\Omega}^* \omega_0 = \omega_{\Omega}$ and $\varphi_{\Omega}^* \omega_{\Omega^* | \mathbb{C}^n} = \omega_0$ (A. J. Di Scala, L., Adv. Math. 2008).

• $(\Omega, \omega_{\Omega})$ is a symplectic dual of $(\Omega^*, \omega_{\Omega^*})$, i.e. there exists a smooth diffeomorphism

$$\varphi_{\Omega}: \Omega \to \mathbb{R}^{2n} = \mathbb{C}^n \stackrel{Borel}{\hookrightarrow} \Omega^*$$

(called a symplectic duality) such that $\varphi_{\Omega}^* \omega_0 = \omega_{\Omega}$ and $\varphi_{\Omega}^* \omega_{\Omega^* | \mathbb{C}^n} = \omega_0$ (A. J. Di Scala, L., Adv. Math. 2008).

• Let (g, X) be a **KRS**^{*} on a complex manifold M. If there exists a holomorphic isometry of (M, g) into (Ω, g_{Ω}) (resp. (Ω^*, g_{Ω^*}) , then g is KE (L. R. Mossa, PAMS 2023).

 $^{*}Ric_{g} = \lambda \ g + L_{X}g$, where X is the real part of a holomorphic vector field.

• let Ω be a bounded symmetric domain of rank \geq 2 and let

$$f: (\mathbb{C}H^n, g_{hyp}) \to (\Omega, g_{\Omega}) \subset \mathbb{C}^n \xrightarrow{\mathsf{Borel}} \Omega^* \xrightarrow{BW} \mathbb{C}P^N$$

be a holomorphic isometric embedding. Then $f(\mathbb{C}H^n)$ is an irreducible component of $BW^{-1}(H) \cap \Omega$ with H hyperplane of $\mathbb{C}P^N$ (S. T. Chan, N. Mok, Math. Z. 2017)

• $(\Omega, \alpha g_{\Omega}) \stackrel{\varphi_{\alpha,\Omega}}{\to} (\mathbb{C}P^{\infty}, g_{FS})$ iff $\alpha \in W(\Omega) \setminus \{0\}$ (L., M. Zedda, Math Ann. 2011)

• $(\Omega, \alpha g_{\Omega}) \stackrel{\varphi_{\alpha,\Omega}}{\to} (\mathbb{C}P^{\infty}, g_{FS})$ iff $\alpha \in W(\Omega) \setminus \{0\}$ (L., M. Zedda, Math Ann. 2011)

• $(\Omega^*, \alpha g_{\Omega^*}) \stackrel{\varphi_{\alpha,\Omega^*}}{\to} (\mathbb{C}P^{N_{\alpha}}, g_{FS})$ iff $\alpha \in \mathbb{Z}^+$ (for $\alpha = 1$ one gets the BW embedding)

• $(\Omega, \alpha g_{\Omega}) \stackrel{\varphi_{\alpha,\Omega}}{\to} (\mathbb{C}P^{\infty}, g_{FS})$ iff $\alpha \in W(\Omega) \setminus \{0\}$ (L., M. Zedda, Math Ann. 2011)

• $(\Omega^*, \alpha g_{\Omega^*}) \stackrel{\varphi_{\alpha,\Omega^*}}{\to} (\mathbb{C}P^{N_{\alpha}}, g_{FS})$ iff $\alpha \in \mathbb{Z}^+$ (for $\alpha = 1$ one gets the BW embedding)

• (Ω, g_{Ω}) and (Ω^*, g_{Ω^*}) are not **relatives**, *i.e.* they do not share a common non trivial Kähler submanifold (A. J. Di Scala, L. , Ann. Sc. Norm. Super. Pisa 2010) • any holomorphic isometry $(\Omega_1, g_{\Omega_1}) \rightarrow (\Omega_2, g_{\Omega_2})$ between bounded symmetric domains with Ω_1 irreducible of rank ≥ 2 is totally geodesic (N. Mok, J. Eur. Math. Soc. 2012) **Balanced metrics in a nutshell**

Balanced metrics in a nutshell

Let (M,g) be a compact Kähler manifold and $[\omega] = c_1(L)$, with L ample line bundle on M. The Kempf distortion function (or density function in Donaldson's terminology) is defined by

$$T_{\alpha g}(x) = \sum_{j=1}^{N_{\alpha}} h_{\alpha}(s_j(x), s_j(x)), \ x \in M, \alpha \in \mathbb{Z}^+$$

Balanced metrics in a nutshell

Let (M,g) be a compact Kähler manifold and $[\omega] = c_1(L)$, with L ample line bundle on M. The Kempf distortion function (or density function in Donaldson's terminology) is defined by

$$T_{\alpha g}(x) = \sum_{j=1}^{N_{\alpha}} h_{\alpha}(s_j(x), s_j(x)), \ x \in M, \alpha \in \mathbb{Z}^+$$

where $s_0, \ldots, s_{N_{\alpha}}$, $N_{\alpha} + 1 = \dim H^0(L^{\otimes \alpha})$ is an orthonormal basis w.r.t

$$\langle s,t\rangle_{\alpha} = \int_{M} h_{\alpha}(s,t) \frac{\omega^{n}}{n!}, s,t \in H^{0}(L^{\otimes \alpha}), \ \operatorname{Ric}(h_{\alpha}) = \alpha \omega$$

