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Abstract

This thesis consists of three main results. In the first one we describe all Kähler

immersions of a bounded symmetric domain into the infinite dimensional complex pro-

jective space in terms of the Wallach set of the domain. In the second one we exhibit an

example of complete and non-homogeneous Kähler-Einstein metric with negative scalar

curvature which admits a Kähler immersion into the infinite dimensional complex pro-

jective space. As last, we prove that the complex hyperbolic space is the only Cartan

domain which admits a Kähler immersion into the indefinite complex Euclidean space

of finite index.
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Introduction

In contrast with Riemannian geometry where a well–known theorem due to John Nash

(cfr. [37]) states that any Riemannian manifold can be isometrically immersed into the

real Euclidean space RN for sufficiently large N , a Kähler manifold does not always

admit an isometric and holomorphic (from now on Kähler) immersion into the complex

Euclidean space CN (not even if N is allowed to be infinite). For example, a compact

manifold cannot be holomorphically immersed into CN for any value of N , since every

holomorphic function from a connected compact set into C is constant. But even if

we consider noncompact manifolds, there are still many obstructions to the existence

of such an immersion. For istance, if a Kähler manifold admits a Kähler immersion

into CN , its metric is forced to be a real analytic Kähler metric, being the pull–back

via a holomorphic map of the flat metric on CN . Other less trivial obstructions can

be found in the seminal paper of Eugenio Calabi (see Chapter 2 or [9]). Calabi gives

a complete answer to the problem of existence and uniqueness of a Kähler immersion

of a Kähler manifold into CN , for N ≤ ∞, and more generally into any other finite

or infinite dimensional complex space form (cfr. Example 1.3.1). The criterion Calabi

provides in order to find out if a particular manifold admits a Kähler immersion into a

complex space form is based on the study of a particular Kähler potential, christened

by Calabi diastasis function. The diastasis function is not always explicitely given, thus

although Calabi’s criterion is theoretically impeccable, most of the time it is of difficult

applicability. Hence, it is an open problem of high interest classifying Kähler manifolds

admitting a Kähler immersion into complex space forms, in particular when the metric
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is a Kähler–Einstein metric (see [17], [19], [24], [25], [30], [33], [36], [43], [50], [51] and

[52]), that is the case we are interested in this thesis.

If the ambient space is the finite dimensional complex projective space, a classifica-

tion is given only for low codimension. More precisely, Shiing-Shen Chern and Kazumi

Tsukada (cfr. [17], [50]) show that if the codimension is less or equal than two, a

Kähler–Einstein manifold Kähler immersed into CPN is either totally geodesic or the

quadric. For general codimension, the only known examples of Kähler–Einstein mani-

folds admitting a Kähler immersion into CPN are homogeneous and it is conjecturally

true these are the only ones (see Section 3.2 or e.g. [3], [17], [43] and [50]). Hence, it is

natural to ask what happens when N is allowed to be infinite, namely we are concerned

with the following question:

Question: does there exist a nonhomogeneous and complete Kähler–Einstein manifold

which can be Kähler immersed into CP∞?

In this thesis we give a positive answer to this question (cfr. Section 4.4). More

precisely, we consider a bounded symmetric domain Ω of rank r 6= 1 and genus γ

endowed with a multiple of its Bergman metric gB and we take the family of Cartan–

Hartogs domains depending on the parameter µ > 0 and based on Ω, defined by

MΩ(µ) =
{

(z, w) ∈ Ω× C, |w|2 < Kµ/γ(z, z)
}
,

where K(z, z) is the Bergman kernel of Ω. The first result of this thesis is the following:

Theorem 1 (Theorem 4.1.1). There exists a continuous family of homothetic, complete,

nonhomogeneous and projectively induced Kähler-Einstein metrics on each Cartan–

Hartogs domain based on an irreducible bounded symmetric domain of rank r 6= 1.

The proof of Theorem 1 is based on recent results (cfr. [41], [55]) about Einstein

metrics on Cartan–Hartogs domains and on the following theorem which is the second
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main result of this thesis:

Theorem 2 (Theorem 4.1.2). Let Ω be an irreducible bounded symmetric domain en-

dowed with its Bergman metric gB. Then (Ω, cgB) admits an equivariant Kähler im-

mersion into CP∞ if and only if cγ belongs to W (Ω) \ {0}, where γ denotes the genus

of Ω.

Here W (Ω) denotes the Wallach set of Ω, i.e. the set of all λ ∈ C such that there

exists a Hilbert space Hλ whose reproducing kernel is K
λ
γ (see Section 4.3 or [2]).

In the case the ambient space is the finite dimensional Euclidean space CN or the

finite dimensional hyperbolic space CHN , Masaaki Umehara (cfr. Section 3.1 or [51])

shows that the only Kähler–Einstein manifolds Kähler immersed into these spaces are

totally geodesic. This result cannot be extended to the infinite dimensional case. In

fact, in [9] Calabi provides an explicit Kähler immersion of the hyperbolic space CHn

into the infinite dimensional flat space `2(C) (cfr. Section 3.3). Although, we believe

that this is the only exception (Conjecture 3.3.4). In [19] Andrea Loi and Antonio José

Di Scala show that the hyperbolic space is characterized among bounded symmetric

domains to be the only one admitting a Kähler immersion into `2(C) (cfr. Section 3.3).

In this thesis we extend this result to the case when the ambient space is the indefinite

complex Euclidean space Cr,s = (Cr+s, gr,s), r, s ∈ N ∪ {∞}, {r, s} 6= {∞,∞}, where

gr,s is the indefinite Kähler metric on Cr+s (cfr. Section 5.2). More precisely, we prove

that the hyperbolic space CHn can be characterized among irreducible bounded sym-

metric domains as the only one which admits a Kähler immersion into C∞,s, s <∞, as

expressed in the following theorem, the third and last result of this thesis:

Theorem 3 (Theorem 5.1.1). Let (Ω, gB) be a Cartan domain. Assume that there

exists a local Kähler immersion (Ω, gB) into Cr,s, then r = ∞, s ∈ N and (Ω, gB) =

(CHn, (n+ 1)ghyp).
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The thesis is divided into five chapters organized as follows.

The first three chapters are dedicated to recall preliminary notions and to summarize

known results about complex and Kähler manifolds.

The first one introduces Kähler–Einstein manifolds and describes the problematic

relative to the existence and uniqueness of Kähler–Einstein metrics on compact complex

manifolds, according to the sign of the scalar curvature. In the last section it also pro-

vides some examples of Kähler–Einstein metrics, both in the compact and noncompact

case, used in the rest of the thesis.

The second chapter presents the work of E. Calabi on the existence of a Kähler im-

mersion of a complex manifold into complex space forms. The first section is dedicated

to the definition and the basic properties of the diastasis function, while the second one

describes Calabi’s criterion.

The third chapter illustrates known results on the problem of classifying complex

manifolds which admits a Kähler immersion into complex space forms when the metric

is a Kähler–Einstein metric. The first three sections of this chapter give an outline of

the problem in the case when the ambient space is finite dimensional, dividing the expo-

sition in M. Umehara’s work on Kähler immersion of Kähler–Einstein manifods into CN

and CHN and various results and conjectures on Kähler immersions of Kähler–Einstein

manifolds into CPN . The last section is devoted to the infinite dimensional case and

in particular summarizes Calabi’s result on Kähler immersion between complex space

forms and A. J. Di Scala and A. Loi’s characterization of CHn among the bounded

symmetric domains to be the only one admitting a Kähler immersion into `2(C).

The last two chapters contain our results.

Chapter 4 is divided into three sections and it is dedicated to the proof of Theorem

1 and 2. In the first section we prove a general fact about projectively induced metrics

in relation with the value of the constant that multiplies the metric. More precisely we
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show that a Kähler manifold (M, cg) admits a local Kähler immersion into CP∞ for all

positive value of c if and only if (M, g) does into `2(C). The proof is based on a theorem

of Bochner (Theorem 3.3.2 or [6, Th. 14]) and on some considerations on the diastasis

function of (M, cg). The second section introduces the definition of the Wallach set

W (Ω) of a bounded symmetric domain Ω and provides a very useful characterization of

the diastasis of (Ω, gB). All these elements enable us to prove Theorem 2. Last section

is dedicated to the definition of a Cartan–Hartogs domain (MΩ(µ), cg(µ)) and to a

description of the Kähler metric g(µ) in terms of its diastasis function. In particular we

prove the following proposition, which completely determines when a Cartan–Hartogs

domain (MΩ(µ), cg(µ)) is projectively induced: the metric cg(µ) is projectively induced

if and only if the metric (c+m)µγ gB on Ω is projectively induced for every integer m ≥ 0.

