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1 Introduction
Characteristic classes are cohomology classes associated to vector bundles.
They measure in some way how a vectore bundle is twisted, or nontrivial.
After a short recall of the main contents and notations in differential geometry
and bundles in Section 2, we will define in Section 3 these classes from a
geometrical meaning as in [1] and [3], focused on connections and curvature of
a manifold and the Whitney’s Imbedding Theorem, which states that for any
finite CW complex M , a bundle can be induced by a continuous map from M
to the Grassmann manifold (of sufficiently high dimension), namely, we will
define the characteristic classes by cohomology since it is homotopy-invariant.

The following Section 4 links the above meaning of characteristic classes
with the one given from connections: in fact, the usual way to compute
them is by using polynomials in the ring H∗(M,F) (where F depends on the
context), according to Weil homomorphism. Representatives of characteristic
classes will be closed differential forms constructed from the curvature form
of a connection. This section is concluded by some examples of explicit
computations.

In the last part of this work (Section 5) we will expose characteristic classes
as viewed in [5]: they satisfies there the naturality property of commuting with
the pullback, and it is equivalent to definition of representatives given in the
previous section. Indeed, this is a topological approach, involving properties
of the bundle that are not a priori related to any connection or curvature.

There are four main kinds:

1. Stiefel-Whitney classes wi(E) ∈ H i(M,Z2) for a real vector bundle
π : E →M .

2. Chern classes ci(E) ∈ H2i(M,Z) for a complex vector bundle.

3. Pontrjagin classes pi(E) ∈ H4i(M,Z) for a real vector bundle.

4. The Euler class e(E) ∈ Hn(M,Z) for an oriented n-dimensional real
vector bundle.

The Stiefel-Whitney and Chern classes are formally quite similar. Pontrjagin
classes can be regarded as a refinement of Stiefel-Whitney classes when one
takes Z rather than Z2 coefficients, and the Euler class is a further refinement
in the orientable case.

For an q-dimensional vector bundle π : E →M to be trivial is equivalent
to its classifying map f : M → Gq being nullhomotopic, but as with most
things in homotopy theory it can be quite difficult to determine whether this
is the case or not. Much more accessible is the weaker question of whether f
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induces a nontrivial map on homology or cohomology, and this is precisely
what characteristic classes measure. The Stiefel-Whitney classes wi, like the
other characteristic classes, satisfy the important naturality property that

wi(f ∗(E)) = f ∗(wi(E))

so in particular if f is a classifying map f : M → Gq for E we have E =
f ∗(Eq) and wi(E) = wi(f ∗(Eq)) = f ∗(wi(Eq)). Thus if f induces the trivial
map on Z2 cohomology, then the Stiefel-Whitney classes of E are trivial.
The converse statement is also true because the classes wi(Eq) generate the
cohomology ring H∗(Gq,Z2). In fact H∗(Gq,Z2) is exactly the polynomial
ring Z2[w1(Eq), . . . , w

q(Eq)].
The vanishing of all the characteristic classes of a vector bundle is a

necessary condition for it to be trivial, but it is not always sufficient, as
there exist nontrivial vector bundles whose characteristic classes are all zero.
Perhaps the simplest example is the tangent bundle of the sphere S5. One
reason why characteristic classes are not sufficient to determine when a vector
bundle is trivial is that, except for the Euler class, they are stable invariants,
meaning that taking the direct sum of a given bundle with a trivial bundle
does not change the characteristic classes.

In conclusion, this work has the target to expose the two interpretations
of characteristic classes as above, giving in particular the example of the
complex projective space via both methods.
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2 Preliminaries on Manifolds and Bundles
For this section we will refer to [2] (differential geometry) and [4] (bundles
and CW-complexes).

2.1 Tensors and Forms

Let V be a real vector space of dimension n. Then a basis B = {b1, . . . , bn}
induces a dual basis B∗ = {β1, . . . , βn}, i.e. βi : V → R is the (unique) linear
functional such that βi(bj) = δij. Hence, any v ∈ V and ω ∈ V ∗ can be
uniquely decomposed as

v =
n∑
i=1

vibi, ω =
n∑
j=1

ωjβ
j =⇒ ω(v) =

n∑
i=1

ωiv
i

Definition 2.1. Let V1, . . . , Vk,W be vector spaces. A map

F : V1 × · · · × Vk → W

is said to be multilinear (or k-linear) if it is linear on each component.
A (k, l)-tensor on V is a multilinear map

F : V ∗ × · · · × V ∗ × V × · · · × V → R

We will denote T (k,l)(V ) the set of all (k, l) tensors over V .

Remark 2.2. • For any k, l ∈ N, T (k,l)(V ) is a vector space with opera-
tions:

(F +G)(·) = F (·) +G(·), (λF )(·) = λF (·)

• Elements of T k(V ) := T (k,0) are called contravariant tensors.

• Elements of T l(V ∗) := T (0,l) are called covariant tensors.

We would like to define a multiplication of tensors, i.e. given any F ∈
T (k,l)(V ), G ∈ T (p,q)(V ), obtaining a tensor F ⊗G ∈ T (k+p,l+q)(V ).

Definition 2.3. F,G as above, their tensorial product is the map

F ⊗G : V ∗ × · · · × V ∗ × V × · · · × V → R
(ω1, . . . , ωk+p, v1, . . . , vl+q) 7→ F (ω1, . . . , ωk, v1, . . . , vl)·

·G(ωk+1, . . . , ωk+p, vl+1, . . . , vl+q)

Remark 2.4. It is easy to prove the following properties:
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• F ⊗G is multilinear

• (F1 + F2)⊗G = F1 ⊗G+ F2 ⊗G

• F ⊗ (G1 +G2) = F ⊗G1 + F ⊗G2

• λ(F ⊗G) = (λF )⊗G = F ⊗ (λG), for any λ ∈ R

• (F ⊗G)⊗H = F ⊗ (G⊗H)

Moreover, the tensorial product is not commutative in general.

Example 2.5. Let dim(V ) = 2 and the basis B = {b1, b2}, with dual
B∗ = {β1, β2}. Then β1 ⊗ β2 6= β2 ⊗ β1, since

(β1 ⊗ β2)(b1, b2) = β1(b1) · β2(b2) = 1

(β2 ⊗ β1)(b1, b2) = β2(b1) · β1(b2) = 0

We can introduce a special class of covariant tensors, according to the
following

Definition 2.6. Let F be a k-covariant vector, i.e. F ∈ T k(V ∗). F is said
to be a k-form (or an alternating tensor) if

F (v1, . . . , vi, . . . , vj, . . . , vk) = −F (v1, . . . , vj, . . . , vi, . . . , vk), ∀i 6= j

Equivalently, F is a k-form if

vi = vj (with i 6= j) =⇒ F (v1, . . . , vi, . . . , vj, . . . , vk) = 0

The set of k-forms on V is denoted by Λk(V ∗).

The k-forms form a subspace of T k(V ∗), but it is not closed with respect
to tensorial product.

Example 2.7. The product β1 ⊗ β2 in Example 2.5 is not a 2-form since

1 = (β1 ⊗ β2)(b1, b2) 6= −(β1 ⊗ β2)(b2, b1) = 0

To multiplicate forms, we have to modify the tensorial product in the
following way
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Definition 2.8. Let F ∈ T k(V ∗); its alternatization is the tensor Alt(F ) ∈
Λk(V ∗) defined by

Alt(F ) : V × · · · × V → R

(v1, . . . , vk) 7→
1

k!

∑
σ∈Sk

ε(σ)F (vσ(1), . . . , vσ(k))

Given two forms ω ∈ Λk(V ∗), η ∈ Λh(V ∗), their wedge product is

ω ∧ η :=
(k + h)!

k!h!
Alt(ω ⊗ η) ∈ Λk+h(V ∗)

Remark 2.9. It is easy to prove the following properties:

• (ω + ω′) ∧ η = ω ∧ η + ω′ ∧ η

• ω ∧ (η + η′) = ω ∧ η + ω ∧ η′

• λ(ω ∧ η) = (λω) ∧ η = ω ∧ (λη), for any λ ∈ R

• (ω ∧ η) ∧ σ = ω ∧ (η ∧ σ) = (k+h+l)!
k!h! l!

Alt(ω ⊗ η ⊗ σ)

• ω ∧ η = (−1)kl η ∧ ω

• ωk := ω ∧ · · · ∧ ω = 0 if k > dimV

We are now able to compute the dimension of the spaces T (k,l)(V ) and
Λk(V ∗).

Lemma 2.10. Let V be a vector space, B = {b1, . . . , bn} a basis for V and
B∗ = {β1, . . . , βn} its dual.

The set of tensorial products{
bi1 ⊗ · · · ⊗ bik × βj1 ⊗ · · · ⊗ βjl

}
, i., j. ∈ {1, . . . , n}

is a basis for T (k,l)(V ).
The set of wedge products{

βi1 ∧ · · · ∧ βik
}
, 1 ≤ i1 < · · · < ik ≤ n

is a basis for Λk(V ∗).
Hence

dim
(
T (k,l)(V )

)
= nk+l, dim

(
Λk(V ∗)

)
=

(
n

k

)
6



2.2 Differentiable Manifolds

Let M be a (differentiable) manifold, dimM = n. Given a point p ∈M , we
define an equivalent relation on smooth functions in a neighborhood of p to be
«(f, U) ∼ (g, V ) if and only if f |W = g|W for an open W ⊆ U ∩ V , p ∈ W».
Its elements are classes [(f, U)] (a germ of functions) with f ∈ C∞(U) and
U ⊆ M open set containing p. We will denote simply with f ∈ C∞(U) the
germ [(f, U)], where the point p is omitted and is clear from the context.

Thank to the relation above, we can consider the tangent space TpM in
p ∈ M of all C∞ directional derivatives v : C∞(U)→ R with U ⊆ M open,
p ∈ U , such that ∀f, g ∈ C∞(U), ∀a, b ∈ R:

1. v is linear, i.e. v(af + bg) = av(f) + bv(g)

2. v(f · g) = v(f)g + fv(g),

Remark 2.11. Let (U,ϕ) be a chart of M in p, ϕ = (x1, . . . , xn) local
coordinates. Then we can consider the maps

∂

∂xi
|p : C∞(U)→ R

f 7→ ∂

∂xi
|p(f) :=

∂(f ◦ ϕ−1)

∂xi
(ϕ(p))

We have that B =
{

∂
∂x1

∣∣
p, . . . ,

∂
∂xn
|p
}
is a basis for TpM , so any v ∈ TpM can

be written as v =
∑n

i=1 v(xi) ∂
∂xi
|p. The dual of B is B∗ = { dx1 | p, . . . , dxn|p }.