• If
$$\varphi_{\alpha} : M \to \mathbb{C}P^{N_{\alpha}}, x \mapsto [s_0(x), \dots, s_{N_{\alpha}}(x)]$$

• If
$$\varphi_{\alpha} : M \to \mathbb{C}P^{N_{\alpha}}, x \mapsto [s_0(x), \dots, s_{N_{\alpha}}(x)]$$

$$\varphi_{\alpha}^{*}\omega_{FS} = \alpha\omega + \frac{i}{2\pi}\partial\bar{\partial}\log T_{\alpha g}$$

• If
$$\varphi_{\alpha} : M \to \mathbb{C}P^{N_{\alpha}}, x \mapsto [s_0(x), \dots, s_{N_{\alpha}}(x)]$$

$$\varphi_{\alpha}^{*}\omega_{FS} = \alpha\omega + \frac{i}{2\pi}\partial\bar{\partial}\log T_{\alpha g}$$

• $T_{\alpha g}(x) \sim \sum_{j=0}^{+\infty} a_j(x) \alpha^{n-j}$ (Tian-Yau-Catlin-Zelditch, TYCZ expansion)

• If
$$\varphi_{\alpha} : M \to \mathbb{C}P^{N_{\alpha}}, x \mapsto [s_0(x), \dots, s_{N_{\alpha}}(x)]$$

$$\varphi_{\alpha}^{*}\omega_{FS} = \alpha\omega + \frac{i}{2\pi}\partial\bar{\partial}\log T_{\alpha g}$$

• $T_{\alpha g}(x) \sim \sum_{j=0}^{+\infty} a_j(x) \alpha^{n-j}$ (Tian-Yau-Catlin-Zelditch, TYCZ expansion)

• $a_0 = 1$ and any $a_j(x)$ is a polynomial of the curvature and its covariant derivatives at x of the metric g (Z. Lu, Amer. J. Math. 2000).

 $\mathcal{H}_{\alpha} = \{ f \in Hol(M) \mid \int_{M} e^{-\alpha \Phi} |f|^{2} \frac{\omega^{n}}{n!} < \infty \}$

$$\mathcal{H}_{\alpha} = \{ f \in Hol(M) \mid \int_{M} e^{-\alpha \Phi} |f|^2 \frac{\omega^n}{n!} < \infty \}$$

•
$$\epsilon_{\alpha g}(z) = e^{-\alpha \Phi(z)} K_{\alpha}(z, \overline{z}) = e^{-\alpha \Phi(z)} \sum_{j=1} |f_j|^2, \ z \in M$$
 (Rawn-sley's ϵ -function)

$$\mathcal{H}_{\alpha} = \{ f \in Hol(M) \mid \int_{M} e^{-\alpha \Phi} |f|^{2} \frac{\omega^{n}}{n!} < \infty \}$$

• $\epsilon_{\alpha g}(z) = e^{-\alpha \Phi(z)} K_{\alpha}(z, \overline{z}) = e^{-\alpha \Phi(z)} \sum_{j=1} |f_j|^2, \ z \in M$ (Rawn-sley's ϵ -function)

Definition. The metric αg is **balanced** if $\epsilon_{\alpha g}$ is a positive constant.

$$\mathcal{H}_{\alpha} = \{ f \in Hol(M) \mid \int_{M} e^{-\alpha \Phi} |f|^{2} \frac{\omega^{n}}{n!} < \infty \}$$

• $\epsilon_{\alpha g}(z) = e^{-\alpha \Phi(z)} K_{\alpha}(z, \overline{z}) = e^{-\alpha \Phi(z)} \sum_{j=1} |f_j|^2, \ z \in M$ (Rawn-sley's ϵ -function)

Definition. The metric αg is **balanced** if $\epsilon_{\alpha g}$ is a positive constant.

• If
$$\varphi_{\alpha} : M \to \mathbb{C}P^{\infty}, x \mapsto [s_0(x), \dots, s_j(x), \dots]$$
 then

$$\varphi_{\alpha}^{*}\omega_{FS} = \alpha\omega + \frac{i}{2\pi}\partial\bar{\partial}\log\epsilon_{\alpha g}$$

$$\varphi_{\alpha}^{*}\omega_{FS} = \alpha\omega + \frac{i}{2\pi}\partial\bar{\partial}\log\epsilon_{\alpha g}$$

• $\epsilon_{\alpha g}(z) \sim \sum_{j=0}^{+\infty} a_j(z) \alpha^{n-j}$ (Ma-Marinescu-Engliš, MME expansion)

• αg_{Ω} is balanced iff $\alpha > \gamma - 1$ (L. , M. Zedda, Math. Z. 2012)

- αg_{Ω} is balanced iff $\alpha > \gamma 1$ (L. , M. Zedda, Math. Z. 2012)
- αg_{Ω^*} is balanced iff it is projectively induced iff $\alpha \in \mathbb{Z}^+$ (C. Arezzo, L., Comm. Math. Phys. 2004)