The proof of this proposition is based on Calabi’s criterion applied to the diastasis of

cg(µ) and of (c + m)µγ gB respectively. By the work of Guy Roos, An Wang, Weiping

Yin, Liyou Zhang and Wenjuan Zhang (see [41], [55] or Section 4.4), there exists a

particular value µ0 of µ such that g(µ0) is a complete Kähler–Einstein metric which

is homogeneous if and only if the rank of Ω is equal to 1. These facts together with

Theorem 2 allows us to prove Theorem 1.

The last chapter of the thesis is divided into two sections and it is dedicated to the

proof of Theorem 3. The first section provides the basic definitions of the indefinite

Euclidean space and of its metric. The second one is devoted to the proof of Theorem

3, based on an extension of Calabi’s criterion when the ambient space is the indefinite

Euclidean space (Lemma 5.2.1), together with the particular structure of the diastasis

function of Cartan domains (Proposition 4.3.2).
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Chapter 1

Preliminaries

The first section of this chapter recalls definitions and standard properties of Kähler and Kähler–

Einstein metrics on complex manifolds (see [35] for details and further results). In the second one

we give an overview of the problematic relative to the existence and uniqueness of a Kähler–Einstein

metric on compact complex manifolds, according to the sign of the scalar curvature (although we do

not need this result we include it in this thesis for completeness). In the last section we provide some

examples of Kähler–Einstein metrics (both in the compact and noncompact case) needed in the rest of

the thesis.

1.1 Kähler metrics

Consider a n-dimensional complex manifold M and let us fix the following notations:

denote by Hol(M) the space of holomorphic functions on M , by Ωr(M,K) the space

of r-forms on M with values on a field K and by Ωp,q(M) ⊂ Ωp+q(M) the space of

(p, q)-forms on M . Let also Hp,q

∂̄
(M) be the cohomology class of ∂̄-closed (p, q)-forms

on M .

Proposition 1.1.1 (∂∂̄–Lemma). Let α ∈ Ω2(M,R)∩Ω1,1(M). If α is closed then for

all x ∈M there exists an open set U 3 x and a function u ∈ C∞(U,R) such that

α|U = i∂∂̄u.
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Proof. By Poincaré Lemma there exists a real 1-form τ such that α = dτ locally. Since

Ω1(M,R) ⊂ Ω1(M,C), we have τ = τ1,0 + τ0,1 and

α =(∂ + ∂̄)(τ1,0 + τ0,1) = ∂τ1,0 + ∂̄τ0,1 + ∂̄τ1,0 + ∂τ0,1

=∂̄τ1,0 + ∂τ0,1,

where the last equality holds for α ∈ Ω1,1(M).

By Dolbeault Lemma ∂̄τ0,1 = 0⇒ ∃ f ∈ C∞(U,C) such that τ0,1 = ∂̄f , thus we have

α|U = ∂̄∂f̄ + ∂∂̄f = ∂∂̄(f − f̄) = i∂∂̄u,

where u = 2 Im(f).

A Hermitian metric on M is a Riemannian metric g which is an isometry with

respect to the almost complex structure J of M , i.e. g(JX, JY ) = g(X,Y ), for all X,

Y ∈ X(M) (throughout this thesis X(M) will denote the space of smooth vector fields

on M). A Hermitian manifold is a couple (M, g) where M is a complex manifold and

g a Hermitian metric on M .

Let (M, g) be a Hermitian manifold and let ω be the fundamental form associated to

g, i.e. ω(X,Y ) = g(X,JY ) for all X, Y ∈ X(M).

Definition 1.1.2. A complex manifoldM endowed with a Hermitian metric g is Kähler

if and only if the fundamental form ω associated to g is closed.

By ∂∂̄–Lemma Kähler manifolds are characterized by the existence around each

point x ∈ M of a neighbourhood U 3 x and a smooth map Φ : U → R such that

ω|U = i
2∂∂̄Φ (see e.g. [35]). The function Φ is called a Kähler potential for the metric

g and it is univocally determined up to the addition of the real part of a holomorphic

function. In fact, if Φ′ is another Kähler potential, in local coordinates we have

∂2(Φ− Φ′)

∂zα∂z̄β
= 0,

that implies

Φ = Φ′ + f + f̄ , for f ∈ Hol(M).
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Observe that in local coordinates one has

ω = i
n∑

α,β=1

gαβ̄ dzα ∧ dz̄β,

where

gαβ̄ = g

(
∂

∂zα
,
∂

∂z̄β

)
=

1

2

∂2Φ

∂zα∂z̄β
.

Let Ric be the Ricci curvature of a Hermitian manifold (M, g) and let ρ be the Ricci

form associated to Ric, i.e. if J is the almost complex structure on M ,

ρ(X,Y ) = Ric(X, JY ) for X, Y ∈ X(M).

The nice feature of the Kähler metric is that the Ricci form has a very simple expression

in terms of the metric tensor, i.e.

ρ = −i∂∂̄ log det(gαβ̄),

(we refer the reader to [48]).

1.2 Kähler–Einstein metrics

A Kähler metric g on a complex manifoldM is Einstein if and only if there exists λ ∈ R

such that

ρ = λω, (1.1)

where ω is the fundamental form associated to g. The pair (M, g), where M is a com-

plex manifold and g a Kähler–Einstein metric is said a Kähler–Einstein manifold.

Let M be a complex manifold endowed with a Kähler–Einstein metric g. In a neigh-

bourhood U of x ∈M we have

∂∂̄

(
log
(
det(gαβ̄)

)
+
λ

2
Φ

)
= 0,

and hence

log
(
det(gαβ̄)

)
= −λ

2
Φ + f + f̄ ,

9



for some f ∈ Hol(U). Thus a Kähler metric g is Einstein if locally it satisfies the

Monge-Ampère equation

det(gαβ̄) = e−
λ
2

(Φ+f+f̄). (1.2)

Consider a compact Kähler manifold (M,ω) and let ρ be its associated Ricci form.

The form ρ/2π represents the first Chern class c1(M) of M (cfr. [16]). In [11] and [12],

E. Calabi asks if given a closed (1,1)-form ρ̃ which represents the first Chern class of

M , one can find a Kähler metric ω̃ on M whose Ricci tensor is ρ̃. In [12] he shows that

this metric is unique on each Kähler class (i.e. a cohomology class of type (1, 1) that

contains a form that is positive definite). The existence of ω̃ on each Kähler class is

known as Calabi’s Conjecture and it has been solved by S. T. Yau in 1976 (cfr. [57]).

Calabi’s Conjecture has some immediate consequences on the existence and unique-

ness of Kähler–Einstein metrics on compact complex manifolds. Let (M,ω) be a com-

pact Kähler–Einstein manifold. According to the sign of λ, the first Chern class c1(M)

must either vanish or have a representative which is negative or positive definite (we

write in that cases c1(M) < 0 and c1(M) > 0 respectively). When c1(M) vanishes, M

admits an unique Ricci-flat metric on each Kähler class. In fact, c1(M) contains the

0 form as representative and Calabi’s Conjecture guarantees the existence of a Kähler

form associated to 0 on each Kähler class [ω]. That metric is known as Calabi-Yau

metric.

When c1(M) < 0, T. Aubin [4] and S. T. Yau [57] independently, prove that there exists

a unique (up to homotheties) Kähler–Einstein metric depending only on the complex

structure of M . Furthermore, the group of holomorphic transformations of M is finite

and contained in the group of isometries of M .

When c1(M) > 0 the existence of a Kähler–Einstein metric is not guaranteed. The

problem has been largely studied by G. Tian (see e.g. [44], [46] and [47]). The simplest

examples of Kähler–Einstein metrics with positive first Chern class are given by the

Hermitian symmetric space of compact type (see Example 1.3.3 below). In [33] Y. Mat-

sushima proves that when c1(M) > 0 if two Einstein forms ω1, ω2 are cohomologous
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then they are isometric, namely there exists F ∈ Aut(M) such that F ∗ω2 = ω1. Notice

that X. X. Chen and G. Tian (cfr. [15]) generalise this result for extremal metrics.