If not specifically written, we will consider these B, B∗ as "canonical" basis
for a given chart (U,ϕ) = (U, xi, . . . , xn).

Example 2.12 (Differential of a function). Consider f : U → R a smooth
function on U ⊆M . Given a point p ∈ U , the linear map df |p = dfp : TpM →
R, v 7→ dfp(v) = v(f) is called the differential of f . Taking the basis B, B∗
of TpM , T ∗pM respectively, we have

dfp =
∑
i

dfp(
∂

∂xi
|p) dxi|p =

∑
i

∂

∂xi
|p(f) dxi|p =

∑
i

∂(f ◦ ϕ−1)

∂xi
|ϕ(p) dx

i|p

Hence, TpM is a real vector space of dimension n, so it is possible to define
over it tensors and forms.

Definition 2.13. Let M be a manifold, TpM the tangent space at p ∈M .
A vector field is a map X : M → TM such that X(p) = Xp ∈ TpM for

any point p ∈M . Then we can decompose Xp =
∑

iX
i(p) ∂

∂xi
|p; consequently,
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X is said to be smooth if X i ∈ C∞(U) for any i = 1, . . . , n. The set of smooth
vector field over M is denoted by X(M).

A 1-form is a map ω : M → T ∗M such that ω(p) = ωp ∈ T ∗pM for any
point p ∈ M . Then we can decompose ωp =

∑
i ωi(p)dx

i|p; consequently, ω
is said to be smooth if ωi ∈ C∞(U) for any i = 1, . . . , n. The set of smooth
1-form over M is denoted by Λ1(M).

A k-form is a map ω : M → Λk(T ∗M) such that ω(p) = ωp ∈ Λ(T ∗pM)
for any point p ∈M , i.e. ωp : TpM × · · · × TpM → R alternating multilinear
map. Given (as above) a decomposition

ωp =
∑

1≤i1<···<ik≤n

ωi1...ik(p) dxi1|p ∧ · · · ∧ dxik |p

ω is said to be smooth if ωi1...ik ∈ C∞(U). The set of smooth k-forms over M
is denoted by Λk(M).

A (k, l)-tensor field is a map F : M → T (k,l)(TM) such that F (p) = Fp ∈
T (k,l)(TpM) for any point p ∈M , i.e.

Fp : T ∗pM × · · · × T ∗pM × TpM × · · · × TpM → R

multilinear map. Given (as above) a decomposition

Fp =
∑

F j1...jl
i1...ik

(p)
∂

∂xi1
|p ⊗ · · · ⊗

∂

∂xik
|p ⊗ dxj1|p ⊗ · · · ⊗ dxjl |p (1)

F is said to be smooth if F j1...jl
i1...ik

∈ C∞(U). The set of smooth (k, l)-tensor
fields over M is denoted by T(k,l)(M).

Remark 2.14. X(M),Λ1(M),Λk(M) and T(k,l)(M) are vector spaces with
operations defined as in Remark 2.2.

Remark 2.15. Exterior differentiation of forms, i.e. a linear map

d : Λk(M)→ Λk+1(M)

satisfies these relations together with the wedge product:

• d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη, k = degω

• d2ω = d(dω) = 0

• If f ∈ Λ0(M) = C∞(M), then df is the usual differential of a function.

We conclude this subsection with an identification of tensors and multilin-
ear functions over a vector space V , in the special case V = TpM .
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Proposition 2.16. Let F ∈ T(k,l)(M) a tensor field. Then we can consider
the map

F̃ : Λ1(M)× · · · × Λ1(M)× X(M)× · · · × X(M)→ C∞(M)

defined by

F̃ (ω1, . . . , ωk, Y1, . . . , Yl)(p) := Fp(ω
1(p), . . . , ωk(p), Y1(p), . . . , Yl(p))

We have that F̃ is smooth and C∞(M)-multilinear. Conversely, given any
map

A : Λ1(M)× · · · × Λ1(M)× X(M)× · · · × X(M)→ C∞(M)

smooth and C∞(M)-multilinear, then ∃!F ∈ T(k,l)(M) such that F̃ = A.

Proof. Let p ∈ M be a point, (U, x1, . . . , xn) chart in p and the usual basis
B,B∗ for TpM,T ∗pM . Since F can be decomposed as in (1), we obtain

F̃ (ω1, . . . , ωk, Y1, . . . , Yl)(p) = Fp(ω
1(p), . . . , ωk(p), Y1(p), . . . , Yl(p))

=
∑

F j1...jl
i1...ik

(p) (ω1
i1
· · · · · ωkik · Y

j1
1 · · · · · Y

jl
l )|p

and it is smooth and C∞(M)-multilinear.
Now consider a map A as in the statement. It sufficies to define Fp by

Fp(w
1, . . . , wk, v1, . . . , vl) = A(ω1, . . . , ωk, Y1, . . . , Yl)(p) (2)

where ωi are one-forms such that ωi(p) = wi and Yj are vector fields such
that Yj(p) = vj. It is easy to prove that F̃ = A and the uniqueness is given
by the fact that the expression (2) does not change taking ηi ∈ Λ1(M) with
ηi(p) = ωi(p) and Zj ∈ X(M) with Zj(p) = Yj(p).

We will not distinguish between F and F̃ , and they will be both denoted
with F .

2.3 Riemannian Metrics

Definition 2.17. Let M be a manifold. A riemannian metric on M is a
tensor g ∈ T(0,2)(M) that is symmetric and positive-definite, i.e.

g : X(M)× X(M)→ C∞(M)

C∞(M)-bilinear such that
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• g(X, Y ) = g(Y,X)

• g(X,X) ≥ 0, and g(X,X) = 0 ⇐⇒ X = 0.

A riemannian manifold is a couple (M, g), where M is a differentiable
manifold and g is a riemannian metric on it.

Locally, we can consider a chart (U, x1, . . . , xn) in p ∈ M and the usual
basis B, B∗. Due to C∞(M)-linearity of g, it is determined by the values

gij(p) = gp(
∂

∂xi
|p,

∂

∂xj
|p)

These (smooth) functions define a matrix g|U = (gij), i, j = 1, . . . , n.

Definition 2.18. A local basis over an open U ⊆ M is a set {E1, . . . , En},
where Ei ∈ X(U) have the feature that {E1(p), . . . , En(p)} is a basis for TpM
for any p ∈ U .

A local basis is said to be orthonormal if for any p ∈ U

gp(Ei(p), Ej(p)) = δij

Is it now desirable to define a special class of curves on riemannian manifold
analogously to straight lines in the euclidean space. To do that, we need to
differentiate the tangent space TM .

Definition 2.19. Let M be a manifold; a linear connection over M is a map

∇ : X(M)× X(M)→ X(M)

denoted by ∇(X, Y ) =: ∇XY , such that ∀f, g ∈ C∞(M), ∀X,Xi, Y, Yj ∈
X(M), ∀a, b ∈ R:

a) ∇fX1+gX2Y = f∇X1Y + g∇X2Y

b) ∇X(aY1 + bY2) = a∇XY1 + b∇XY2

c) ∇X(fY ) = f∇XY +X(f)Y

∇XY is also called the covariant derivative of Y in direction X.

Remark 2.20. ∇ is not a tensor since by (c) it is not C∞(M)-linear on the
second component.
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Since ∇XY ∈ X(M), we can take a local basis {E1, . . . , En} on U ⊆ M
and decompose this vector field with respect to the basis. In particular, we
can compute

∇Ei
Ej =

n∑
k=1

ΓkijEk

where Γkij ∈ C∞(U) are uniquely determined by the basis. They are called
the Christoffel symbols of the connection ∇. Given two generic vector fields
X, Y ∈ X(M), X =

∑n
i=1X

iEi and Y =
∑n

j=1 Y
iEi, the covariant derivative

of Y in direction X becomes

∇XY =
n∑
k=1

(
X(Y k) +

∑
i

∑
j

ΓkijX
iY j
)
Ek

Remark 2.21. It is well-known that for any chart (U,ϕ) of a manifold M
there exists a riemannian metric g given by the pullback of the euclidean
metric on Rn. Moreover, it is also possible to define a linear connection over
the same chart taking n3 smooth functions as Christoffel symbols.

It is possible to extend these two local quantities in the following way:
recall that a partition of the unity on M is a family of C∞(M) positive maps
{φi}i∈I such that:

1. each φi has compact support;

2. the family of supports is locally finite;

3.
∑

i φi(p) = 1, ∀p ∈M .

A partition of the unity {φi}i∈I is subordinated to a cover {Ua}a∈A if for each
i ∈ I there exists a ∈ A such that supp(φi) ⊆ Ua.

Using the following, a riemannian metric or a connection can be defined
globally on a manifold.

Theorem 2.22. Let M be a manifold, {Ua}a∈A open cover of M . Then there
exists a countable partition of the unity {φi} subordinated to the cover.

2.4 Vector Bundles

Let us recall some fundamental properties of vector bundles.

Definition 2.23. A k-dimensional vector bundle is (E,M, π : E → M)
where E is a manifold (called the total space), M is another manifold (the
basis space) and π is a smooth surjective function (the projection) such that:

11



1. ∀p ∈ M , Ep := π−1(p) is a k-dimensional vector space (the fiber over
p);

2. ∀p ∈M , ∃U ⊆M open, p ∈ U , ∃ϕ : π−1(U)→ U ×Rk diffeomorphism
s.t.

π = πU ◦ ϕ
where πU : U ×Rk → U is the projection on the first factor (ϕ is a local
trivialization);

3. ∀p ∈M , ϕ|Ep : Ep → {p} × Rk is an isomorphism of vector spaces.

We will denote with Vectn(M) the set of n-dimensional vector bundles
over M .

Example 2.24. E = M ×V , where M is a manifold, V k-dimensional vector
space, π = πM : M × V → M projection onto the first factor is the trivial
bundle.

Example 2.25. If we let E be the quotient space of I × R under the iden-
tifications (0, t) ∼ (1,−t), then the projection I × R → I induces a map
π : E → S1 which is a 1-dimensional vector bundle, or line bundle.