- αg_{Ω} is balanced iff $\alpha > \gamma 1$ (L. , M. Zedda, Math. Z. 2012)
- αg_{Ω^*} is balanced iff it is projectively induced iff $\alpha \in \mathbb{Z}^+$ (C. Arezzo, L., Comm. Math. Phys. 2004)

• the coefficients a_j of MME expansion of Rawnsley's ϵ function of the metric g_{Ω} are constants; the coefficients a_j^* of TYCZ expansion of Kempf distortion function of the metric g_{Ω^*} are constants and

- αg_{Ω} is balanced iff $\alpha > \gamma 1$ (L., M. Zedda, Math. Z. 2012)
- αg_{Ω^*} is balanced iff it is projectively induced iff $\alpha \in \mathbb{Z}^+$ (C. Arezzo, L., Comm. Math. Phys. 2004)

• the coefficients a_j of MME expansion of Rawnsley's ϵ function of the metric g_{Ω} are constants; the coefficients a_j^* of TYCZ expansion of Kempf distortion function of the metric g_{Ω^*} are constants and

 $a_j = (-1)^j a_j^*$ (L., M. Zedda, Manuscripta Math. 2015)

3. Dual Kähler domains and metrics
3. Dual Kähler domains and metrics

1.the Kähler potential $-\log N_{\Omega}(z, \overline{z})$ for g_{Ω} is the Calabi's diastasis function at the point $0 \in \Omega \subset \mathbb{C}^n$ for the metric g_{Ω} .

3. Dual Kähler domains and metrics

1.the Kähler potential $-\log N_{\Omega}(z, \overline{z})$ for g_{Ω} is the Calabi's diastasis function at the point $0 \in \Omega \subset \mathbb{C}^n$ for the metric g_{Ω} .

2. the Kähler potential $\log N_{\Omega}^*(z, \overline{z}) := + \log N_{\Omega}(z, -\overline{z})$ is the Calabi's diastasis function at the origin $0 \in \mathbb{C}^n$ for the metric $g_{\Omega^*|\mathbb{C}^n}, \mathbb{C}^n \xrightarrow{Borel} \Omega^*$.

3. Dual Kähler domains and metrics

1.the Kähler potential $-\log N_{\Omega}(z, \overline{z})$ for g_{Ω} is the Calabi's diastasis function at the point $0 \in \Omega \subset \mathbb{C}^n$ for the metric g_{Ω} .

2. the Kähler potential $\log N_{\Omega}^*(z, \overline{z}) := + \log N_{\Omega}(z, -\overline{z})$ is the Calabi's diastasis function at the origin $0 \in \mathbb{C}^n$ for the metric $g_{\Omega^*|\mathbb{C}^n}, \mathbb{C}^n \stackrel{Borel}{\hookrightarrow} \Omega^*.$

Among all the potentials the Calabi's diastasis function (Calabi, Ann. Math. 1952) is characterized by

$$D_0^g(z) = \sum_{|I|,|J| \ge 0} a_{IJ} z^I \overline{z}^J, \ a_{J0} = a_{0J} = 0$$

Let (U,g) and (U^*,g^*) be complex domains of \mathbb{C}^n containing the origin with real analytic Kähler forms $\omega = \frac{i}{2\pi} \partial \bar{\partial} D_0^g$ and $\omega^* = \frac{i}{2\pi} \partial \bar{\partial} D_0^{g^*}$.

Let (U,g) and (U^*,g^*) be complex domains of \mathbb{C}^n containing the origin with real analytic Kähler forms $\omega = \frac{i}{2\pi} \partial \bar{\partial} D_0^g$ and $\omega^* = \frac{i}{2\pi} \partial \bar{\partial} D_0^{g^*}$.

Definition. We say that (U^*, g^*) is the Kähler dual of (U, g) and g^* is a Kähler metric dual to g (and viceversa) if

$$D_0^{g^*}(z,\bar{z}) = -D_0^g(z,-\bar{z})$$

Let (U,g) and (U^*,g^*) be complex domains of \mathbb{C}^n containing the origin with real analytic Kähler forms $\omega = \frac{i}{2\pi} \partial \bar{\partial} D_0^g$ and $\omega^* = \frac{i}{2\pi} \partial \bar{\partial} D_0^{g^*}$.

Definition. We say that (U^*, g^*) is the Kähler dual of (U, g) and g^* is a Kähler metric dual to g (and viceversa) if

$$D_0^{g^*}(z,\bar{z}) = -D_0^g(z,-\bar{z})$$

Example. Let (Ω, g_{Ω}) be a bounded symmetric domain. Then its Kähler dual is given by $(\mathbb{C}^n, g_{\Omega^*|\mathbb{C}^n})$.

Example. Consider the compact flag manifold $\frac{SU(3)}{S(U(1)^3)}$.