1.3 Examples

Example 1.3.1 (Complex space forms). A complex space form is a finite or infinite

dimensional Kähler manifold of constant holomorphic sectional curvature, that if we

assume to be complete and simply connected, then up to homotheties can be of three

types, according to the sign of the holomorphic sectional curvature:

(i) the complex Euclidean space CN of complex dimension N ≤ ∞, endowed with the

flat metric denoted by g0. Here C∞ denotes the Hilbert space `2(C) consisting

of sequences wj , j = 1, 2, . . . , wj ∈ C such that
∑+∞

j=1 |wj |2 < +∞. Fixed a

coordinate system (z1, . . . , zN ), a globally defined Kähler potential Φ : CN → R

for g0 is given by

Φ(z) =

N∑
j=1

|zj |2. (1.3)

Observe that the flat metric is trivially Ricci-flat, since det(gαβ̄) = 1;

(ii) the complex projective space CPN of complex dimension N ≤ ∞, with the Fubini-

Study metric gb of holomorphic sectional curvature 4b for b > 0. Let [Z0, . . . , ZN ]

be homogeneous coordinates, p = [1, 0, . . . , 0] and U0 = {Z0 6= 0}. Define affine

coordinates z1, . . . , zN on U0 by zj = Zj/Z0. The Fubini-Study metric gFS can

be described on U0 by the Kähler potential

Φ(z) =
1

b
log(1 + b

N∑
j=1

|zj |2), (for b > 0). (1.4)

In this case gb is Einstein with Einstein constant λ = 2b(N + 1);

(iii) the complex hyperbolic space CHN of complex dimension N ≤ ∞, namely the

unit ball B ⊂ CN given by B =
{

(z1, . . . , zN ) ∈ CN ,
∑N

j=1 |zj |2 < 1
}
, endowed

with the hyperbolic metric gb of constant holomorphic sectional curvature 4b, for

11



b < 0. Fixed a coordinates system around a point p ∈ CHN , the hyperbolic metric

is described by the globally defined Kähler potential Φ given by

Φ(z) =
1

b
log(1 + b

N∑
j=1

|zj |2), (for b < 0). (1.5)

In this case gb is Einstein with Einstein constant λ = 2b(N + 1).

When it is not otherwise specified, we assume b to be respectively 0, 1 and −1 and we

denote g1 by gFS and g−1 by ghyp. Furthermore, in order to simplify the notation we

write CN , CPN and CHN instead of (CN , g0), (CPN , gFS) and (CHN , ghyp).

Example 1.3.2 (Bergman metric). We refer the reader to [27] for details and further

results on the Bergman metric. Let D be a bounded domain of Cn and consider the

Hilbert space

L2
hol(D) =

{
f ∈ Hol(D),

∫
D
|f |2dµ <∞

}
,

where dµ denotes the Lebesgue measure on R2n = Cn. Consider the inner product on

L2
hol(D) given by

(f, g) =

∫
D
f(ζ)g(ζ)dµ(ζ).

Given a orthonormal basis {ϕj} on L2
hol(D), the series

K(z, ζ) =
∞∑
j=0

ϕj(z)ϕj(ζ)

converges uniformly on each compact subset of D × D and it is independent of the

choice of the orthonormal basis. The function K so defined is the Bergman kernel of D,

also called reproducing kernel for its reproducing property

f(z) =

∫
D

K(z, ζ)f(ζ)dµ(ζ), f ∈ L2
hol(D). (1.6)

The Kähler metric

ωB =
i

2
∂∂̄ log K(z, z),

is the Bergman metric on D. It is important to remark that the group of automorphism

Aut(D) of D, i.e. biholomorphism f : D → D, is contained in the group of isometries

12



Isom(D, gB), that is if F ∈ Aut(D) then F ∗gB = gB. If Aut(D) also acts transitively,

i.e. D is homogeneous, then gB is Einstein and RicgB = −2gB, i.e. the Einstein constant

is −2 (cfr. [29, p. 163]). Observe that the Bergman metric and the hyperbolic metric

on CHn are homothetic, more precisely one has (n+ 1)ghyp = gB.

Example 1.3.3 (Hermitian symmetric spaces). A connected complex manifold S with

a Hermitian structure is said to be a Hermitian symmetric space if each point p ∈ S is

an isolated fixed point of an involutive holomorphic isometry sp of S. The Hermitian

structure of a Hermitian symmetric space is Kählerian. Let A(S) be the set of holomor-

phic isometries of S and A0(S) its identity component. S is said to be of the compact

or noncompact type according to the type of the Riemannian pair (A0(S),K), where

K is the isotropy subgroup of A0(S) at some point o ∈ S. Every simply connected

Hermitian symmetric space is a product of irreducible elements

S = S0 × S− × S+,

where all factors are simply connected Hermitian symmetric spaces, S0 = C× · · · × C,

and S−, S+ are of the compact and noncompact type respectively (see [23] for details).

The following table summarizes the classification of irreducible Hermitian symmetric

spaces of compact type.

Table 1.1: Irreducible Hermitian symmetric spaces of compact type.

Type HSSCT Dimension

A III SU(n+m)/S(Un × Um) nm

C I Sp(n)/U(n) n(n+ 1)/2

D III SO(2n)/U(n) n(n− 1)/2

BD I SO0(n+ 2)/SO(n)× SO(2) n

E III (e−78, so(10) + R) 16

E V II (e7(−133), e6 + R) 27

A Hermitian symmetric space of noncompact type of complex dimension d is bi-
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holomorphically isometric to (Ω, cgB), where Ω is a bounded symmetric domain of

Cd endowed with its Bergman metric gB multyplied by a positive constant c. A

globally defined potential for gB is given by Φ(z) = log K, where K is the Bergman

kernel of Ω (cfr. Example 1.3.2). The domain Ω can be chosen to be circular (i.e.

z ∈ Ω, θ ∈ R ⇒ eiθz ∈ Ω) and convex. Every bounded symmetric domain is the

product of irreducible factors, called Cartan domains. From E. Cartan classification,

Cartan domains can be divided into two categories, classical and exceptional ones (see

[28] for details). Classical domains correspond to the duals of A III, C I, D III and

BD I in Table 1.1 and can be described in terms of complex matrices as follows (m

and n are nonnegative integers, n ≥ m):

Ω1[m,n] = {Z ∈Mm,n(C), Im − ZZ∗ > 0} (dim(Ω1) = nm),

Ω2[n] = {Z ∈Mn(C), Z = ZT , In − ZZ∗ > 0} (dim(Ω2) = n(n+1)
2 ),

Ω3[n] = {Z ∈Mn(C), Z = −ZT , In − ZZ∗ > 0} (dim(Ω3) = n(n−1)
2 ),

Ω4[n] = {Z = (z1, . . . , zn) ∈ Cn,
n∑
j=1

|zj |2<1, 1 + |
n∑
j=1

z2
j |2−2

n∑
j=1

|zj |2 > 0}

(dim(Ω4) = n), n 6= 2,

where Im (resp. In) denotes the m×m (resp n× n) identity matrix, and A > 0 means

that A is positive definite. In the last domain we are assuming n 6= 2 since Ω4[2] is not

irreducible (and hence it is not a Cartan domain). In fact, the biholomorphism

f : Ω4[2]→ CH1 × CH1, (z1, z2) 7→ (z1 + iz2, z1 − iz2)

satisfies

f∗(2(ghyp ⊕ ghyp)) = gB.

The reproducing kernels of classical Cartan domains are given by

KΩ1(z, z) =
1

V (Ω1)
[det(Im − ZZ∗)]−(n+m),

KΩ2(z, z) =
1

V (Ω2)
[det(In − ZZ∗)]−(n+1),

KΩ3(z, z) =
1

V (Ω3)
[det(In − ZZ∗)]−(n−1),
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KΩ4(z, z) =
1

V (Ω4)

1 + |
n∑
j=1

z2
j |2 − 2

n∑
j=1

|zj |2
−n , (1.7)

where V (Ωj), j = 1, . . . , 4, is the total volume of Ωj with respect to the Euclidean

measure of the ambient complex Euclidean space (see [19] for details).

Notice that for some values ofm and n, up to multiply the metric by a positive constant,

the domains coincide with the hyperbolic space CHn, more precisely we have

(Ω1[1, n], gB) = (CHn, (n+ 1)ghyp),

(Ω2[1], gB) = (Ω3[2], gB) = (Ω4[1], gB) = (CH1, 2ghyp),

(Ω3[3], gB) = (CH3, 4ghyp).

In general, (Ω, gB) = (CHn, cghyp), for some c > 0, if and only if the rank of Ω is equal

to 1.

There are two kinds of exceptional domains Ω5[16] of dimension 16 and Ω6[27] of

dimension 27, corresponding to the dual of E III and E V II, that can be described in

terms of 3× 3 matrices with entries in the 8-dimensional algebra of complex octonions

OC. We refer the reader to [41] for a more complete description of these domains.