More generally, consider the base space M = Gq(Rn) (the Grassmann
manifold) and the trivial bundle E = Gq(Rn)× Rn, i.e.

π : Gq(Rn)× Rn → Gq(Rn)

is the canonical q-dimensional bundle. For q = 1 we get

(G1(Rn)× Rn, π,G1(Rn)) = (RP n−1 × Rn, π,RP n−1)

called the canonical line bundle (this construction also holds for the complex
case).

Example 2.26. The tangent bundle

TM =
⋃
p∈M

TpM = { (p, v) : p ∈M, v ∈ TpM }

and the projection π(p, v) = p. Given a chart (U, x1, . . . , xn) in p ∈ M , for
any v ∈ TpM we can decompose v =

∑
i v

i ∂
∂xi
|p, hence

ϕ : π−1(U)→ U × Rn

(p, v) 7→ (p, v1, . . . , vn)

is a local trivialization.
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From now we will consider vector bundles (sometimes called only "bun-
dles") identified with the total space E, whether the basis and the projection
are obvious from the context.

Definition 2.27. Let (E,M, π : E → M) be a vector bundle. A section of
the bundle is a map s : M → E such that π ◦ s = idM . A section is smooth if
it is a C∞ map between manifolds.

The set of all smooth sections on the bundle is denoted by

Γ(E) = { Smooth Sections of E }

Remark 2.28. Γ(E) is a vector space, in fact let s, s′ ∈ Γ(E), then s(p), s′(p) ∈
Ep since

π(s(p)) = idM(p) = p =⇒ s(p) ∈ π−1(p) = Ep

and the same implication holds for s′. Hence the sum (s+s′)(p) := s(p)+s′(p)
and the product by real number (λs)(p) := λ · s(p) are well defined as Ep is a
vector space by Definition 2.23,(1).

Example 2.29. These sections will be widely used in the rest of this work:

• Γ(TM) = X(M)

• Γ(T ∗M) =
{
ω : M → T ∗M

∣∣ ω(p) ∈ T ∗pM
}

= Λ1(M)

• Γ(T (k,l)(TM)) = T(k,l)(M)

Sections are used to differentiate the total space of a bundle, that was
our target since we are interested in defining the analogous of straight lines
(in euclidean spaces) in a generic riemannian manifold, using the feature
that "straight lines have acceleration zero". The concept of acceleration
involves operations between speed vectors (that lie in the tangent space, i.e.
a particular bundle) that we are now able to introduce.

Definition 2.30. Let (E,M, π : E →M) be a bundle. A connection over E
is a map

∇ : X(M)× Γ(E)→ Γ(E)

such that the following properties are satisfied ∀f, g ∈ C∞(M), ∀X,X1, X2 ∈
X(M), ∀s, s1, s2 ∈ Γ(E), ∀a, b ∈ R:

1. ∇fX1+gX2s = f∇X1s+ g∇X2s

2. ∇X(as1 + bs2) = a∇Xs1 + b∇Xs2
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3. ∇X(fs) = f∇Xs+X(f)s

Remark 2.31. If E = TM , then Γ(E) = X(M) and connections over TM
coincide with linear connections previously defined.

More generally, it is possible to take as a starting point a linear connection
∇ over M and define from that a family of connections ∇(k,l) (in the sense
of Definition 2.30) over each bundle T (k,l)(TM) that coincide on TM , i.e.
∇(1,0) = ∇.

We will not distinguish between the connections of that family (the super-
script will be obvious from the context), and we will denote all of them simply
with ∇.

Finally, we will give an equivalent definition of a connection in Section
3.3, removing the dependence on the vector field as first factor. It will be
denoted as D instead of ∆.

2.4.1 Pullback and Universal principal Bundles

There are two particular types of bundles that will be used in the statement
of Whitney’s Theorem.

Proposition 2.32. Given a map f : A→ B and a bundle π : E → B, then
there exists a bundle π′ : E ′ → A with a map f ′ : E ′ → E taking the fiber of
E ′ over each point a ∈ A isomorphically onto the fiber of E over f(a), and
such a bundle E ′ is unique up to isomorphism.

E ′ E

A B

f ′

π′ π

f

From the uniqueness statement it follows that the isomorphism type of E ′
depends only on the isomorphism type of E since we can compose the map
f ′ with an isomorphism of E with another vector bundle over B. Often the
bundle E ′ is written as f ∗(E) and called the pullback of E by f .

One can be more explicit about local trivializations in the pullback bundle
f ∗(E): if E is trivial over a subspace U ⊂ B then f ∗(E) is trivial over f−1(U)
since linearly independent sections si of E over U give rise to independent
sections a 7→ (a, si(f(a))) of f ∗(E) over f−1(U). In particular, the pullback
of a trivial bundle is a trivial bundle.

Example 2.33. If f is a constant map, having image a single point b ∈ B,
then f ∗(E) is just the product A× π−1(b), a trivial bundle.
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Example 2.34. For an n-dimensional vector bundle E → B, we can consider
the Stiefel bundle Vk(E)→ B, where points of Vk(E) are k-tuples of orthog-
onal unit vectors in fibers of E. The fiber of Vk(E) is the Stiefel manifold
Vk(Rn) of orthonormal k-frames in Rn (cfr. (4), Section 3).

Remark 2.35. The following properties hold for pullback bundles:

1. (fg)∗(E) ∼= g∗(f ∗(E))

2. id∗A(E) ∼= E

3. f ∗(E1 ⊕ E2) ∼= f ∗(E1)⊕ f ∗(E2)

4. f ∗(E1 ⊗ E2) ∼= f ∗(E1)⊗ f ∗(E2)

Then we come to the main technical result about pullbacks, that we state
without proof:

Theorem 2.36. Let π : E → B be a bundle and f0, f1 : A → B homotopic
maps. Then the induced bundles f ∗0 (E) and f ∗1 (E) are isomorphic if A is
compact Hausdorff or more generally paracompact.

Finally, we show that there is a special n-dimensional vector bundle over
particular spaces En → Gn with the property that all n-dimensional bundles
over paracompact base spaces are obtainable as pullbacks of this single bundle.
The basic idea is to use the Grassmann manifold Gn(Rk) of suitable dimension,
since the inclusions

Rk ⊂ Rk+1 ⊂ . . . =⇒ Gn(Rk) ⊂ Gn(Rk+1) ⊂ . . .

Definition 2.37. We let Gn(R∞) = ∪kGn(Rk), the set of all n-dimensional
vector subspaces of the vector space R∞, with the weak topology (i.e. a set
in Gn(R∞) is open iff it intersect each Gn(Rk) in an open set).

In order to construct the total space of the desired bundle, define

En(Rk) =
{

(l, v) ∈ Gn(Rk)× Rk
∣∣ v ∈ l }

so it can be proved that the projection π : En(Rk) → Gn(Rk) given by
π(l, v) = l is then a vector bundle, both for finite and infinite k (cfr. [5], pag.
28), and with the notation Gn := Gn(R∞) and En := En(R∞) the previous
projection is the needed one.

Due to Theorem 2.36, vector bundles over a fixed base space are classified
by homotopy classes of maps into Gn. Because of this, Gn is called the
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classifying space for n-dimensional vector bundles and En → Gn is called the
universal bundle.

As an example of how a vector bundle could be isomorphic to a pullback
f ∗(En), consider the tangent bundle to Sn. This is the vector bundle π : E →
Sn where

E =
{

(x, v) ∈ Sn × Rn+1
∣∣ x⊥ v }

Each fiber π−1(x) is a point in Gn(Rn+1), so we have a map

Sn → Gn(Rn+1)

x 7→ π−1(x)

Via the inclusion Rn+1 → R∞ we can view this as a map f : Sn → Gn(R∞) =
Gn, and E is exactly the pullback f ∗(En).

E = TSn En

Sn Gn

π

f

Remark 2.38. The preceding constructions and results hold equally well
for vector bundles over C, with Gn(Ck) the space of n-dimensional C-linear
subspaces of Ck, and so on.

2.5 CW Complexes

We lastly introduce the class of manifolds that will be mainly used in the rest
of this exposition.

Definition 2.39. Let X, Y be two topological spaces, A ⊆ X closed. Let
f : A → Y be continuous, ∼ equivalence relationship on X ∪ Y (disjoint
union) given by

z1 ∼ z2 ⇐⇒


z1 = z2

z1, z2 ∈ A and f(z1) = f(z2)

z1 ∈ A, z2 = f(z1)

z2 ∈ A, z1 = f(z2)

Then the quotient space X ∪f Y/ ∼ is said to be constructed from X glued
with Y along f .
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Definition 2.40. Let Dn ⊆ Rn be the closed unitary disc, en = Int(Dn) is
called an n-cell. X topological space, f : Sn−1 → X, X ∪fDn gluing an n-cell
via f .

A 0-dimensional CW complex is a set of points with discrete topology.
An n-dimensional CW complex is a space of the form X ∪f enI where:

• X is a k-dimensional CW complex, k < n;

• enI := ∪i∈Ien (disjoint) is a sum of n-cells, |I| <∞.

The n-skeleton Xn is obtained from Xn−1 by attaching n-cells enI via maps

ϕI : Sn−1 → Xn−1

where x ∼ ϕI(x) for x ∈ ∂Dn
I . To each ϕI it corresponds a characteristic map

(extending ϕI):
φI : Dn

I → Xn → X

The dimension of the CW complex X is the biggest n with nonzero
characteristic maps. X can be regarded as the union space X = ∪nXn with
the weak topology, i.e. A ⊆ X is open if and only if A ∩Xn is open (in Xn)
for any n.
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3 Characteristic Classes
The last few decades have seen the development, in different branches of
mathematics, of the notion of a local product structure, i.e., fiber spaces and
their generalizations. Characteristic classes are the simplest global invariants
which measure the deviation of a local product structure from a product
structure. They are intimately related to the notion of curvature in differential
geometry. In fact, a real characteristic class is a "total curvature", according
to a well-defined relationship. We will give in this section an exposition of
the relations between characteristic classes and curvature and discuss some of
their applications.

The simplest characteristic class is the Euler characteristic. If M is a
finite cell complex, its Euler characteristic is defined by

χ(M) =
∑
k

(−1)k αk =
∑
k

(−1)k bk (3)

where αk is the number of k-cells and bk is the k-dimensional Betti number
of M . The equality of the last two expressions in (3) is known as the Euler-
Poincaré formula.