One can write Calabi's diastasis function for the general SU(3)invariant Kahler metric g using Alekseevsky-Perelomov coordinates centred at a point p:

$$D_0^g(z) = c_1 \log \Delta_1(z) + c_2 \log \Delta_2(z), \ z \in \mathbb{C}^3, \ c_1, c_2 \in \mathbb{R}^+$$

$\Delta_1(z) = \log[1 + |z_1|^2 + |z_2|^2 + |z_1|^2 |z_3|^2 + z_2 \bar{z}_1 \bar{z}_3 + \bar{z}_2 z_1 z_3]$

$\Delta_1(z) = \log[1 + |z_1|^2 + |z_2|^2 + |z_1|^2 |z_3|^2 + z_2 \bar{z}_1 \bar{z}_3 + \bar{z}_2 z_1 z_3]$ $\Delta_2(z) = \log[1 + |z_2|^2 + |z_3|^2]$

$$\Delta_1(z) = \log[1 + |z_1|^2 + |z_2|^2 + |z_1|^2 |z_3|^2 + z_2 \bar{z}_1 \bar{z}_3 + \bar{z}_2 z_1 z_3]$$

$$\Delta_2(z) = \log[1 + |z_2|^2 + |z_3|^2]$$

$$-D_p^g(z, -\bar{z}) = -c_1 \Delta_1^*(z) - c_2 \Delta_2^*(z)$$

$$\begin{aligned} \Delta_1(z) &= \log[1 + |z_1|^2 + |z_2|^2 + |z_1|^2 |z_3|^2 + z_2 \bar{z}_1 \bar{z}_3 + \bar{z}_2 z_1 z_3] \\ \Delta_2(z) &= \log[1 + |z_2|^2 + |z_3|^2] \\ -D_p^g(z, -\bar{z}) &= -c_1 \Delta_1^*(z) - c_2 \Delta_2^*(z) \\ \Delta_1^*(z) &= \log[1 - |z_1|^2 - |z_2|^2 + |z_1|^2 |z_3|^2 + z_2 \bar{z}_1 \bar{z}_3 - \bar{z}_2 z_1 z_3] \notin \mathbb{R} \end{aligned}$$

$$\begin{split} \Delta_1(z) &= \log[1+|z_1|^2+|z_2|^2+|z_1|^2|z_3|^2+z_2\bar{z}_1\bar{z}_3+\bar{z}_2z_1z_3] \\ \Delta_2(z) &= \log[1+|z_2|^2+|z_3|^2] \\ -D_p^g(z,-\bar{z}) &= -c_1\Delta_1^*(z)-c_2\Delta_2^*(z) \\ \Delta_1^*(z) &= \log[1-|z_1|^2-|z_2|^2+|z_1|^2|z_3|^2+z_2\bar{z}_1\bar{z}_3-\bar{z}_2z_1z_3] \notin \mathbb{R} \\ \Delta_2^*(z) &= \log[1-|z_2|^2-|z_3|^2]. \end{split}$$

$$\begin{split} \Delta_1(z) &= \log[1+|z_1|^2+|z_2|^2+|z_1|^2|z_3|^2+z_2\bar{z}_1\bar{z}_3+\bar{z}_2z_1z_3] \\ \Delta_2(z) &= \log[1+|z_2|^2+|z_3|^2] \\ -D_p^g(z,-\bar{z}) &= -c_1\Delta_1^*(z)-c_2\Delta_2^*(z) \\ \Delta_1^*(z) &= \log[1-|z_1|^2-|z_2|^2+|z_1|^2|z_3|^2+z_2\bar{z}_1\bar{z}_3-\bar{z}_2z_1z_3] \notin \mathbb{R} \\ \Delta_2^*(z) &= \log[1-|z_2|^2-|z_3|^2]. \end{split}$$

Thus the metric g does not admit a dual.

By analogous calculations, one get that the diastasis of a homogeneous Kähler metric g at a point p is given by:

By analogous calculations, one get that the diastasis of a homogeneous Kähler metric g at a point p is given by:

$$D_0^g(z) = c \log[1 + |z_1|^2 + |z_2|^2 + |z_3|^2 + |z_4|^2 + |z_1|^2 |z_4|^2 + |z_4|$$

 $+|z_2|^2|z_3|^2-z_2z_3\bar{z}_1\bar{z}_4-z_1z_4\bar{z}_2\bar{z}_3], \ z\in\mathbb{C}^4, c\in\mathbb{R}^+$

By analogous calculations, one get that the diastasis of a homogeneous Kähler metric g at a point p is given by:

$$D_0^g(z) = c \log[1 + |z_1|^2 + |z_2|^2 + |z_3|^2 + |z_4|^2 + |z_1|^2 |z_4|^2 + |z_1|^2 |z_4|^2 + |z_1|^2 |z_4|^2 + |z_1|^2 |z_4|^2 + |z_$$

$$+|z_2|^2|z_3|^2-z_2z_3\bar{z}_1\bar{z}_4-z_1z_4\bar{z}_2\bar{z}_3], \ z\in\mathbb{C}^4, c\in\mathbb{R}^+$$

$$-D_0^g(z, -z) = -c \log[1 - |z_1|^2 - |z_2|^2 - |z_3|^2 - |z_4|^2 + |z_1|^2 |z_4|^2 + |z_$$

 $+|z_2|^2|z_3|^2-z_2z_3\bar{z}_1\bar{z}_4-z_1z_4\bar{z}_2\bar{z}_3] \in \mathbb{R}$

Conjecture: We believe that if a homogeneous Kähler metric on a flag manifold admits a Kähler dual then the flag manifold is an HSSCT.