Remark 1.3.4. For future reference, observe that any irreducible bounded symmetric

domain of rank greater or equal than 2, can be exhausted by totally geodesic subman-

ifolds isomorphic to Ω4[3] (cfr. [49]). Notice also that every homogeneous noncompact

Kähler manifold different to (CHn1 × · · · × CHns , c1 ghyp ⊕ · · · ⊕ cs ghyp), for c1, . . . , cs

positive constant, admits Ω4[3] as a Kähler submanifold (this last fact is due to a private

conversation with A. J. Di Scala).

Example 1.3.5 (Calabi’s complete and not locally homogeneous metric). Consider the

complex tubular domain Mn = 1
2D⊕ iR

n ⊂ Cn, where D denotes any connected, open

subset of Rn. Let gn be the metric on Mn whose associated Kähler form is given by

ωn =
i

2
∂∂̄F (z),
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with

F (z) = f(z1 + z̄1, . . . , zn + z̄n),

where f : D → R is a radial function f(x1, . . . , xn) = y(r), with r = (
∑n

j=1 x
2
j )

1/2,

satisfying the differential equation(
y′

r

)n−1

y′′ = ey,

with initial conditions

y′(0) = 0, y′′(0) = ey(0)/n.

This metric introduced by Calabi [13] is the first example of complete and not locally

homogeneous Kähler–Einstein metric. In [56] J. A. Wolf gives a stronger more straight-

forward version of Calabi’s result, namely if n ≥ 2 and g is an E(n)-invariant Kähler

metric on Mn, where E(n) = Rn · SO(n), then (Mn, g) cannot be both complete and

locally homogeneous. Moreover, E(n) is the largest connected group of holomorphic

isometries of (Mn, g).

Example 1.3.6 (Taub-NUT metric). In [30] C. Lebrun constructs the following family

of Kähler forms on C2 defined by ωm = i
2∂∂̄Φm, where

Φm(u, v) = u2 + v2 +m(u4 + v4), for m ≥ 0,

and u and v are implicitly defined by

|z1| = em(u2−v2)u, |z2| = em(v2−u2)v.

For m = 0 one gets the flat metric, while for m > 0 each of the metrics of this family

represents the first example of complete Ricci–flat (non-flat) metric on C2 having the

same volume form of the flat metric ω0, i.e. ωm ∧ ωm = ω0 ∧ ω0. Moreover, for m > 0,

these metrics are isometric (up to dilation and rescaling) to the Taub-NUT metric.
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Chapter 2

Kähler immersions into complex

space forms

This chapter summarizes the work of E. Calabi [9] about the existence of a Kähler immersion of a

complex manifold into a finite or infinite dimensional complex space form. In particular, Calabi provides

an algebraic criterion to find out whether a complex manifold admits or not such an immersion. The

basic tool he introduces is a particular Kähler potential called diastasis, to the description of which

the first section is dedicated. The second section is devoted to illustrate Calabi’s criterion.

2.1 The diastasis function

LetM be a n-dimensional complex manifold endowed with a real analytic Kähler metric

g. The Kähler metric g is real analytic if fixed a local coordinate system z = (z1, . . . , zn)

on a neighbourhood U of a point p ∈ M , it can be described on U by a real analytic

Kähler potential Φ : U → R. In that case the potential Φ(z) can be analytically

continued to an open neighbourhoodW ⊂ U×U of the diagonal. Denote this extension

by Φ(z, w̄).

Definition 2.1.1. The diastasis function D(z, w) on W is defined by

D(z, w) = Φ (z, z̄) + Φ (w, w̄)− Φ (z, w̄)− Φ (w, z̄) . (2.1)
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The following proposition due to Calabi (cfr. [9, pp. 3, 4]) describes the basic

properties of the diastasis function.

Proposition 2.1.2 (E. Calabi). The diastasis function D(z, w) given by (2.1) satisfies

the following properties:

(i) it is uniquely determined by the Kähler metric and it does not depend on the choice

of the local coordinate system;

(ii) it is real valued in its domain of (real) analyticity;

(iii) it is symmetric in z and w and D(z, z) = 0;

(iv) once fixed one of its two entries, it is a Kähler potential.

From now on, when in a coordinate neighbourhood we fix a point p ∈ M with

coordinates w = (w1, . . . , wn) we write Dp(z) or Dw(z) for the diastasis centered at

that point. In particular, if p is the origin of the coordinate system chosen, we write

D0(z).

The following proposition shows how the diastasis function is related to the geodesic

distance explaining the name diastasis, from the Greek διάστασις, that means distance.

Proposition 2.1.3. If ρ(p, q) is the geodesic distance between p and q, of coordinates

respectively z = (z1, . . . , zn) and w = (w1, . . . , wn) then

D(z, w) = (ρ(p, q))2 +O((ρ(p, q))4).

Example 2.1.4. The Kähler potentials given by (1.3), (1.4) and (1.5), are actually

the diastasis functions for the complex space forms considered. In particular, given any

point p ∈ Cn, the globally defined diastasis D0(z) =
∑n

j=1 |zj |2 for the flat metric g0, is

exactly equal to the square of the geodesic distance.

Example 2.1.5. Let g∗ be the Kähler metric on C∗ whose associated Kähler form is

given by ω∗ = i
2∂∂̄|z|. The potential Φ(z) = |z| is globally defined, while the diastasis
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D0(z), centered at any point α ∈ C∗, is not. In fact, by definition we have

Dα(z) = |z|+ |α| −
√
zᾱ−

√
z̄α,

and as maximal domain of definition one can take C∗ \ L, where L is any half–line

starting from the origin of C such that α /∈ L.

The importance of the diastasis function for our purposes, is expressed by the fol-

lowing proposition:

Proposition 2.1.6. Let (M, g) be a Kähler manifold which admits a Kähler immersion

f : (M, g) → (S,G) into a real analytic Kähler manifold (S,G). Then the metric g is

real analytic. Let DM
p : U → R and DS

f(p) : V → R be the diastasis functions of (M, g)

and (S,G) around p and f(p) respectively. Then DS
f(p) ◦ f = DM

p on f−1(V ) ∩ U .

We now introduce the concept of Bochner’s coordinates (cfr. [6], [9], [24], [25], [42],

[45]). Given a real analytic Kähler metric g on M and a point p ∈ M , one can always

find local (complex) coordinates in a neighborhood of p such that

Dp(z) =

n∑
α=1

|zα|2 + ψ2,2, (2.2)

where Dp is the diastasis of g relative to p and ψ2,2 is a power series with degree ≥ 2

in both the variables z and z̄. These coordinates, uniquely defined up to a unitary

transformation (cfr. [6], [9]), are called the normal or Bochner’s coordinates around the

point p. Further we have the following:

Theorem 2.1.7 (E. Calabi). Let (M, g) be a n-dimensional Kähler manifold Kähler

immersed into a N -dimensional real analytic Kähler manifold (S,G). Then if z =

(z1, . . . , zn) are Bochner’s coordinates on M with respect to a point p ∈ M , then there

exist Bochner’s coordinates on S such that the immersion i : M → S is given in a

neighbourhood of p by a graph

(z1, . . . , zn) 7→ (z1, . . . , zn, f1(z), . . . , fN−n(z)), (2.3)

where for all j = 1, . . . , N − n, fj is a holomorphic function with no terms of degree

less then 2.
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Remark 2.1.8. Observe that choosing Bochner’s coordinates on a neighbourhood U

of a point p of a Kähler manifold (M, g) whose diastasis on U is given by D0(z), reduces

the Monge–Ampère equation (Eq. (1.2)) to the form

det(gαβ̄) = e−
λ
2

D0(z). (2.4)

In fact, once set Bochner’s coordinates, it is easy to check that the expansion of det(gαβ̄)

in the (z, z̄)-coordinates around the origin reads det(gαβ̄) = 1 + h(z, z̄), where h(z, z̄)

is a power series in z, z̄ which contains only mixed terms (i.e. of the form zj z̄k, j 6= 0,

k 6= 0). Further, also the expansion of D0(z), given by (2.2), contains only mixed terms,

forcing f + f̄ to be zero.