Now let M be a compact oriented differentiable manifold of dimension n
and let X be a smooth vector field on M with isolated zeroes. Each zero can
be assigned a multiplicity. In his dissertation (1927) H. Hopf proved that

χ(M) =
∑

zeroes of X

This gives a differential topological meaning to χ(M).
This idea can be immediately generalized. Instead of one vector field we

consider k smooth vector fields X1, . . . , Xk. In the generic case the points on
M where the exterior product X1 ∧ · · · ∧Xk = 0, i.e., where the vectors are
linearly dependent, form a (k−1)-dimensional submanifold. Depending on the
parity of n−k, this defines a (k−1)-dimensional cycle, with integer coefficients
Z or with coefficients Z2, whose homology class, and in particular the homology
class mod 2 in all cases, is independent of the choice of the k vector fields.
Because the linear dependence of vector fields is expressed by "conditions",
it is more proper to define the differential topological invariants so obtained
as cohomology classes. This leads to the Stiefel-Whitney cohomology classes
wi ∈ H i(M,Z2), 1 ≤ i ≤ n − 1, i = n − k + 1. The nth Stiefel-Whitney
class corresponding to k = 1 or the Euler class has integer coefficients
wn ∈ Hn(M,Z). It is related to χ(M) by

χ(M) =

∫
M

ωn
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where we write the pairing of homology and cohomology by an integral.
Whitney went much farther. He saw the great generality of the notion

of a vector bundle over an arbitrary topological space M . He also saw the
effectiveness of the principal bundles and the fact that the universal principal
bundle

π : Vq(Rq+N) := O(q +N)/O(N)→ O(q +N)/{O(q)×O(N)} =: Gq(Rq+N)
(4)

say, has the property

πi(Vq(Rq+N)) = 0, 0 ≤ i < N

where πi is the ith homotopy group. The left-hand side of (4) is called a
Stiefel manifold and can be regarded as the space of all orthonormal q-frames
through a fixed point 0 of the euclidean space Rq+N of dimension q +N and
the right-hand side is the Grassmann manifold of all q-dimensional linear
spaces through 0 in Rq+N , while the mapping π = (π1, . . . , πN−1) in (4) can
be interpreted geometrically as taking the q-dimensional space spanned by the
q vectors of the frame. Thus the universal principal bundle has the feature
that its total space has a string of vanishing homotopy groups while its base
space, the Grassmann manifold, has rich homological properties.

3.1 The Imbedding Theorem

The importance of the universal bundle lies in the following

Theorem 3.1 (Whitney-Pontrjagin). Let M be a finite cell complex. A
vector bundle E of fiber dimension q over M can be induced by a continuous
mapping f : M → Gq(Rq+N ), dimM < N , and f is defined up to a homotopy.
Equivalently, the map

ϕ : [M,Gn]→ Vectn(M), [f ] 7→ f ∗(En)

where [M,Gn] denotes the set of homotopy classes of maps f : M → Gn and
Gn is the classifying space (cfr. Definition 2.37), is a bijection.

Proof. Suppose M being a CW complex. In particular, it is paracompact,
and it is sufficient to prove the statement, due to Theorem 2.36.

The key observation is the following: for an n-dimensional vector bundle
π : E →M , an isomorphism E ∼= f ∗(En) is equivalent to a map g : E → R∞
that is a linear injection on each fiber. To see this, suppose first that we
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have a map f : M → Gn and an isomorphism E ∼= f ∗(En). Then we have a
commutative diagram

E ∼= f ∗(En) En R∞

M Gn

f̃

π

p

f

where p(l, v) = v. The composition across the top row is a map g : E → R∞
that is a linear injection on each fiber, since both f̃ and p have this property.
Conversely, given a map g : E → R∞ that is a linear injection on each fiber,
define f : M → Gn by letting f(x) be the n-plane g(π−1(x)). This clearly
yields a commutative diagram as above.

To show surjectivity of the map ϕ, suppose π : E →M is an n-dimensional
vector bundle. Let {Ua} be an open cover of M such that E is trivial over
each Ua. As viewed in Section 2, there is a countable sub-cover Ui and a
partition of unity {φi} supported in Ui for each i. Let gi : π−1(Ui) → Rn

be the composition of a trivialization π−1(Ui) → Ui × Rn with projection
onto Rn. The map (φiπ)gi, v 7→ φi(π(v))gi(v) extends to a map E → Rn

that is zero outside π−1(Ui). Near each point of M only finitely many φi’s
are nonzero, and at least one is nonzero, so these extended (φiπ)gi’s are the
coordinates of a map g : E → (Rn)∞ = R∞ that is a linear injection on each
fiber.

For injectivity, if we have isomorphisms E ∼= f ∗0 (En) and E ∼= f ∗1 (En) for
two maps f0, f1 : M → Gn, then these give maps g0, g1 : E → R∞ that are
linear injections on fibers, as in the first paragraph of the proof. We claim g0

and g1 are homotopic through maps gt that are linear injections on fibers. If
this is so, then f0 and f1 will be homotopic via ft(x) = gt(π

−1(x)).
The first step in constructing a homotopy gt is to compose g0 with the

homotopy Lt : R∞ → R∞ defined by

Lt(x1, x2, . . . ) = (1− t)(x1, x2, . . . ) + t(x1, 0, x2, 0, . . . )

For each t this is a linear map whose kernel is easily computed to be 0,
so Lt is injective. Composing the homotopy Lt with g0 moves the image
of g0 into the odd-numbered coordinates. Similarly we can homotope g1

into the even-numbered coordinates. Still calling the new g’s g0 and g1, let
gt = (1− t)g0 + tg1. This is linear and injective on fibers for each t since g0

and g1 are linear and injective on fibers.

Since the Grassmann manifold plays a fundamental role, it would be good
to have a better grasp on its topology. Here we show that Gq(R∞) has the
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Figure 1: Echelon form of a matrix

structure of a CW complex with each Gq(Rq+N) a finite subcomplex. Recall
that Gq(Rq+N) is a real, closed manifold of dimension qN (in particular it is
a Hausdorff space).

There is a nice description of the cells in the CW structure on Gq(Rq+N)
in terms of echelon form for matrices, i.e. matrices of the form in Figure 1,
where the asterisks denote entries that are arbitrary numbers. It is well-known
that any q × (q +N) matrix A can be put into an echelon form by a finite
sequence of elementary row operations.

Assume that our given q × (q + N) matrix A has rank q. The shape of
the echelon form is specified by which columns contain the special entries
1, say in the columns numbered σ1 < · · · < σq. This q-tuple is called the
Schubert symbol σ(A), and it depends only on the matrix A (i.e. on the
q-plane spanned by the rows of A) and not on the particular reduction of A to
echelon form. For example, the matrix in Figure 1 has symbol σ = (3, 5, 6, 9).

Given a Schubert symbol σ one can consider the set e(σ) of all q-planes
in Rq+N having σ as their Schubert symbol. In terms of echelon forms, the
various q-planes in e(σ) are parametrized by the arbitrary entries in the
echelon form. There are σi − i of these entries in the ith row, for a total of
(σ1 − 1) + · · ·+ (σn − n) entries. Thus e(σ) is homeomorphic to a euclidean
space of this dimension, or equivalently an open cell.

Proposition 3.2. The cells e(σ) are the cells of a CW structure on Gq(Rq+N ).

Proof. Our main task will be to find a characteristic map for e(σ). This
is a map from a closed ball of the same dimension as e(σ) into Gq(Rq+N)
whose restriction to the interior of the ball is a homeomorphism onto e(σ).
From the echelon forms described above it is not clear how to do this, so we
will use a slightly different sort of echelon form. We allow the special 1’s to
be arbitrary nonzero numbers and we allow the entries below these 1’s to
be nonzero. Then we impose the conditions that the rows are orthonormal
and that the last nonzero entry in each row is positive. Let us call this an
orthonormal echelon form. Once again there is a unique orthonormal echelon
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form for each q-plane l since if we let li denote the subspace of l spanned by
the first i rows of the standard echelon form, or in other words li = l ∩Rσi ,
then there is a unique unit vector in li orthogonal to li−1 and having positive
σi-th coordinate.

The ith row of the orthonormal echelon form then belongs to the hemi-
sphere Hi in the unit sphere Sσi−1 ⊂ Rσi ⊂ Rq+N consisting of unit vectors
with non-negative σi-th coordinate. In the Stiefel manifold Vq(Rq+N ) let E(σ)
be the subspace of orthonormal frames (v1, . . . , vq) ∈ (Sq+N−1)q such that
vi ∈ Hi for each i. We claim that E(σ) is homeomorphic to a closed ball.
To prove this the main step is to show that the projection π : E(σ) → H1,
π(v1, . . . , vq) = v1, is a trivial fiber bundle. This is equivalent to finding a pro-
jection p : E(σ)→ π−1(v0) which is a homeomorphism on fibers of π, where
v0 = (0, . . . , 0, 1) ∈ Rσ1 ⊂ Rq+N , since the map π × p : E(σ)→ H1 × π−1(v0)
is then a continuous bijection of compact Hausdorff spaces, hence a homeo-
morphism.

The map p : π−1(v) → π−1(v0) is obtained by applying the rotation ρv
of Rq+N that takes v to v0 and fixes the (q + N − 2)-dimensional subspace
orthogonal to v and v0. This rotation takes Hi to itself for i > 1 since it
affects only the first σ1 coordinates of vectors in Rq+N . Hence p takes π−1(v)
onto π−1(v0).

The fiber π−1(v0) can be identified with E(σ′) for σ′ = (σ2−1, . . . , σq−1).
By induction on q this is homeomorphic to a closed ball of dimension (σ2 −
2)+ · · ·+(σq−q), so E(σ) is a closed ball of dimension (σ1−1)+ · · ·+(σq−q).
The boundary of this ball consists of points in E(σ) having vi in ∂Hi for at
least one i. This too follows by induction since the rotation ρv takes ∂Hi to
itself for i > 1.

The natural map E(σ)→ Gq(Rq+N) sending an orthonormal q-tuple to
the q-plane it spans takes the interior of the ball E(σ) to e(σ) bijectively.
Since Gq has the quotient topology from Vq, the map IntE(σ) → e(σ) is a
homeomorphism. The boundary of E(σ) maps to cells e(σ′) of Gn where σ′
is obtained from σ by decreasing some σi’s, so these cells e(σ′) have lower
dimension than e(σ).