Theorem. (L., R. Mossa, F. Zuddas, 2024) Let (U^*, g^*) be the Kähler dual of (U, g). Then

Theorem. (L., R. Mossa, F. Zuddas, 2024) Let (U^*, g^*) be the Kähler dual of (U, g). Then

• g is extremal[†] $\Leftrightarrow g^*$ is extremal

[†]The (1,0)-part of the Hamiltonian vector field associated to the scalar curvature of g is holomorphic.

Theorem. (L., R. Mossa, F. Zuddas, 2024) Let (U^*, g^*) be the Kähler dual of (U, g). Then

• g is extremal[†] $\Leftrightarrow g^*$ is extremal

• g is KE with Einstein constant $\lambda \Leftrightarrow g^*$ is Einstein with Einstein constant $-\lambda$

[†]The (1,0)-part of the Hamiltonian vector field associated to the scalar curvature of g is holomorphic.

Theorem. (L., R. Mossa, F. Zuddas, 2024) Let (U^*, g^*) be the Kähler dual of (U, g). Then

- g is extremal[†] $\Leftrightarrow g^*$ is extremal
- g is KE with Einstein constant $\lambda \Leftrightarrow g^*$ is Einstein with Einstein constant $-\lambda$
- $a_j^*(x) = (-1)^j a_j(x)$

[†]The (1,0)-part of the Hamiltonian vector field associated to the scalar curvature of g is holomorphic.

4. Cartan-Hartogs domains and their duals

4. Cartan-Hartogs domains and their duals

Cartan-Hartogs domains (CH domains in the sequel) are a 1parameter family of noncompact nonhomogeneous domains of \mathbb{C}^{n+1} , given by:

$$M_{\Omega,\mu} := \left\{ (z,w) \in \Omega \times \mathbb{C} \mid |w|^2 < N_{\Omega}^{\mu}(z,\bar{z}) \right\} \subset \mathbb{C}^{n+1}$$

where $\Omega \subset \mathbb{C}^n$ is a Cartan domain, called the *base* of $M_{\Omega,\mu}$, and $\mu > 0$ is a positive real parameter

4. Cartan-Hartogs domains and their duals

Cartan-Hartogs domains (CH domains in the sequel) are a 1parameter family of noncompact nonhomogeneous domains of \mathbb{C}^{n+1} , given by:

$$M_{\Omega,\mu} := \left\{ (z,w) \in \Omega \times \mathbb{C} \mid |w|^2 < N_{\Omega}^{\mu}(z,\bar{z}) \right\} \subset \mathbb{C}^{n+1}$$

where $\Omega \subset \mathbb{C}^n$ is a Cartan domain, called the *base* of $M_{\Omega,\mu}$, and $\mu > 0$ is a positive real parameter

We endow $M_{\Omega,\mu}$ with the complete Kähler metric $g_{\Omega,\mu}$ whose associated Kähler form is given by

$$\omega_{\Omega,\mu} = -\frac{i}{2}\partial\bar{\partial}\log\left(N_{\Omega}^{\mu}(z,\bar{z}) - |w|^{2}\right)$$

(A. Wang, W. Yin, L. Zhang, and W. Zhang, Asian J. Math. 2004)

Remark A CH domain is homogeneous iff Ω has rank one, i.e. $\Omega = \mathbb{C}H^n$ is the unit ball in \mathbb{C}^n and $\mu = 1$. In this case $M_{\Omega,\mu} = \mathbb{C}H^{n+1}$ and $g_{\Omega,\mu} = g_{hyp}$.

(1) $g_{\Omega,\mu}$ is Einstein (with negative scalar curvature) iff $\mu = \frac{\gamma}{n+1}$ (A. Wang, W. Yin, L. Zhang, and G. Roos, Sci. China Ser, 2006)

(1) $g_{\Omega,\mu}$ is Einstein (with negative scalar curvature) iff $\mu = \frac{\gamma}{n+1}$ (A. Wang, W. Yin, L. Zhang, and G. Roos, Sci. China Ser, 2006)

(2) $g_{\Omega,\mu}$ is extremal iff it is Einstein (M. Zedda, Int. J. Geom. Methods Mod. Phys., 2012)

(1) $g_{\Omega,\mu}$ is Einstein (with negative scalar curvature) iff $\mu = \frac{\gamma}{n+1}$ (A. Wang, W. Yin, L. Zhang, and G. Roos, Sci. China Ser, 2006)

(2) $g_{\Omega,\mu}$ is extremal iff it is Einstein (M. Zedda, Int. J. Geom. Methods Mod. Phys., 2012)

(3) $(M_{\Omega,\mu}, \alpha g_{\Omega,\mu}) \rightarrow (\mathbb{C}P^{\infty}, g_{FS})$ iff $(\alpha + m)\mu \in W(\Omega) \setminus \{0\}$ for all integer $m \geq 0$ (L., M. Zedda, Math Ann. 2011)