We conclude this section giving a very useful characterization of the diastasis, easily

deducible by the definition, in terms of its power expansion. In order to semplify

the notation, let us first fix the following multi-index convention that we are going to

use through all the thesis. We arrange every n-tuple of nonnegative integers as the

sequence mj = (mj,1, . . . ,mj,n) with not decreasing order, that is m0 = (0, . . . , 0) and

if |mj | =
∑n

α=1mj,α, we have |mj | ≤ |mj+1| for all positive integer j. Further zmj

denotes the monomial in n variables
∏n
α=1 z

mj,α
α . For example, if n = 2 we can consider

the ordering m0 = (0, 0), m1 = (1, 0), m2 = (0, 1), m3 = (1, 1), m4 = (2, 0), etc. and

we would have zm0 = 1, zm1 = z1, zm2 = z2, zm3 = z1z2, zm4 = z2
1 , etc. Notice that

the order is not uniquely determined by these rules, in fact, we are allowed to exchange

terms of equal module |mj | (i.e. in the 2 dimensional case we may also take m1 = (0, 1),

m2 = (1, 0), etc.).

Theorem 2.1.9 (Characterization of the diastasis). Among all the Kähler potentials the

diastasis Dp(z) is characterized by the fact that in every coordinate system (z1, . . . , zn)

centered at p, the ∞×∞ matrix of coefficients (ajk) in its power expansion around the

origin

Dp(z) =
∞∑

j,k=0

ajkz
mj z̄mk , (2.5)

satisfy aj0 = a0j = 0 for every nonnegative integer j.
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2.2 Calabi’s criterion

Consider the indefinite Hilbert space E of sequences (x1, x−1, x2, x−2, . . . , xj , x−j , . . . )

such that
∑

j∈Z∗ |xj |2 < ∞, endowed with the indefinite Hermitian metric defined by

the diastasis DE
0 (x) =

∑
j∈Z∗(sgnj)|xj |2. The indefinite Hilbert space E constitutes a

universal Kähler manifold, in the sense that it is a space in which every analytic Kähler

manifold can be Kähler immersed. More precisely we have the following (cfr. [9, pp.

6-9]):

Theorem 2.2.1 (E. Calabi). A complex manifold M endowed with a metric g can be

Kähler immersed into the indefinite Hilbert space E if and only if g is a real analytic

Kähler metric.

Let (SN , gb) be a N -dimensional complex space form of holomorphic sectional cur-

vature 4b (see Example 1.3.1). As remarked in the previous section, if there exists

a Kähler immersion of a complex manifold (M, g) into (SN , gb), then the metric g is

forced to be a real analytic Kähler metric, being the pull–back via a holomorphic map

of a real analytic Kähler metric. Thus consider a real analytic Kähler manifold (M, g)

and fix a coordinate system z = (z1, . . . , zn) with origin at p ∈ M . Let D0(z) be the

diastasis of g at p. Define the matrix (ajk) to be the∞×∞ matrix of coefficients given

by (2.5).

Definition 2.2.2. A real analytic Kähler manifold (M, g) is resolvable of rank N at

p ∈M if (ajk) is semipositive definite of rank N .

For b 6= 0, consider the function (ebD0(z)−1)/b and take its power expansion around

the origin

ebD0(z) − 1

b
=

∞∑
j,k=0

sjk z
mj z̄mk .

Definition 2.2.3. A real analytic Kähler manifold (M, g) is b-resolvable of rank N at

p ∈M if the matrix (sjk) is semipositive definite of rank N .
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In particular, (M, g) is 1-resolvable of rank N at p if the matrix of coefficients (bjk)

given by

eD0(z) − 1 =

∞∑
j,k=0

bjk z
mj z̄mk , (2.6)

is positive semidefinite of rank N . Similarly (M, g) is −1-resolvable of rank N at p if

the matrix of coefficients (cjk) given by

1− e−D0(z) =
∞∑

j,k=0

cjk z
mj z̄mk . (2.7)

is positive semidefinite of rank N .

Calabi’s criterion for local Kähler immersion can be stated as follows (cfr. [9, pp.

9, 18]):

Theorem 2.2.4 (local Calabi’s criterion). Let (M, g) be a real analytic Kähler manifold.

There exists a neighbourhood U of a point p that admits a Kähler immersion into CN

(resp. (SN , gb), for b 6= 0) if and only if (M, g) is resolvable (resp. b-resolvable) of rank

at most N at p ∈M . Furthermore if the rank is exactly N , the immersion is full.

In particular, a neighbourhood U 3 p of (M, g) admits a Kähler immersion into

CPN (resp. CHN ), if and only if M is 1-resolvable (resp. −1-resolvable) of rank at

most N at p.

Recall that a Kähler immersion f : (M, g) → (S,G) is full if the image f(M) ⊂ S is

not contained in any totally geodesic subspace of S.

In order to state the global version of Calabi’s criterion, we need two further results

(cfr. [9, pp. 8, 11, 18]):

Theorem 2.2.5 (rigidity). If a neighbourhood U of a point p admits a full Kähler im-

mersion into (SN , gb), then N is univocally determined by the metric and the immersion

is unique up to rigid motions of (SN , gb).

Theorem 2.2.6 (global character of resolvability). If a Kähler manifold (M, g) is re-

solvable (resp. b-resolvable) of rank N at a point p ∈ M , then it also is at any other

point.
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Last theorem states that if a local Kähler immersion around a point p ∈ M exists,

then the same is true for any other point. Due to this result, we can say that a manifold

is resolvable (resp. b-resolvable) without specifying the point. In particular, if (M, g)

is 1-resolvable, we say also that g is projectively induced. If M is chosen to be simply

connected, then it is possible to extend the immersion to the whole manifold. More

precisely, we have the following (cfr. [9, pp. 13, 20]):

Theorem 2.2.7 (global Calabi’s criterion). A simply connected complex manifold (M, g)

admits a Kähler immersion into CN (resp. (SN , gb), for b 6= 0) if and only if the fol-

lowing conditions are fulfilled:

(i) the metric is a real analytic Kähler metric,

(ii) for each point p ∈M the analytic extension of the diastasis Dp is single valued,

(iii) the Kähler manifold (M, g) is resolvable (resp. b-resolvable) of rank at most N .

Further, the immersion is also injective if and only if

(iv) Dp(z) = 0 only for z = 0.

We end this section with two examples of local Kähler immersions that cannot be

extended to global ones.

Example 2.2.8. Consider the Kähler metric g̃ on C∗ whose fundamental form is

ω̃ =
i

2

dz ∧ dz̄
|z|2

.

Since C admits a Kähler immersion f0 : C → CP∞ into CP∞ (cfr. Eq. (3.5) below)

and it covers C∗ throught the map exp : C → C∗, given by exp(z) = e2πiz, then a

neighbourhood of each point of C∗ can be Kähler immersed into CP∞. The immersion

cannot be extended to a global one. In fact, since exp∗(g̃) = g0, such Kähler immersion

f composed with exp, would be a Kähler immersion of C into CP∞. By Calabi’s rigidity

(Theorem 2.2.5), it would then exist a rigid motion T of C such that T ◦ f0 = f ◦ exp,

that is impossible since f0 is injective and exp is not.
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Example 2.2.9. Consider the complex torus of complex dimension 1, T1 = C/Z2,

endowed with the flat metric g0. The Kähler manifold (T1, g0) admits a local Kähler

immersion into CP∞. Since C is a covering for T1, by applying the same arguments

as in the previous example one can show that (T1, g0) does not admit a global Kähler

immersion into CP∞. Similar reasons show that a Riemann surface Σg admits a local

but not global Kähler immersion into CP∞, being covered by the hyperbolic disc of

complex dimension 1. Observe that the same results follow by Hulin’s work, since the

surfaces considered have nonpositive constant scalar curvature (cfr. Section 3.2 below).
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Chapter 3

Kähler immersions of

Kähler–Einstein manifolds

Although Calabi’s criterion solve theoretically the problem of characterizing Kähler manifolds admitting

a Kähler immersion into a complex space form, it can be very hard or sometimes impossible to verify

whether a particular manifold admits such a Kähler immersion or not. The problem of classifying such

manifolds has been, and still is, largely studied by many mathematicians, in particular when the metric

is Kähler–Einstein, that is the case we are interested in this thesis (see [17], [19], [24], [25], [30], [33],

[36], [43], [50], [51] and [52]). The first three sections of this chapter give an outline of the problem

in the case when the ambient space is finite dimensional, while the last one is devoted to the infinite

dimensional case.

3.1 Umehara’s work: Kähler immersions into CHN and CN

The following result due to M. Umehara [52] determines the nature of Kähler–Einstein

manifolds admitting a Kähler immersion into CHN or CN , for finite N . Even if in

this thesis we do not need directly the proof of Umehara’s theorem, we report it for

completeness and as example of beautiful application of the diastasis function.