To see that the maps E(σ)→ Gq(Rq+N) for the cells e(σ) are the charac-
teristic maps for a CW structure on Gq(Rq+N) we can argue as follows. Let
X i be the union of the cells e(σ) in Gq(Rq+N) having dimension at most i
(the ith scheleton of Gq(Rq+N)). Suppose by induction on i that X i is a CW
complex with these cells. Attaching the (i+ 1)-cells e(σ) of X i+1 to X i via
the maps ∂E(σ)→ X i produces a CW complex Y and a natural continuous
bijection Y → X i+1. Since Y is a finite CW complex it is compact, and
X i+1 is Hausdorff as a subspace of Gq(Rq+N), so the map Y → X i+1 is a
homeomorphism and X i+1 is a CW complex, finishing the induction. Thus
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we have a CW structure on Gq(Rq+N).

Remark 3.3. Since the inclusions Gq(Rq+N) ⊂ Gq(Rq+N+1) for varying N
are inclusions of subcomplexes and Gq(R∞) has the weak topology with respect
to these subspaces, it follows that we have also a CW structure on Gq(R∞).

Example 3.4. q = N = 2, the Grassmann manifold G(2, 2) has six cells
corresponding to the Schubert symbols

(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)

of dimensions 0, 1, 2, 2, 3, 4 respectively. In general the number of cells
of G(q,N) is

(
q+N
q

)
, the number of ways of choosing the q distinct numbers

σi ≤ q +N .

σ(A) = (1, 3) =⇒ A =

[
1 0 0 0
0 ∗ 1 0

]
Remark 3.5. Similar constructions work to give CW structures on complex
Grassmann manifolds Gq(Cq+N), but here e(σ) will be a cell of dimension
(2σ1 − 2) + · · ·+ (2σq − 2q). The hemisphere Hi is defined to be the subspace
of the unit sphere S2σi−1 ⊂ Cσi ∼= R2σi consisting of vectors whose σi-th
coordinate is real and nonnegative, so Hi is a ball of dimension 2σi − 2. The
transformation ρv ∈ SU(q + N) is uniquely determined by specifying that
it takes v to v0 and fixes the orthogonal (q + N − 2)-dimensional complex
subspace, since an element of U(2) of determinant 1 is determined by where
it sends one unit vector.

3.2 Definition and Examples of Characteristic Classes

From previous subsection, we are allowed to define a particular cohomology
element:

Definition 3.6. Let u ∈ H i(Gq(Rq+N), A) be a cohomology class with co-
efficients groups A, f : M → Gq(Rq+N) a continuous map. It follows from
Theorem 3.1 that the pull-back f ∗u ∈ H i(M,A) depends only on the bundle.
It is called a characteristic class corresponding to the universal class u.

M

Gq(Rq+N) A

f f∗u

u
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Consider the classifying map f : M → Gn as in 2.37. Our target is to
define for a real bundle π : E → M , a special class wi(E) = wi(f ∗(En)) =
f ∗(wi(En)) ∈ H i(M,Z2) (the ith Stiefel-Whitney class), and for a complex
bundle π : E → M , a class ci(E) = ci(f ∗(En)) = f ∗(ci(En)) ∈ H2i(M,Z)
(the ith Chern class), but we first need to develop the theory of connections
and curvature on a bundle.

However, we can show some examples of these classes in particular cases
exhibited in [1], pag. 99-100.

Example 3.7. Consider all the q-dimensional linear spaces X through 0 in
Rq+N satisfying the Schubert condition

dim(X ∩ Ri+N−1) ≥ i, 1 ≤ i ≤ q

where Ri+N−1 is a fixed space of dimension i+N − 1 through 0. They form
a cycle mod 2 of dimension qN − 1 in Gq(Rq+N ). The dual of its homology
class is an element w̃i ∈ H i(Gq(Rq+N),Z2) and is called the ith universal
Stiefel-Whitney class. Its image wi(E) = f ∗w̃i ∈ H i(M,Z2), 1 ≤ i ≤ q, is
called the Stiefel-Whitney class of the bundle E.

Example 3.8. Similarly, consider the q-dimensional linear spaces X through
0 satisfying the condition

dim(X ∩ R2k+N−2) ≥ 2k,

where R2k+N−2 is fixed. They form a cycle of dimension qN − 4k with
integer coefficients. The dual of its homology class is an element p̃k ∈
H4k(Gq(Rq+N),Z) and is called a universal Pontrjagin class. Its image
pk(E) = f ∗p̃k ∈ H4k(M,Z), 1 ≤ k ≤ bn

4
c, n = dimM , is called a Pon-

trjagin class of E.

Example 3.9. It has been known that the complex Grassmann manifold

Gq(Cq+N) = U(q +N)/U(q)× U(N)

has simpler topological properties than the real ones. In fact, it is simply
connected, has no torsion (i.e. no homology class of finite order), and its
odd-dimensional homology classes are all zero. Gq(Cq+N ) can be regarded as
the manifold of all q-dimensional linear spaces X through a fixed point 0 in
the complex number space Cq+N . Imitating Example 3.7, let Ci+N−1 be a
fixed space of dimension i+N − 1 through 0. Then all the X satisfying the
condition

dim(X ∩ Ci+N−1) ≥ i 1 ≤ i ≤ q

form a cycle of real dimension 2(qN − 1) with coefficients Z. As above, this
defines the Chern classes ci(E) ∈ H2i(M,Z), 1 ≤ i ≤ q, of a complex vector
bundle E and they are cohomology classes with integer coefficients.
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3.3 Curvature and Connections

The characteristic classes are closely related to the notion of curvature in
differential geometry. In this respect one could take as a starting point the
theorem in plane geometry that the sum of angles of a triangle is equal to π.
More generally, let D be a domain in a two-dimensional riemannian manifold,
whose boundary ∂D is sectionally smooth. Then its Euler characteristic is
given by the Gauss-Bonnet formula

2πχ(D) =
∑
i

(π − αi) +

∫
∂D

kg ds+

∫∫
D

K dA

where at the right-hand side we have the sum of exterior angles at the corners,
the integral of the geodesic curvature, and the last term is the integral of
the gaussian curvature. They are respectively the point curvature, the line
curvature and the surface curvature of the domain D, and the Gauss-Bonnet
formula should be interpreted as expressing the Euler characteristic χ(D) as
a total curvature.

The interpretation has a far-reaching generalization. Let π : E →M be
a real vector bundle of fiber dimension q. Let Γ(E) be the space of sections
of E. We can reformulate the definition of connections on a bundle slightly
differently from Section 2, in order to have independence with respect to
vector fields:

Definition 3.10. Let Γ(E) be the space of smooth sections of E, i.e. smooth
mappings s : M → E such that π ◦ s = idM . A connection (or covariant
differential) in E is a map

D : Γ(E)→ Γ(T ∗M ⊗ E)

where T ∗M is the cotangent bundle of M and the right-hand side stands for
the space of sections of the tensor product bundle T ∗M ⊗ E, such that the
following two conditions are satisfied:

1. D(s1 + s2) = Ds1 +Ds2, ∀s1, s2 ∈ Γ(E);

2. D(fs) = df ⊗ s+ f Ds, ∀s ∈ Γ(E), ∀f ∈ C∞(M).

Let si, 1 ≤ i ≤ q be a local frame field, i.e. be q sections defined in a
neighborhood, which are everywhere linearly independent. Then we can write

Dsi =
∑
i

∇j
i ⊗ sj (5)

where ∇ = (∇j
i ), i, j = 1, . . . , q is a matrix of one-forms, the connection

matrix.
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Remark 3.11. What is the relation between Definitions 2.30 and 3.10?
Consider a frame si as above, then we have, in the sense of 2.30, ∀X ∈ X(M),

∇Xsi =
n∑
j=1

fijsj, fij ∈ C∞(U)

Otherwise, in the sense of 3.10 we have

Dsi =
n∑
j=1

∇j
i ⊗ sj, ∇j

i ∈ Λ1(U)

Then the two definitions are related by

fij = ∇j
i (X|U)

Putting
ts = (s1, . . . , sq),

ts = transpose of s

we can write (5) as a matrix equation

Ds = ∇⊗ s (6)

The effect on the connection matrix under a change of the frame can be
easily found. In fact, let

s′ = gs

be a new frame field, where g is a nonsingular (q × q)-matrix of c∞-functions.
Let ∇′ be the connection matrix relative to the frame field s′ so that

Ds′ = ∇′ ⊗ s′

Using the properties of D as expressed above, we find immediately

∇′g = dg + g∇ (7)

This is the equation for the change of the connection matrix under a change
of the frame field.

Taking the exterior derivative of (7), we get

R′ = gRg−1 (8)

where
R = d∇−∇ ∧∇ ∈ Λ2(M)

and R′ is defined in terms of ∇′ by similar equation. R is a (q × q)-matrix
of two-forms and is called the curvature matrix relative to the frame field s.
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Equation (8) shows that it undergoes a very simple transformation law under
a change of the frame field. As a consequence it follows from (8) that tr(Rk)
is a form of degree 2k globally defined in M . Moreover, tr(Rk) can be proved
to be a closed form and the cohomology class {tr(Rk)} ∈ H2k(M,R) (in the
sense of de Rham’s theorem) can be identified with a characteristic class of
E.

Example 3.12. When the bundle π : E →M is oriented and has a rieman-
nian structure, the structure group is reduced to SO(q), and we can restrict
our consideration to frame fields consisting of orthonormal frames. Then both
connection and curvature matrices are anti-symmetric, and we have

R = −tR = (Rij), Rij +Rji = 0

If q is even, the pfaffian

Pf(R) =
(−1)r

2qπrr!

∑
i

εi1,...,iqRi1i2 ∧ · · · ∧Riq−1iq , r =
q

2

represents the Euler class, i.e.

{Pf(R)} = ωq(E) (9)

Formula (9) is essentially the high-dimensional Gauss-Bonnet Theorem.

3.4 Principal bundles

We will develop the fundamental notions of a connection in a principal bundle
with a Lie group as structure group. We begin by a review and an explanation
of our notation on Lie groups. All manifolds and mappings are C∞.