(1) $g_{\Omega,\mu}$ is Einstein (with negative scalar curvature) iff $\mu = \frac{\gamma}{n+1}$ (A. Wang, W. Yin, L. Zhang, and G. Roos, Sci. China Ser, 2006)

(2) $g_{\Omega,\mu}$ is extremal iff it is Einstein (M. Zedda, Int. J. Geom. Methods Mod. Phys., 2012)

(3) $(M_{\Omega,\mu}, \alpha g_{\Omega,\mu}) \rightarrow (\mathbb{C}P^{\infty}, g_{FS})$ iff $(\alpha + m)\mu \in W(\Omega) \setminus \{0\}$ for all integer $m \geq 0$ (L., M. Zedda, Math Ann. 2011)

(4) (CH-polydisk theorem) The Cartan-Hartogs polydisk theo-

rem holds true if Ω is of classical type (R. Mossa and M. Zedda, Geom. Dedicata, 2022)

Theorem B. Let $(M_{\Omega,\mu}, g_{\Omega,\mu})$ be a CH domain. Then the following facts are equivalent

Theorem B. Let $(M_{\Omega,\mu}, g_{\Omega,\mu})$ be a CH domain. Then the following facts are equivalent

(a) $(M_{\Omega,\mu}, g_{\Omega,\mu}) = (\mathbb{C}H^{n+1}, g_{hyp})$
Theorem B. Let $(M_{\Omega,\mu}, g_{\Omega,\mu})$ be a CH domain. Then the following facts are equivalent

(a) $(M_{\Omega,\mu}, g_{\Omega,\mu}) = (\mathbb{C}H^{n+1}, g_{hyp})$

(b) the a_j coefficient of TYCZ expansion for the metric $g_{\Omega,\mu}$ is constant, for some $j \ge 2$ (M. Zedda, Abh. Math. Semin. Univ. Hambg, 2015)

Theorem B. Let $(M_{\Omega,\mu}, g_{\Omega,\mu})$ be a CH domain. Then the following facts are equivalent

(a) $(M_{\Omega,\mu}, g_{\Omega,\mu}) = (\mathbb{C}H^{n+1}, g_{hyp})$

(b) the a_j coefficient of TYCZ expansion for the metric $g_{\Omega,\mu}$ is constant, for some $j \ge 2$ (M. Zedda, Abh. Math. Semin. Univ. Hambg, 2015)

(c) $\alpha g_{\Omega,\mu}$ is a balanced metric some $\alpha \in \mathbb{R}^+$ (L. , M. Zedda, Math. Z. 2012)

Given a CH domain $(M_{\Omega,\mu}, g_{\Omega,\mu})$ and $p = 0 \in M_{\Omega,\mu}$ then

$$D_0^{g_{\Omega,\mu}} = -\log(N_{\Omega}^{\mu}(z,\bar{z}) - |w|^2)$$

is Calabi's diastasis function at 0

Given a CH domain $(M_{\Omega,\mu}, g_{\Omega,\mu})$ and $p = 0 \in M_{\Omega,\mu}$ then

$$D_0^{g_{\Omega,\mu}} = -\log(N_{\Omega}^{\mu}(z,\bar{z}) - |w|^2)$$

is Calabi's diastasis function at 0

 $(U,g) = (M_{\Omega,\mu}, g_{\Omega,\mu}), (U^*, g^*) = (\mathbb{C}^{n+1}, g^*_{\Omega,\mu})$ with associated Kähler form given by

Given a CH domain $(M_{\Omega,\mu}, g_{\Omega,\mu})$ and $p = 0 \in M_{\Omega,\mu}$ then

$$D_0^{g_{\Omega,\mu}} = -\log(N_{\Omega}^{\mu}(z,\bar{z}) - |w|^2)$$

is Calabi's diastasis function at 0

 $(U,g) = (M_{\Omega,\mu}, g_{\Omega,\mu}), (U^*, g^*) = (\mathbb{C}^{n+1}, g^*_{\Omega,\mu})$ with associated Kähler form given by

$$\omega_{\Omega,\mu}^* = +\frac{i}{2}\partial\bar{\partial}\log\left(N_{\Omega}^{\mu}(z,-\bar{z})+|w|^2\right)$$

(1) $g^*_{\Omega,\mu}$ is Einstein (with positive scalar curvature) iff $\mu = \frac{\gamma}{n+1}$

(1) $g_{\Omega,\mu}^*$ is Einstein (with positive scalar curvature) iff $\mu = \frac{\gamma}{n+1}$ (2) $g_{\Omega,\mu}^*$ is extremal iff it is Einstein

(1) g^{*}_{Ω,μ} is Einstein (with positive scalar curvature) iff μ = γ/(n+1)
(2) g^{*}_{Ω,μ} is extremal iff it is Einstein
(3) (Cⁿ⁺¹, αg^{*}_{Ω,μ}) → CP^N iff α, μ ∈ Z⁺

(1) g^{*}_{Ω,μ} is Einstein (with positive scalar curvature) iff μ = γ/(n+1)
(2) g^{*}_{Ω,μ} is extremal iff it is Einstein
(3) (Cⁿ⁺¹, αg^{*}_{Ω,μ}) → CP^N iff α, μ ∈ Z⁺