Theorem 3.1.1 (M. Umehara). Every Kähler–Einstein manifold Kähler immersed into

CN or CHN is always totally geodesic.
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The proof of the theorem is based on results achieved by Umehara himself in [51]

that can be summarized in the following lemma:

Lemma 3.1.2. Let f1, . . . , fN be non-constant holomorphic functions on a complex

manifold M such that fj(p) = 0 for some p ∈M . Then

(1) e
∑N
j=1 |fj |2 /∈ Λ(M),

(2) (1−
∑N

j=1 |fj |2)−a /∈ Λ(M), (a > 0).

Here Λ(M) is a set of R-linear combinations of real analytic functions of the form

hk̄ + h̄k for h, k ∈ Hol(M). The set Λ(M) is an associative algebra and coincides with

the set of real analytic functions f on M whose associated form i
2∂∂̄f is of finite rank,

i.e. the matrix of coefficients (ajk) in the power expansion at a fixed point p ∈M

f(z) =

∞∑
j,k=0

ajkz
mj z̄mk ,

has finite rank (see Section 2.2 for notation).

Let us prove first Umehara’s result in the case when the ambient space is CN .

Proof of the first part of Theorem 3.1.1. Let (M, g) be a n-dimensional Kähler–Einstein

manifold Kähler immersed into CN , ω the Kähler form associated to g and

ρ = −i∂∂̄ log det(gαβ̄)

the Ricci form. Let z = (z1, . . . , zn) be a local coordinate system on U ⊂M such that

0 ∈ U and let

ω|U =
i

2
∂∂̄DM

0 ,

where DM
0 is the diastasis for g on U centered at 0. The Gauss’ Equation

ρ ≤ 2b(n+ 1)ω, (3.1)

where b is the holomorphic sectional curvature of the ambient space (see for example

[29, p. 177]), gives for b = 0 ρ ≤ 0, where the equality holds if and only if M is totally

geodesic. Hence, if M is not totally geodesic, ρ is negative definite and the Einstein’s
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Equation (1.1) implies λ < 0. Up to homothetic transformations of CN we can suppose

λ = −1.

SinceM admits a Kähler immersion into CN , by Proposition 2.1.6 there exists f1, . . . , fN

holomorphic functions such that

DM
0 (z) =

N∑
j=1

|fj(z)|2.

Thus, by previous lemma we have eDM0 /∈ Λ(M). On the other hand, by the Monge-

Ampère Equation (1.2) with λ = −1, the function log det(gαβ̄) is a Kähler potential for

g, hence we have

DM
0 (z) = h+ h̄+ log det(gαβ̄),

for a holomorphic function h. Hence

eDM0 = |eh|2 det(gαβ̄).

Since det(gαβ̄) ∈ Λ(M), for it is a real valued function being the matrix (gαβ̄) Hermitian,

we get the contradiction eDM0 ∈ Λ(M).

Before proving the second part of Umehara’s theorem we need the following lemma:

Lemma 3.1.3 (M. Umehara). Let M be a complex n-dimensional manifold and let

(z1, . . . , zn) be a local coordinate system on an open set U ⊂M . If f ∈ Λ(U) then

fn+1 det

(
∂2 log f

∂zα∂z̄β

)
∈ Λ(U).

Proof. Let us write fα for ∂f/∂zα, fβ̄ for ∂f/∂z̄β and fαβ̄ for ∂2f/∂zα∂z̄β . We have

∂2 log f

∂zα∂z̄β
=
fαβ̄
f
−
fαfβ̄
f2

,
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thus we get

fn+1 det

(
∂2 log f

∂zα∂z̄β

)
= f det

(
fαβ̄ −

fαfβ̄
f

)
= f det



f11̄ − f1f1̄/f . . . f1n̄ − f1fn̄/f 0

...
...

...

fn1̄ − fnf1̄/f . . . fnn̄ − fnfn̄/f 0

f1̄/f . . . fn̄/f 1



= f det



f11̄ . . . f1n̄ f1

...
...

...

fn1̄ . . . fnn̄ fn

f1̄/f . . . fn̄/f 1


= f det



f11̄ . . . f1n̄ f1

...
...

...

fn1̄ . . . fnn̄ fn

f1̄ . . . fn̄ f


.

Hence

fn+1 det

(
∂2 log f

∂zα∂z̄β

)
∈ Λ(U),

for it is finitely generated by holomorphic and antiholomorphic functions on U and it

is real valued, because the matrix
(
∂2 log f/∂zα∂z̄β

)
is Hermitian.

We can now prove the second part of Theorem 3.1.1.

Proof of the second part of Theorem 3.1.1. Let (M, g) be a n-dimensional Kähler–Einstein

manifold Kähler immersed into CHN . Comparing Gauss’ Equation (3.1) with b < 0

and Einstein’s Equation (1.1), we get that the Einstein constant λ is negative. Let

(z1, . . . , zn) be local coordinates on an open set U ⊂ M centered at p ∈ U . On U the

Monge–Ampère Equation (1.2) for g reads

e−
λ
2
DM0 (z) = |eh|2 det(gαβ̄),

for some holomorphic function h. By Proposition 2.1.6, for some holomorphic functions

ϕ1, . . . , ϕN that can be chosen to be zero at the origin, we have on U

DM
0 (z) = − log(1−

N∑
j=1

|ϕj(z)|2).

Setting f = 1−
∑N

j=1 |ϕj |2 we have

det(gαβ̄) = (−1)n det

(
∂2 log f

∂zα∂z̄β

)
.
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Thus

f
λ
2 = (−1)n|eh|2 det

(
∂2 log f

∂zα∂z̄β

)
,

and hence

f
λ
2

+n+1 = (−1)n|eh|2fn+1 det

(
∂2 log f

∂zα∂z̄β

)
.

By previous lemma we obtain

f
λ
2

+n+1 =

1−
N∑
j=1

|ϕj(z)|2
λ

2
+n+1

∈ Λ(U),

and by (2) of Lemma 3.1.2 we get λ2 +n+1 ≥ 0. On the other hand, the Gauss’ Equation

(3.1) implies n+ 1 + λ
2 ≤ 0. Thus λ = −2(n+ 1), and M is totally geodesic.

3.2 Kähler immersions into CPN

The problem of classifying Kähler–Einstein manifolds that admit a Kähler immersion

into the finite dimensional complex projective space CPN has been partially solved

by S. S. Chern [17] and K. Tsukada [50], that determined all the projectively induced

Kähler–Einstein manifolds in the case the codimension is respectively 1 or 2.

Theorem 3.2.1 (S. S. Chern, K. Tsukada). Let (M, g) be a n-dimensional Kähler–

Einstein manifold (n ≥ 2). If (M, g) admits a Kähler immersion into CPn+2, then

M is either totally geodesic or the quadric Qn in CPn+1 (which is totally geodesic in

CPn+2), with homogeneous equation Z2
0 + · · ·+ Z2

n+1 = 0 .

In the case of Kähler immersions of a complex space form (SN , gb) into another, the

problem has been solved by Calabi [9], which also gives the explicit expression of the

Kähler immersion:

f : (SN , gb) ↪→ (SN
′
, gb′)

z 7→

√∏|m1|−1
k=1 (b′ − kb)

m1!
zm1 , . . . ,

√∏|mN′ |−1
k=1 (b′ − kb)

mN ′ !
zmN′

 ,

(3.2)

(for b′ = kb, N ′ ≥
(
N+k
k

)
− 1, see Theorem 3.3.1 below for details) where we used the

multi-index notation introduced in Section 2.1, with additionally mj ! = mj,1! · · · · ·mj,n!.
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Observe that when b = b′ = 1, we have an isometric version of the Veronese embed-

ding. The following example describes another classical immersion, whose coefficients,

differently from the Veronese embedding, do not need to be modified to be a Kähler

immersion.

Example 3.2.2 (Segre embedding). Consider the map σ : CPn×CPm → CP(n+1)(m+1)−1

defined by

σ([Z0, . . . , Zn], [W0, . . . ,Wm]) 7→ [Z0W0, . . . , ZjWk, . . . , ZnWm],

where [Z0, . . . , Zn] and [W0, . . . ,Wm] are homogeneous coordinates for CPn and CPm

respectively and 0 ≤ j ≤ n, 0 ≤ k ≤ m, (j, k) 6= (0, 0), (j, k) 6= (n,m). It is easy to

verified that σ is a Kähler immersion.

In general, it is an open problem to classify projectively induced Kähler–Einstein

manifolds. The only known examples of such manifolds are homogeneous and it is

conjecturally true these are the only ones (see e.g. [3], [17], [43] and [50]).