Let G be a Lie group of dimension r. A left translation La : G → G
is defined by La(s) = as, where a ∈ G is fixed. Let e be the unit element
of G and Te the tangent space at e. A tangent vector Xe ∈ Te generates a
left-invariant vector field given by Xs = (Ls)∗Xe. If T ∗e is the cotangent space
at e and ωe ∈ T ∗e , we get a left-invariant one-form (or Maurer-Cartan form)
ωs by the pull-back

ωs = (L−1
s )∗ωe or L∗sωs = ωe

Let ωie, 1 ≤ i ≤ r, be a basis in T ∗e . Then ωi = ωis ∈ T ∗s are everywhere
linearly independent and we have

dωi =
1

2

∑
j,k

cijkω
j ∧ ωk, cijk + cikj = 0 (10)
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It is easily proved that cijk are constants, the constants of structure of G.
Equations (10) are known as the Maurer-Cartan structure equations.

Let Xi = (Xi)s ∈ Ts be a dual basis to ωi. The Xi are left-invariant vector
fields or, what is the same, linear differential operators of the first order (cfr.
Definition 2.13 and Remark 2.14). Dual to (10) are the equations of Lie:

[Xi, Xj] = −
∑
k

ckijXk (11)

The tangent space Te has an algebra structure given by the bracket. It is
called the Lie Algebra of G and will be denoted by g.

For a fixed a ∈ G the inner automorphism s 7→ asa−1 leaves e fixed and
induces a linear mapping

ad(a) : g→ g

called the adjoint mapping.

Lemma 3.13. We have:

ad(ab) = ad(a) ad(b), ∀a, b ∈ G

ad(a)[X, Y ] = [ad(a)X, ad(a)Y ], ∀X, Y ∈ g

Proof. It follows from the chain rule for the differential, i.e.

ad(ab)X = Xab = (Lab)∗Xe(Rb−1a−1)∗

= (La ◦ Lb)∗Xe(Rb−1 ◦Ra−1)∗

= (La)∗(Lb)∗Xe(Rb−1)∗(Ra−1)∗

= (ad(a) ◦ ad(b))X

and same arguments hold for the second identity.

Let M be a manifold. It will be desirable to consider g-valued exterior
differential forms in M . As g has an algebra structure, such forms can be
multiplied. In fact, every g-valued form is a sum of terms X ⊗ ω, where ω is
an exterior differential form and X ∈ g. We define

[X ⊗ ω, Y ⊗ η] := [X, Y ]⊗ (ω ∧ η)

Distributivity in both factors then defines the multiplication of any two
g-valued forms. Interchange of order of multiplication follows the rule

[X ⊗ ω, Y ⊗ η] = (−1)rs+1[Y ⊗ η,X ⊗ ω]
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with r = degω, s = deg η. This notion allows us to write the Maurer-Cartan
equations (10) in a simple form. The expression

ω =
∑
i

(Xi)e ⊗ ωis

defines a left-invariant g-valued one-form in G, which is independent of the
choice of the basis. It is the Maurer-Cartan form of G.

Lemma 3.14. Using (10) and (11) we have

dω = −1

2
[ω, ω] (12)

This writes the Maurer-Cartan equation in a basis-free form.

Proof.

[ω, ω] =
∑
i,j

[(Xi)e ⊗ ωis, (Xj)e ⊗ ωjs]

=
∑
i,j

(
[(Xi)e, (Xj)e]⊗ ωis ∧ ωjs

)
=
∑
i,j

(
−
∑
k

ckij(Xk)e ⊗ ωis ∧ ωjs

)

= −2
∑
k

(Xk)e ⊗

(
1

2

∑
i,j

ckijω
i
s ∧ ωjs

)
= −2

∑
k

(Xk)e ⊗ dωks = −2dω

Exterior differentiation of (12) gives the Jacobi identity:

[ω, [ω, ω]] = 0

What we have discussed for left translation naturally holds also for right
translations. In particular, we have a right-invariant one-form α in G. Under
the mappings s 7→ s−1, ω goes into −α. We derive therefore from (12)

dα =
1

2
[α, α]
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If we denote by ds the identity endomorphism in Ts and consider it as an
element of Ts ⊗ T ∗s , i.e. the tensor (1,1) given by

ds : Ts × T ∗s → R
(v, ω) 7→ ω(id(v)) = ω(v)

then we can write
ω = (Ls−1)∗ds = s−1ds (13)

where (Ls−1)∗ acts only on the first factor Ts in the tensor product Ts ⊗ T ∗s ;
the last expression is a convenient abbreviation. In the same way we can
write α = ds s−1.

Example 3.15. G = GL(q,R). We can regard it as the group of all nonsin-
gular (q × q)-matrices X with real elements. Then g is the space Mq(R) of
all matrices of order q, and ω = X−1dX. Thus the notation in (13) has in
this case a concrete meaning. The Maurer-Cartan equation is

dω = −ω ∧ ω

Definition 3.16. A principal fiber bundle with a group G is a mapping

π : P →M

which satisfies the following conditions:

1. G acts freely on P to the left, i.e. there is an action G× P → P given
by (a, z) 7→ az = Laz ∈ P such that az 6= z when a 6= e (the action is
called transitive);

2. M = P/G;

3. P is locally trivial, i.e. there is an open covering { U, V, . . . } of M such
that to each member U of the covering there is a chart ϕU : π−1(U)→
U ×G, with ϕU(z) = (π(z) = x, sU(z)), satisfying

sU(az) = asU(z), ∀z ∈ π−1(U), a ∈ G (14)

P M

M ×G

π

ϕ
πM

π−1(U) U ⊆M

U ×G

π

ϕ|U
πU
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Suppose z ∈ π−1(U ∩ V ). By (14) we have also

sV (az) = asV (z)

so that
sU(az)−1sV (az) = sU(z)−1sV (z)

is independent of a and depends only on x = π(z). We put

sU(z)−1sV (z) = gUV (x)

or
sUgUV = sV (15)

The gUV are mappings of U ∩ V into G and satisfy the relations

gUV gV U = e in U ∩ V
gUV gVWgWU = e in U ∩ V ∩W

They are called the transition functions of the bundle. It is well-known that
the bundle, the principal bundle or any of its associated bundles, can be
constructed from the transition functions. In particular, given a covering
{Ua} and a system of transition functions satisfying (15), one can construct
a corresponding principal G-bundle taking as total space the quotient of
∪aUa ×G (disjoint union) with the identifications

(p, a) ∼ (p, gab(p) · a) ∈ Ua ∩ Ub ×G, ∀p ∈ Ua ∩ Ub
Example 3.17. Suppose P →M is an n-dimensional vector bundle. Then
the bundle F (P )→M of n-frames is a principal GL(n,R)-bundle.

Now let π : P →M be a principal G-bundle. For z ∈ P the map G→ P
given by g 7→ g · z induces an injection µz : g→ Tz and the quotient space is
naturally identified with Tπ(z). That is, we have an exact sequence

0→ g
µz−→ Tz

π∗−→ Tπ(z) → 0 (16)

The vectors in the image of µz are called vertical and we want to single out
a complement in Tz of horizontal vectors, i.e. we want to split the exact
sequence (16). This is equivalent to a linear map φz : Tz → g such that

φz ◦ µz = idg

Therefore it is natural to define a connection in P simply to be a 1-form
φ ∈ Λ1(P, g) such that the condition above holds for all z ∈ P .

However, we want a further condition on φ. If we denote with Hz ⊆ Tz the
subspace of horizontal vectors, by (14) each fiber of P is the group manifold
G defined up to left translations.

We can give then the following:
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Definition 3.18. A connection in a principal G-bundle π : P → M is a
1-form φ ∈ Λ1(P, g) satisfying:

1. φz ◦ µz = id

2. Hgz = (Lg)∗Hz

Example 3.19. Let CP 1 be the complex projective space of (complex)
dimension 1 and let (z0, z1) be homogeneous coordinates, i.e. given the cover
{U, V } as

U = { (z0, z1) | z0 6= 0 }
V = { (z0, z1) | z1 6= 0 }

each point on CP 1 is uniquely determined by the ratios z1/z0 over U and by
z0/z1 over V . The complex-valued 1-form

φ =
z̄0 dz0 + z̄1 dz1

|z0|2 + |z1|2

where as usual the bar denotes complex conjugation and |z|2 = zz̄, is a
connection.

We will give other two definitions of a connection, which are equivalent to
the previous one:

Definition 3.20 (Connection - bis). This is the dual of the first definition,
by giving instead of Hz ∈ Tz its annihilator V ∗z in the cotangent space T ∗z .
This in turn is equivalent to giving a g-valued one-form φ in P which restricts
to dsUs−1

U on a fiber, i.e. locally

φ(z) = dsUs
−1
U +∇U(x, sU , dx)

such that
φ(az) = ad(a)φ(z)

The last condition is equivalent to condition (2) in the first definition. It
implies that locally

φ(z) = dsUs
−1
U + ad(sU)∇U(x, dx) (17)

where ∇U (x, dx) is a g-valued one-form in U . Thus the second definition of a
connection is the existence of a g-valued one-form in P , which has the local
expression (17).
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Definition 3.21 (Connection - ter). When we express the condition that in
π−1(U∩V ) the right-hand side of (17) is equal to the corresponding expression
with the subscript V , we get

∇U = dgUV g
−1
UV + ad(gUV )∇V in U ∩ V (18)

where the first term at the right-hand side is the pull-back of the right-invariant
form in G under gUV . Hence a connection in P is given by a g-valued one-form
∇U in every member U of an open covering { U, V, . . . } of M , such that in
U ∩ V the equation (18) holds. This is essentially the classical definition of a
connection.

We wish to take the exterior derivative of (17). For this purpose we need
the following lemma:

Lemma 3.22. Let ∇ be a g-valued one-form in U . Let s ∈ G and let
α = ds s−1 be the right-invariant g-valued one-form in G. Then, in U ×G,
we have

d(ad(s)∇) = ad(s)d∇+ [ad(s)∇, α]

We put

RU = d∇U −
1

2
[∇U ,∇U ]

Φ = dφ− 1

2
[φ, φ] (19)

Applying the Lemma we get by exterior differentiation of (17),

Φ = ad(sU)RU (20)

Thus Φ is a g-valued two-form in P , which has the local expression (20).
Alternately, we have in U ∩ V ,

RU = ad(gUV )RV

Either Φ or RU will be called the curvature form of the connection.
Exterior differentiation of (19) gives the Bianchi Identity:

dΦ = −[Φ, φ] = [φ,Φ] (21)

In particular, dΦ vanishes on sets of horizontal vectors.