(4) (dual CH-polydisk theorem) The dual Cartan-Hartogs polydisk theorem holds true if Ω is of classical type **Theorem.**(R. Mossa, M. Zedda, Ann. Mat. Pura Appl. 2022) There exists a symplectic duality between $(M_{\Omega,\mu}, g_{\Omega,\mu})$ and $(\mathbb{C}^{n+1}, \omega_{\Omega,\mu}^*)$, i.e. a smooth diffeomorphism $\varphi : M_{\Omega,\mu} \to \mathbb{R}^{2n+2}$ such that $\varphi^* \omega_0 = \omega_{\Omega,\mu}$ and $\varphi^* \omega_{\Omega,\mu}^* = \omega_0$, iff $(\mathbb{C}^{n+1}, g_{\Omega,\mu}^*) =$ $(\mathbb{C}^{n+1}, g_{FS})$ iff $\Omega = \mathbb{C}H^n, \mu = 1$. **Theorem.**(R. Mossa, M. Zedda, Ann. Mat. Pura Appl. 2022) There exists a symplectic duality between $(M_{\Omega,\mu}, g_{\Omega,\mu})$ and $(\mathbb{C}^{n+1}, \omega_{\Omega,\mu}^*)$, i.e. a smooth diffeomorphism $\varphi : M_{\Omega,\mu} \to \mathbb{R}^{2n+2}$ such that $\varphi^* \omega_0 = \omega_{\Omega,\mu}$ and $\varphi^* \omega_{\Omega,\mu}^* = \omega_0$, iff $(\mathbb{C}^{n+1}, g_{\Omega,\mu}^*) =$ $(\mathbb{C}^{n+1}, g_{FS})$ iff $\Omega = \mathbb{C}H^n, \mu = 1$.

Theorem. (L., R. Mossa, F. Zuddas, 2024) There exists a λ symplectic duality between $(M_{\Omega,\mu}, g_{\Omega,\mu})$ and $(\mathbb{C}^{n+1}, \omega_{\Omega,\mu}^*)$, i.e. a
smooth diffeomorphism $\varphi : M_{\Omega,\mu} \to \mathbb{R}^{2n+2}$ such that $\varphi^* \omega_0 = \lambda \omega_{\Omega,\mu}$ and $\varphi^* \lambda \omega_{\Omega,\mu}^* = \omega_0$, iff $\Omega = \mathbb{C}H^n$ and $\lambda = \mu = 1$.

(a)
$$(\mathbb{C}^{n+1}, g^*_{\Omega,\mu}) = (\mathbb{C}^{n+1}, g_{FS}) \iff \Omega = \mathbb{C}H^n, \mu = 1)$$

(a)
$$(\mathbb{C}^{n+1}, g^*_{\Omega, \mu}) = (\mathbb{C}^{n+1}, g_{FS}) \iff \Omega = \mathbb{C}H^n, \mu = 1)$$

(b) the a_j^* coefficient of the TYCZ expansion for the metric $g^*_{\Omega,\mu}$ is constant for some $j\geq 2$

(a)
$$(\mathbb{C}^{n+1}, g^*_{\Omega, \mu}) = (\mathbb{C}^{n+1}, g_{FS}) \iff \Omega = \mathbb{C}H^n, \mu = 1)$$

(b) the a_j^* coefficient of the TYCZ expansion for the metric $g^*_{\Omega,\mu}$ is constant for some $j\geq 2$

(c) $\alpha g^*_{\Omega,\mu}$ is balanced, for some $\alpha \in \mathbb{R}^+$

(a)
$$(\mathbb{C}^{n+1}, g^*_{\Omega, \mu}) = (\mathbb{C}^{n+1}, g_{FS}) \iff \Omega = \mathbb{C}H^n, \mu = 1)$$

(b) the a_j^* coefficient of the TYCZ expansion for the metric $g^*_{\Omega,\mu}$ is constant for some $j\geq 2$

(c) $\alpha g_{\Omega,\mu}^*$ is balanced, for some $\alpha \in \mathbb{R}^+$

(d) $\alpha g^*_{\Omega,\mu}$ is KE and projectively induced for some $\alpha \in \mathbb{R}^+$

(a)
$$(\mathbb{C}^{n+1}, g^*_{\Omega, \mu}) = (\mathbb{C}^{n+1}, g_{FS}) \iff \Omega = \mathbb{C}H^n, \mu = 1)$$

(b) the a_j^* coefficient of the TYCZ expansion for the metric $g^*_{\Omega,\mu}$ is constant for some $j\geq 2$

(c)
$$\alpha g^*_{\Omega,\mu}$$
 is balanced, for some $\alpha \in \mathbb{R}^+$

(d) $\alpha g_{\Omega,\mu}^*$ is KE and projectively induced for some $\alpha \in \mathbb{R}^+$

(e) $\left(\mathbb{C}^{n+1}, g^*_{\Omega,\mu}\right)$ admits a Fubini–Study compactification

Theorem.(L., R. Mossa, F. Zuddas, 2024)

Theorem.(L., R. Mossa, F. Zuddas, 2024)