Conjecture 3.2.3. If a complete Kähler–Einstein manifold admits a Kähler immersion

into CPN , then it is homogeneous.

The simplest examples of projectively induced homogeneous Kähler–Einstein man-

ifolds are given by Hermitian symmetric space of compact type:

Example 3.2.4 (Hermitian symmetric spaces of compact type). It is well-known since

the work of Borel and Weil (see [31] or [43] for a proof) that a Hermitian symmetric

space of compact type admits a full Kähler immersion into CPN (for further results see

[19]).

Observe that a homogeneous projectively induced Kähler–Einstein manifold is forced

to be compact (see [43, §2 p.178]). Thus we can state the following weaker conjecture:

Conjecture 3.2.5. If a complete Kähler–Einstein manifold admits a local Kähler im-

mersion into CPN , then it is compact.
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Notice that the previous conjecture does not hold if the manifold considered is

not equipped with a Kähler–Einstein metric. The following example due to A. J. Di

Scala private conversation, represents a complete not Einstein noncompact manifold

admitting a Kähler immersion into CP8.

Example 3.2.6. Consider the complex torus of complex dimension 2, T2 = C/Z2 ×

C/Z2, endowed with the flat metric ω0, and consider the map f : C→ T2, f(z) = (z, αz),

for α ∈ R\Q. Notice that this map is a injective immersion, in fact if (z, αz) ∼ (w,αw)

then on one hand z = w + m + in and αz = αw + p + iq for some integer m, n, p

and q, and on the other hand αz = αw + αm+ iαn. Since α is not rational this gives

m = n = p = q = 0, and thus z = w. Notice that f∗(ω0) = (|α|2 + 1)ω0. Since C/Z2

is algebraic, we have a holomorphic map T2 → CP2 × CP2. By the Segre embedding

σ : CP2 × CP2 → CP8 (see Example 3.2.2 above) we can consider CP2 × CP2 Kähler

immersed into CP8. Let us call ω2 the metric on T2 pull–back of the Fubini-Study metric

on CP8, and let ω1 = f∗(ω2). The metric ω1 is complete. In fact, since T2 is compact,

ω2 is complete, and there exist two positive constants a, b such that aω0 < ω2 < bω0.

Thus a f∗(ω0) < f∗(ω2) < b f∗(ω0), that is

a (|α|2 + 1)ω0 < ω1 < b (|α|2 + 1)ω0,

from which the completeness of ω1 is straightforward.

A different approach to the problem is considered by D. Hulin (cfr. [24], [25]) that

studies Kähler–Einstein manifolds Kähler immersed into CPN in relation with the sign

of the Einstein constant. By the Bonnet–Meyers Theorem it follows that if the Einstein

constant of a Kähler–Einstein manifold M is positive then M is compact. Hulin proves

that in the case when M is projectively induced the converse is also true (see [25] for a

proof and [3] for further details):

Theorem 3.2.7 (D. Hulin). Let (M, g) be a (connected) Kähler–Einstein manifold

Kähler immersed into CPN . Then the Einstein constant is strictly positive.
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Corollary 3.2.8. Any Calabi-Yau manifold is not projectively induced.

We conclude this section with the following theorem that summarizes some further

results given in [24]:

Theorem 3.2.9 (D. Hulin). Let (M, g) be a Kähler–Einstein manifold which admits a

Kähler immersion f : M → CPN into CPN . Then the Einstein constant λ is rational.

Further, if the immersion is full and we write λ = 2p/q > 0, where p/q is irreducible,

then p ≤ n + 1 and if p = n + 1 (resp. p = n), then (M, g) = (CPn, qGFS) (resp.

(M, g) = (Qn, qGFS)).

3.3 The infinite dimensional case

In this section we consider Kähler immersions of Kähler–Einstein manifolds into infinite

dimensional complex space forms, namely CH∞, `2(C) and CP∞. Obviously if a Kähler

manifold admits a Kähler immersion into CH∞ or `2(C) then it is noncompact by

the maximum principle. Also for a Kähler immersion into CP∞ we can assume M

noncompact by the following reason: if a compact Kähler manifold M admits a Kähler

immersion f : M → CP∞, then f cannot be full, i.e. there exists a positive integer N

such that f(M) ⊂ CPN ⊂ CP∞. In fact, assume by contradiction that f : M → CP∞

is a full Kähler immersion. Then we can write f(p) = [s0(p), . . . , sj(p), . . . ], where each

sj is a holomorphic section of some holomorphic line bundle L on M . Since the map

is full, the {sj} are linearly independent in contradiction with the fact that the space

of holomorphic sections H0(L) on a compact manifold is of finite dimension. Therefore

troughout this section we can assume our manifold to be noncompact.

As application of its criterion Calabi studies the existence of Kähler immersion of a

complex space form into another (cfr. [9, pp. 21-22]):

Theorem 3.3.1 (E. Calabi). A complex space form (SN , gb) admits a global Kähler

immersion into (SN
′
, gb′) if an only if b ≤ b′ and

either b ≤ 0 and N ′ =∞,
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or b′ = kb for some positive integer k, and N ′ ≥
(
N+k
k

)
− 1 for N finite, N ′ =∞ for

N =∞.

In the proof of the theorem, Calabi gives the explicit expression of the full Kähler

immersion, that is the map described in (3.2). In particular if we take the ambient

space to be infinite dimensional and the holomorphic sectional curvature to be 0, 1 or

−1 respectively, we have the following full Kähler immersions:

f : CHn ↪→ `2(C) : z 7→

(
. . . ,

√
(|mj | − 1)!

mj !
zmj , . . .

)
, (3.3)

f : CHn ↪→ CP∞ : z 7→

(
. . . ,

√
|mj |!
mj !

zmj , . . .

)
, (3.4)

f : Cn ↪→ CP∞ : z 7→

(
. . . ,

√
1

mj !
zmj , . . .

)
. (3.5)

Notice that, since the immersions above are full, it follows from Calabi’s rigidity (The-

orem 2.2.5) that if b and b′ have different sign, a complex space form (SN , gb) cannot

be Kähler immersed into a finite dimensional complex space form (SN
′
, gb′) (in [31] this

assertion has been generalized to Hermitian symmetric spaces, namely an Hermitian

symmetric space cannot Kähler immersed into another of different type).

In the following theorem which will be used later, S. Bochner [6] consider the rela-

tions between Kähler manifolds admitting a Kähler immersion into `2(C) and the ones

admitting a Kähler immersion into CP∞.

Theorem 3.3.2 (S. Bochner). If a Kähler manifold (M, g) admits a Kähler immersion

into the infinite dimensional flat space `2(C) then it also does into CP∞.

Proof. Fix a local coordinate system (z1, . . . , zn) on a neighbourhood U of p ∈M . By

Theorem 2.1.9 for some holomorphic functions f1, . . . , fj , . . . , the diastasis function for

g reads

DM
0 (z) =

∞∑
j=1

|fj |2.
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Let DM
0 (z) = logψ with ψ = eDM0 (z). Then for some suitable functions hj , j = 1, 2, . . .

we get

ψ = 1 +
∞∑
j=1

|hj |2,

and the conclusion follows.

Notice that the same assertion as in Theorem 3.3.2 does not hold for finite dimen-

sional ambient spaces. In fact, in [53] Umehara proves that if a Kähler manifold admits

a Kähler immersion into CN then it cannot be Kähler immersed into any complex hy-

perbolic space or complex projective space, and if it can be Kähler immersed into CHN

then it cannot be into any complex projective space (this last assertion has been re-

cently generalized by A. J. Di Scala and A. Loi [20] by replacing CHN with any bounded

domain endowed with its Bergman metric). Although, we can prove a statement similar

to Bochner’s one for Kähler immersion into CH∞. More precisely we have the following:

Theorem 3.3.3. If a Kähler manifold (M, g) admits a Kähler immersion into the

infinite dimensional hyperbolic space CH∞ then it also does into `2(C).

Proof. Consider a local coordinate system (z1, . . . , zn) on M in a neighbourhood of

p ∈ M and let DM
0 (z) be the diastasis function for g at p. By Theorem 2.1.9, there

exists f1, . . . , fj , . . . holomorphic functions such that

DM
0 (z) = − log(1−

∞∑
j=1

|fj |2).

Hence

DM
0 (z) =

∞∑
j=1

|hj |2,

for some suitable holomorphic functions hj , j = 1, 2, . . . , and we are done.