Remark 3.23. Let X, Y be horizontal vector fields on P . Then by Definition
(19) we have

Φ(X, Y ) = −1

2
φ([X, Y ])

which gives an alternative definition of curvature.

33



Remark 3.24. The definition of curvature given above is based on the fol-
lowing idea: consider the product bundle M ×G→M and the connection φ
given at (x, g) ∈M ×G by

φ(x,g) = (Lg−1 ◦ π)∗

where π : M×G→ G is the projection and Lg−1 : G→ G is the left translation
by g−1. This is called the flat connection (or the Maurer-Cartan connection)
of M ×G. It has the feature

dφ =
1

2
[φ, φ]

Hence, defining the curvature form Φ as in (19) we obtain that the flat
connection φ has curvature form Φ = 0, and its name is then meaningful.
In this way, the curvature measures in some sense how much the choosen
connection differs from the flat one.

Generalizing this special case, a connection φ in a principal G-bundle
π : P →M is called flat if the curvature form vanishes, that is, Φ = 0.

One of the most important cases of this general theory is when G =
GL(q,R). As discussed above, sU is now a nonsingular matrix of order
q, ∇U , φ are matrices of one-forms, and RU ,Φ are matrices of two-forms.
Equation (17) becomes a matrix equation

φ = (dsU + sU∇U)s−1
U (22)

Let σU (resp. σV ) be the one-rowed matrix formed by the first row of sU
(resp. sV ). Then (15) gives, by taking the first rows of both sides,

σUgUV = σV

This is the equation for the change of the associated vector bundle E, de-
fined as the bundle of the first row vectors of the matrices representing the
elements of GL(q,R). Moreover, equating the right-hand side of (22) with
the corresponding expression with the subscript V , we get

(dsU + sU∇U)gUV = dsV + sV∇V (23)

On taking the first rows of both sides of (23), we have

DσUgUV = DσV

where we put
DσU = dσU + σU∇U
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Applying to a section of E, we can identify this with the operator D in
(6). Thus we have shown that the connection in a vector bundle defined in
Subsection 3.3 is included as a special case of our general theory (cfr. [3], pag.
56, Exercise 8).

Another important case is the bundle (4) discussed before, which is a
principal bundle with the group O(q). This bundle plays a fundamental role
in the study of submanifolds in euclidean space. As remarked above, its
importance in bundle theory arises from the fact that it is a universal bundle
when N is large. We will describe a canonical connection on it. Let Rq+N be
the euclidean space of dimension q +N . Let

eA = (eA,1, . . . , eA,q+N), 1 ≤ A ≤ q +N

be an orthonormal frame, so that the matrix

X = (eAB)

is orthogonal. O(q +N) can be identified with the space of all orthonormal
frames eA (or all orthogonal matrices X). Let

deA =
∑
B

αABeB

Then, if α = (αAB), we have

α = dX X−1 = −tα

The Stiefel manifold Vq(Rq+N) = O(q +N)/O(N) can be identified with the
manifold of all orthonormal frames e1, . . . , eq and the Grassmann manifold
G(q,N) = O(q+N)/{O(q)×O(N)} with the q-planes spanned by e1, . . . , eq.
The matrix

α = (αij), i, j = 1, . . . , q (24)

defines a connection in the bundle (4), as easily verified.
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4 Weil Homomorphism
The local expression (20) of the curvature form Φ prompts us to introduce
functions F (X1, . . . , Xh), Xi ∈ g, i = 1, . . . , h, which are real or complex
valued and satisfy the conditions:

1. F is h-linear and remains unchanged under any permutation of its
arguments;

2. F is "invariant", i.e.

F (ad(a)X1, . . . , ad(a)Xh) = F (X1, . . . , Xh), ∀a ∈ G (25)

To the h-linear function F (X1, . . . , Xh) there corresponds the polynomial

F (X) = F (X, . . . , X), X ∈ g

of which F (X1, . . . , Xh) is the complete polarization. We will call F (X) an
invariant polynomial. All invariant polynomial under G form a ring, to be
denoted by I(G).

The invariance condition (25) implies its "infinitesimal form"∑
1≤i≤h

F (X1, . . . , [Y,Xi], . . . , Xh) = 0, Y,Xi ∈ g

More generally, if Y is a g-valued one-form and Xi is a g-valued form of degree
mi, 1 ≤ i ≤ h, we have∑

1≤i≤h

(−1)m1+···+mi−1F (X1, . . . , [Y,Xi], . . . , Xh) = 0 (26)

Now consider a principal G-bundle π : P →M on a differentiable manifold
M , and suppose φ is a connection in P with curvature form Φ ∈ Λ2(P, g).
Then for h ≥ 1 we have

Φh = Φ ∧ · · · ∧ Φ ∈ Λ2h(P, g× · · · × g)

and it follows from (20) that if F is an invariant polynomial of degree h, we
have the form of degree 2h:

F (Φh) =: F (Φ) = F (RU)

The left-hand side shows that it is globally defined in P , while the right-hand
side shows that it is a form in M . Moreover, by the Bianchi identity (21) and
by (26), we have

1

h
dF (Φ) = F ([φ,Φ],Φ, . . . ,Φ) = 0
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Hence F (Φ) is closed and its cohomology class [F (Φ)] is an element of
H2h(M,R). We shall prove that this class depends only on F and is indepen-
dent of the choice of the connection.

Lemma 4.1. Let φ0, φ1 be g-valued one-forms and let F ∈ I(G) be an
invariant polynomial of degree h. Let

φt = φ0 + tα, α = φ1 − φ0

Φt = dφt −
1

2
[φt, φt]

Then

F (Φ1)− F (Φ0) = hd

∫ 1

0

F (α,Φt, . . . ,Φt) dt

Proof. To prove the lemma we first find

1

h

d

dt
F (Φt) = F (dα− [φt, α],Φt, . . . ,Φt)

On the other hand,

dF (α,Φt, . . . ,Φt) = F (dα,Φt, . . . ,Φt)− (h− 1)F (α, [φt,Φt],Φt, . . . ,Φt)

The invariance of F implies, by (26),

F ([φt, α],Φt, . . . ,Φt)− (h− 1)F (α, [φt,Φt],Φt, . . . ,Φt) = 0

It follows that
1

h

d

dt
F (Φt) = dF (α,Φt, . . . ,Φt)

and the lemma follows by integrating this equation with respect to t.

Corollary 4.2. Let φ0, φ1 be two connections in the bundle π : P →M and
let F ∈ I(G). Then F (φ0) and F (φ1), as closed forms inM , are cohomologous
in M .

Corollary 4.3. Let φ be a connection in the bundle π : P → M and let
F ∈ I(G). Then F (φ) is a coboundary in P . More precisely, let

Φt = t dφ− 1

2
t2[φ, φ] = tφ+

1

2
(t− t2)[φ, φ]

Then

F (Φ) = hd

∫ 1

0

F (φ,Φt, . . . ,Φt) dt (27)
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By putting
ωP (F ) = [F (Φ)], F ∈ I(G)

where the right-hand side denotes the cohomology class represented by the
closed form F (Φ), we have defined a mapping

ωP : I(G)→ H∗(M,R)

It is clearly a ring homomorphism and is called the Weil homomorphism.

Theorem 4.4 (Naturality). Let f : N →M be a smooth map. Then

ωf∗P = f ∗ ◦ ωP

Proof. If φ is a connection in π : P →M with curvature form Φ then clearly
f ∗φ is a connection in f ∗P → N with curvature form f ∗Φ. Therefore since

f ∗F (Φh) = F ((f ∗Φ)h)

the theorem is proved.

We are now ready to complete Definition 3.6:

Definition 4.5. Let ωP : I(G) → H∗(M,R) be the Weil homomorphism.
Given an element (polynomial) F ∈ I(G), the image ωP (F ) is the character-
istic class of P corresponding to F .

In the case that G is a compact connected Lie group, the Weil homomor-
phism has a simple geometric interpretation, which we will state without
proof. There is a universal principal bundle π0 : EG → BG with group G such
that we have the bundle map

P EG

M BG

π π0

f

where f is defined up to a homotopy. BG is called the classifying space with
the group G. The following diagram is commutative:

I(G)

H∗(BG,R) H∗(M,R)

ω0
ωP

f∗
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and ω0 is an isomorphism. In other words, the invariant polynomials can be
identified with the cohomology classes of the classifying space and the Weil
homomorphism gives the representatives of characteristic classes by closed
differential forms constructed from the curvature forms of a connection.

We put

TF (φ) = h

∫ 1

0

F (φ,Φt, . . . ,Φt) dt

so that (27) can be written

π∗F (RU) = F (Φ) = d(TF (φ))

T will be called the transgression operator ; it enables F (Φ) to be written as
a coboundary in a canonical way, by the use of a connection.

One application of the transgression operator is the following description
of the de Rham ring of P .

Theorem 4.6 (Chevalley). Let G be a compact connected semi-simple group
of rank r (dimension of maximal torus in G). Let π : P →M be a principal
G-bundle over a compact manifold M and φ a connection in P . Then the
ring I(G) of invariant polynomials is generated by elements F1, . . . , Fr and
the de Rham ring of P can be given as the quotient ring

H∗(P,R) = A/dA

where
A = Λ[TF1(φ), . . . , TFr(φ)]

is the ring of polynomials in TF1(φ), . . . , TFr(φ) with coefficients which are
forms in M .

4.1 Examples

For geometrical applications we will describe in detail the Weil homomorphism
for some of the classical groups:

Example 4.7. G = GL(q,C) = {X | detX 6= 0 }, where X is a matrix of
order q with complex elements. The coefficients Fi(X), i = 1, . . . , q in the
polynomial in t defined by

det
(
tIq +

i

2π
X
)

= tq + F1(X)tq−1 + · · ·+ Fq(X)

where Iq is the unit matrix, are invariant polynomials.
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Suppose π : E →M be a complex vector bundle and φ be a connection,
with the curvature form Φ, so that Φ is a matrix of two-forms. Then we have

[Fi(Φ)] = ci(E) ∈ H2i(M,Z)

Notice that the coefficients are here so chosen that the corresponding classes
have integer coefficients.