• A CH domain $(M_{\Omega,\mu}, g_{\Omega,\mu})$ and its dual $(\mathbb{C}^{n+1}, g^*_{\Omega,\mu})$ are not relatives if $\mu \in \mathbb{Z}^+$

Theorem.(L., R. Mossa, F. Zuddas, 2024)

• A CH domain $(M_{\Omega,\mu}, g_{\Omega,\mu})$ and its dual $(\mathbb{C}^{n+1}, g^*_{\Omega,\mu})$ are not relatives if $\mu \in \mathbb{Z}^+$

• Let (g, X) be a KRS on a complex manifold M and Ω_i , i = 1, 2 be Cartan domains. If there exists a holomorphic isometry of (M, g) into $(M_{\Omega_1, \mu_1}, g_{\Omega_1, \mu_1})$ and into $(\mathbb{C}^{n+1}, g^*_{\Omega_2, \mu_2})$, with $\mu_1, \mu_2 \in \mathbb{Q}^+$, then g is KE

Theorem.(L., R. Mossa, F. Zuddas, 2024) Let $M_{\Omega,\mu}$ be a CH domain and $\tilde{g}_{\Omega,\mu}$ be its Bergman metric, Then the Kähler dual $(U^*, \tilde{g}^*_{\Omega,\mu})$ can be defined $(U^* \neq \mathbb{C}^{n+1} \text{ in general})$. Moreover the following conditions are equivalent

Theorem.(L., R. Mossa, F. Zuddas, 2024) Let $M_{\Omega,\mu}$ be a CH domain and $\tilde{g}_{\Omega,\mu}$ be its Bergman metric, Then the Kähler dual $(U^*, \tilde{g}^*_{\Omega,\mu})$ can be defined $(U^* \neq \mathbb{C}^{n+1} \text{ in general})$. Moreover the following conditions are equivalent

• $\Omega = \mathbb{C}H^n$ and $\mu = 1$

Theorem.(L., R. Mossa, F. Zuddas, 2024) Let $M_{\Omega,\mu}$ be a CH domain and $\tilde{g}_{\Omega,\mu}$ be its Bergman metric, Then the Kähler dual $(U^*, \tilde{g}^*_{\Omega,\mu})$ can be defined $(U^* \neq \mathbb{C}^{n+1} \text{ in general})$. Moreover the following conditions are equivalent

- $\Omega = \mathbb{C}H^n$ and $\mu = 1$
- $\tilde{g}_{\Omega,\mu}$ is Einstein

Theorem.(L., R. Mossa, F. Zuddas, 2024) Let $M_{\Omega,\mu}$ be a CH domain and $\tilde{g}_{\Omega,\mu}$ be its Bergman metric, Then the Kähler dual $(U^*, \tilde{g}^*_{\Omega,\mu})$ can be defined $(U^* \neq \mathbb{C}^{n+1} \text{ in general})$. Moreover the following conditions are equivalent

- $\Omega = \mathbb{C}H^n$ and $\mu = 1$
- $\tilde{g}_{\Omega,\mu}$ is Einstein
- $(\mathbb{C}^{n+1}, \tilde{g}^*_{\Omega,\mu})$ admits a Fubini-Study compactification

Theorem.(L., R. Mossa, F. Zuddas, 2024) Let $M_{\Omega,\mu}$ be a CH domain. Then

$$\hat{\omega}_{\Omega,\mu} := \omega_{\Omega,\mu} - \frac{i}{2\pi} \partial \bar{\partial} \log N^{\mu}_{\Omega}(z,\bar{z})$$

defines a Kähler form on $M_{\Omega,\mu}$. Moreover, the associated Kähler metric $\hat{g}_{\Omega,\mu}$ satisfies the following properties.

Theorem.(L., R. Mossa, F. Zuddas, 2024) Let $M_{\Omega,\mu}$ be a CH domain. Then

$$\widehat{\omega}_{\Omega,\mu} := \omega_{\Omega,\mu} - \frac{i}{2\pi} \partial \overline{\partial} \log N_{\Omega}^{\mu}(z,\overline{z})$$

defines a Kähler form on $M_{\Omega,\mu}$. Moreover, the associated Kähler metric $\hat{g}_{\Omega,\mu}$ satisfies the following properties.

• $\hat{g}_{\Omega,\mu}$ is complete and never Einstein

Theorem.(L., R. Mossa, F. Zuddas, 2024) Let $M_{\Omega,\mu}$ be a CH domain. Then

$$\widehat{\omega}_{\Omega,\mu} := \omega_{\Omega,\mu} - \frac{i}{2\pi} \partial \overline{\partial} \log N_{\Omega}^{\mu}(z,\overline{z})$$

defines a Kähler form on $M_{\Omega,\mu}$. Moreover, the associated Kähler metric $\hat{g}_{\Omega,\mu}$ satisfies the following properties.

- $\hat{g}_{\Omega,\mu}$ is complete and never Einstein
- $(M_{\Omega,\mu}, \hat{g}_{\Omega,\mu})$ has a Kähler dual $(\mathbb{C}^{n+1}, \hat{g}^*_{\Omega,\mu})$ which admits a Fubini-Study compactification

Thank you for your attention!