Remark 4.8. By the above Corollary 4.2 it suffices to establish this result in
the classifying space BG = Gq(Cq+N ) (N sufficiently large), with its connection
defined in a similar way as the one in (24) for the real Grassmann manifold.
In other words it is sufficient to consider the universal bundle with its universal
connection. The same remark applies in the identification in the next two
cases.

Example 4.9. G = GL(q,R) = {X | detX 6= 0 }, where X is a matrix of
order q with real elements. We put

det
(
tIq −

1

2π
X
)

= tq + E1(X)tq−1 + · · ·+ Eq(X)

Let π : E → M be a real vector bundle and φ be a connection, with the
curvature form Φ. Then [E2k+1(Φ)] = 0, for 1 ≤ k ≤ bn

4
c and

[E2k(Φ)] = pk(E) ∈ H4k(M,Z)

is the kth Pontrjagin class of E.

Example 4.10. G = SO(2r). A representative of the Euler class was given
by formula (9), Section 3.

4.2 The Complex Projective Space

Suppose we consider a topological space M with a principal GL(n,C)-bundle
ξ : E → M and a GL(m,C)-bundle η : F → M . Then we can define the
Whitney sum

(ξ ⊕ η) : E ⊕ F →M

in terms of transition functions as follows: first let

⊕ : GL(n,C)×GL(m,C)→ GL(n+m,C)

be the homomorphism taking a pair of matrices (A,B) to the matrix

A⊕B =

[
A 0
0 B

]
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Now choose a covering {Ua}a∈Σ of M such that both E and F have trivializa-
tions over Ua, a ∈ Σ, and let {gab} and {hab} be the corresponding transition
functions for E and F respectively. Then ξ ⊕ η : E ⊕ F →M is the bundle
with transition functions {gab⊕hab}. Notice that if E and F are differentiable
then also E ⊕ F is.

Notice that GL(1,C) = C∗ = C \ {0} is the multiplicative group of non-
zero complex numbers. Moreover, GL(1,C)-bundles are in 1-1 correspondence
with 1-dimensional complex vector bundles (also called complex line bundles).

Example 4.11 (The canonical line bundle on the complex projective space
CP n). Here CP n is defined as the quotient space of Cn+1 \ {0} under the
action of C∗ given by

λ · (z0, z1, . . . , zn) = (λ · z0, . . . , λ · zn)

It is easy to see that the natural projetion

π : E := Cn+1 \ {0} → CP n

is a principal C∗-bundle. The associated complex line bundle is by definition
the canonical line bundle. If we let the total Chern class be the sum

c(E) = 1 + c1(E) + · · ·+ cn(E) ∈ H∗(M,C)

then we can easily compute the Chern class c1 for the case q = 1. By Example
4.7 we have

det
(
tIq +

i

2π
X
)

= tq + c1(X)tq−1 + · · ·+ cq(X)

Hence for q = 1 we have the identity

t+
i

2π
X = t+ c1(X) =⇒ c1(Φ) =

i

2π
Φ

Here CP 1 is given with the canonical orientation determined by the 2-
form dx ∧ dy where z = x + iy = z1/z0 is the complex coordinate in the
Riemann sphere CP 1 with homogeneous coordinates (z0, z1). Consider then
the connection

φ =
z̄0 dz0 + z̄1 dz1

|z0|2 + |z1|2

given in Example 3.19. Since C∗ is abelian the curvature form is given by

Φ = dφ
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Now let U = CP 1 \ {(0, 1} = { (z0, z1) | z0 6= 0 } and use the local coor-
dinate z = z1/z0. Then z1 = z0z and dz1 = z dz0 + z0 dz. Hence

φ =
z̄0 dz0 + z̄0z̄(z dz0 + z0 dz)

|z0|2(1 + |z|2)

=
(dz0
z0

+ |z|2 dz0
z0

+ z̄ dz)

1 + |z|2
=
dz0

z0

+
z̄

1 + |z|2
dz

Therefore

Φ = dφ = d(
dz0

z0

+
z̄

1 + |z|2
dz) = d(

z̄

1 + |z|2
dz) =

dz̄ ∧ dz
(1 + |z|2)2

It follows that in U , c1(Φ) is given by

c1(Φ) =
i

2π

dz̄ ∧ dz
(1 + |z|2)2
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5 Topological approach
Until now we have considered characteristic classes from a geometrical point
of view, based on the notion of connection and curvature of a manifold. One
could also be interested in defining them in a topological way, by taking
Chern classes, Stiefel-Whitney classes, and the Euler class from an axiomatic
point of view. In this sense it is remarkable the fact that these two different
approaches actually coincide, as we will show in this Section.

Furthermore, we will assume without mention that all base spaces of
vector bundles are CW complexes, so that the results of Section 3 apply.

5.1 Definition of the Stiefel-Whitney Classes and Chern
Classes as polynomials

Here is the basic result about Stiefel-Whitney classes giving their most essential
properties, which can be regarded as axioms:

Theorem 5.1. There is a unique sequence of functions w1, w2, . . . assigning
to each real vector bundle π : E →M a class wi(E) ∈ H i(M,Z2), depending
only on the isomorphism type of E, such that

(SW1) wi(f ∗(E)) = f ∗(wi(E)) for a pullback f ∗(E).

(SW2) w(E1⊕E2) = w(E1) ^ w(E2) where w = 1+w1+w2+· · · ∈ H∗(M,Z2).

(SW3) wi(E) = 0 if i > dimE.

(SW4) For the canonical line bundle E → RP∞, w1(E) is a generator of
H1(RP∞,Z2).

The sum w(E) = 1 + w1(E) + w2(E) + . . . is the total Stiefel-Whitney
class. Note that (SW3) implies that the sum 1 + w1(E) + w2(E) + . . . has
only finitely many nonzero terms, so this sum does indeed lie in H∗(M,Z2).
Condition (SW2) is just a compact way of writing the relations

wn(E1 ⊕ E2) =
∑
i+j=n

wi(E1) ^ wj(E2), w0 = 1

and it is sometimes called the Whitney sum formula.
Property (SW4) can be viewed as a nontriviality condition. If this were

dropped we could set wi(E) = 0 for all E and all i > 0, and the first three
condition would be satisfied with a non-interesting case.

For complex vector bundles there are analogous Chern classes :
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Theorem 5.2. There is a unique sequence of functions c1, c2, . . . assigning to
each complex vector bundle π : E →M a class ci(E) ∈ H2i(M,Z), depending
only on the isomorphism type of E, such that

(C1) ci(f ∗(E)) = f ∗(ci(E)) for a pullback f ∗(E).

(C2) c(E1 ⊕ E2) = c(E1) ^ c(E2) where c = 1 + c1 + c2 + · · · ∈ H∗(M,Z).

(C3) ci(E) = 0 if i > dimE.

(C4) For the canonical line bundle E → CP∞, c1(E) is a generator of
H2(CP∞,Z) specified in advance.

Same considerations hold for the complex case, but here the condition
(C4) is now also a normalization condition, since replacing each function ci by
kic

i (product with a fixed integer k) gives new functions satisfying (C1)-(C3).

Proposition 5.3. The Stiefel-Whitney classes (respectively Chern classes)
defined in Section 3 satisfy (SW1)-(SW4) (resp. (C1)-(C4)).

Proof. We study the complex case (the real one is analogous).
The (C1) condition is the "natural property" satisfied due to Theorem

4.4.
To show (C2) let E1, E2 be two bundles over M of dimension n,m re-

spectively. Clearly Γ(E1 ⊕ E2) = Γ(E1)× Γ(E2). Thus if we get φ1, φ2 two
connections on E1, E2 with curvature matrices Φ1,Φ2, then

φ =

[
φ1 0
0 φ2

]
represents a connection on E1 ⊕ E2 whose curvature matrix is

Φ =

[
Φ1 0
0 Φ2

]
(see introduction to Subsection 4.2). Hence

c(E1 ⊕ E2) = det(tIn+m +
i

2π
Φ)

= det(tIn +
i

2π
Φ1) · det(tIm +

i

2π
Φ2) = c(E1) ^ c(E2)

Property (C3) is a consequence of the definition of wedge product: let
F ∈ I(G) an invariant polynomial of degree i > dimE. Then

Φi = Φ ∧ · · · ∧ Φ = 0
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by Remark 2.9. Thus F (Φi) = 0 and also its image via Weil homomorphism
is zero.

Finally, (C4) will be shown in the last example of this work.

The topological approach introduced in this section can be used to compute
the characteristic classes differently from Section 3. In particular, we apply it
to the complex projective space, that has been investigated in Example 4.11.

Example 5.4. Consider the unit sphere S2 ⊂ R3 and the stereographic
projection as in Figure 2. It is easy to see that the inverse of this projection
is the diffeomorphism

g : CP 1 → S2

z = x+ iy 7→
(

2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
x2 + y2 − 1

1 + x2 + y2

)
Our idea is to obtain a generator of H2(CP 1) as a pullback via g of a generator
of H2(S2).

From Mayer-Vietoris sequence for cohomology, a generator of the latter
can be taken to be a bump n-form on Sn. So the generator of H2(S2) is
represented by

σ =
1

4π
(u1 du2 du3 − u2 du1 du3 + u3 du1 du2) =

1

4π

du1 du2

u3

by removing the du3 dependence on the set where u3 6= 0 since

u2
1 + u2

2 + u2
3 = 1 =⇒ u1 du1 + u2 du2 + u3 du3 = 0

Hence the desired pullback is g∗σ given by

g∗σ =
1

4π

du1 du2

u3

where now

u1 =
2x

1 + x2 + y2
u2 =

2y

1 + x2 + y2
u3 =

x2 + y2 − 1

1 + x2 + y2

In terms of z = x+ iy, it can be written as

g∗σ = − i
π

dx dy

(1 + x2 + y2)2
= − i

2π

dz dz̄

(1 + |z|2)2

Lastly, recall that the standard orientation in the unit sphere Sn−1 ⊂ Rn is
the following one: if σ is a generator of Hn−1(Sn−1) and π : Rn \ {0} → Sn−1
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Figure 2: Stereographic projection S2 → C1

is a deformation retraction, then σ is positive on Sn−1 if and only if dr ·π∗σ is
positive on Rn \ {0}. Hence the standard orientation on CP 1 is given locally
by dx dy, so the positive generator in H2(CP 1) is

α = −g∗σ =
i

2π

dz dz̄

(1 + |z|2)2
= − i

2π

dz̄ dz

(1 + |z|2)2

as shown in Example 4.11.
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