Regarding CH∞ and `2(C), notice that Umehara’s result cannot be extended to

that cases. In fact, it is enough to consider the Kähler immersion (3.3) given by Calabi

of CHn into `2(C). Nevertheless, we conjecture that this is the only exception:
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Conjecture 3.3.4. If a Kähler–Einstein manifold (M, g) admits a Kähler immersion

into CH∞ or `2(C), then either (M, g) is totally geodesic or (M, g) = (CHn1 × · · · ×

CHnr , c1ghyp ⊕ · · · ⊕ crghyp) for positive constants c1, . . . , cr and some r ∈ N.

In [19] A. J. Di Scala and A. Loi prove this conjecture holds true in the case when

(M, g) is a bounded symmetric domain. The remaining part of this section is dedicated

to a summary of their work. We report a proof of the main theorem since it is an

example of direct application of Calabi’s criterion. Observe that the second part of that

proof is a simplified version of the original ones, based on Remark 1.3.4.

Remark 3.3.5. Notice that by circularity of Ω, the diastasis around the origin of

(Ω, gB) is given by

DΩ
0 (z) = log(V (Ω)K(z, z)), (3.6)

where V (Ω) is the Euclidean volume of Ω. For an explicit proof of equality (3.6) see

Proposition 4.3.2.

Remark 3.3.6. Let gB be the Bergman metric on a bounded domain D (see Example

1.3.2). Then (D, gB) admits by definition a full Kähler immersion into CP∞ (see [31]

and [27] for details). Further the immersion can be written as f = (f0, f1, . . . , fj , . . . ),

where {fj} is a orthonormal basis for the Hilbert space L2
hol(D).

If two Kähler manifolds (M1, g1) and (M2, g2) admit Kähler immersions, say f1 and

f2, into `2(C), then the Kähler manifold (M1×M2, g1⊕ g2) admits a Kähler immersion

into `2(C) obtained by mapping (z1, z2) ∈M1×M2 to (c1f1(z1), c2f2(z2)) ∈ `2(C). The

converse is also true, as expressed by the following lemma.

Lemma 3.3.7 (A. J. Di Scala, A. Loi). A Kähler map f : M × N → `2(C) from the

product M ×N of two Kähler manifolds is a product, i.e. up to unitary transformation

of `2(C) f(p, q) = (f1(p), f2(q)), where f1 : M → `2(C) and f2 : N → `2(C) are Kähler

maps.

Theorem 3.3.8 (A. J. Di Scala, A. Loi). If an open subset U of a n-dimensional

Hermitian symemtric space of noncompact type (Ω, cgB) admits a Kähler immersion
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into CH∞ then (Ω, cgB) = CHn. If U admits a Kähler immersion into `2(C) then

(Ω, gB) is either (CHn, c0ghyp) or (CHn1 × · · · × CHnk , c1ghyp ⊕ · · · ⊕ ckghyp) for some

c0, c1, . . . , ck ∈ R+. Furthermore, if f : CHn1 × · · · × CHnk → `2(C) is a Kähler

immersion then, up to unitary transformation of `2(C), f is the product of k maps i.e.

f = (f1, . . . , fk) where each fj : CHnj → `2(C) is given by (3.3) with n = nj.

Proof. Let f : U → CH∞ be a Kähler immersion of an open subset U of (Ω4[3], gB).

We can assume without loss of generality that the origin belongs to U . By (3.6), the

diastasis of gB at 0 restricted to U is given by

DΩ4
0 (z) = log(V (Ω4[3])K4(z, z̄)),

where K4 is the Bergman kernel of Ω4. In order to study the −1-resolvability of gB, we

consider the following power expansion

1− e−D
Ω4
0 (z) =

∑
jk

cjkz
mj z̄mk . (3.7)

By the expression of the Bergman kernel given by (1.7) the matrix (cjk) is such that

cjk = 0 for j, k sufficiently large. Thus, by Theorem 2.2.4 there exists a nonnegative

integer N such that f(U) ⊂ CHN ⊂ CH∞ and by Umehara’s Theorem 3.1.1 Ω = CHn

and cgB = ghyp.

In order to prove the second part of the theorem, it is enough to show that an open

subset U of (Ω4[3], gB) does not admit a Kähler immersion into `2(C) (see Remark

1.3.4). By (1.7) and (3.6), the diastasis of gB around the origin restricted to U is given

by

DΩ4
0 (z) = −3 log

(
1− 2(|z1|2 + |z2|2 + |z3|2) + |z2

1 + z2
2 + z2

3 |2
)
,

thus the matrix of coefficients (ajk) in the power expansion (2.5) for j, k = 0, . . . , 9
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reads

A = 3



0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0

0 0 0 0 1 0 0 −1 0 −1

0 0 0 0 0 4 0 0 0 0

0 0 0 0 0 0 4 0 0 0

0 0 0 0 −1 0 0 1 0 −1

0 0 0 0 0 0 0 0 4 0

0 0 0 0 −1 0 0 −1 0 1



.

The matrix A is not semipositive definite, indeed it has a negative eigenvalue, namely

−3. Hence the whole matrix (ajk) cannot be semipositive definite and the diastasis

of gB is not resolvable of any rank. Finally, the proof of the last part of the theorem

follows by Lemma 3.3.7 and Calabi’s rigidity (Theorem 2.2.5).
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Chapter 4

Construction of Kähler immersions

of complete nonhomogeneous

Kähler–Einstein manifolds into

CP∞

This chapter deals with Kähler immersions of complete noncompact Kähler-Einstein manifolds into

CP∞. The first section presents our results with a brief outline of the problematic correlated. The

second one is dedicated to some general facts about the constant multypling the metric in relation with

Kähler immersions into CP∞. The last two sections are devoted to the proof of our results.

4.1 Introduction

To the author’s knowledge, the only known examples of Kähler-Einstein metrics admit-

ting a full Kähler immersion into CP∞ are the flat metric on Cn, the hyperbolic metric

on CHn (see Section 3.3 or [9]) or the Bergman metric on a bounded homogeneous do-

main of Cn (cfr. [27]). Hence, it is natural to ask if there exists a projectively induced,

complete, nonhomogeneous Kähler-Einstein manifold. The following theorem gives a
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positive answer to this question (see Section 4.4 for the definition of Cartan–Hartogs

domain).

Theorem 4.1.1. There exists a continuous family of homothetic, complete, nonho-

mogeneous and projectively induced Kähler-Einstein metrics on each Cartan–Hartogs

domain based on an irreducible bounded symmetric domain of rank r 6= 1.

Our result should be compared with the compact case. First, it is an open problem

to classify the compact Kähler-Einstein manifolds which admit a Kähler immersion

into a finite dimensional complex projective space (cfr. Section 3.2). Actually, the only

known examples of such manifolds are homogeneous and it is conjecturally true these

are the only ones (cfr. Conjecture 3.2.3). Moreover, a family as in the previous theorem

cannot exist in the compact case. In fact, let cg, c > 0, be homothetic Kähler metrics

on a compact complex manifold M such that (M, g) admits a Kähler immersion into

CPN . Then if (M, cg) admits a Kähler immersion into CPN , c is forced to be a positive

integer. Indeed, the Kähler form ω on M is integral (being the pull-back of the integral

Fubini-Study form on CPN ), namely
∫

Γ ω ∈ Z, for Γ ∈ H2(M,Z). Thus, if (M, cg)

admits a Kähler immersion into CPN , we have c
∫

Γ ω ∈ Z, implying c ∈ Z.

The proof of Theorem 4.1.1 is based on recent results (cfr. [41], [55]) about Einstein

metrics on Cartan–Hartogs domains and on the following theorem (see Section 4.3 below

or [2] for the definition of the Wallach set of the domain Ω).

Theorem 4.1.2. Let Ω be an irreducible bounded symmetric domain endowed with its

Bergman metric gB. Then (Ω, cgB) admits a equivariant Kähler immersion into CP∞

if and only if cγ belongs to W (Ω) \ {0}, where γ denotes the genus of Ω.

4.2 The importance of the constant

Let (M, g) be a Kähler manifold and let c be a positive constant. The multiplication

of the metric g by c is harmless when one studies Kähler immersions into the infinite

dimensional complex Euclidean space `2(C) equipped with the flat metric g0. In fact,
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if f : M → `2(C) satisfies f∗(g0) = g then (
√
cf)∗(g0) = cg. Although, the situation

is much different when one deals with Kähler immersion into CP∞. We prove in this

section a general fact (Corollary 4.2.2 below) about projectively induced metrics in

relation with the value of the constant.

Lemma 4.2.1. If a Kähler manifold (M, g) does not admit a local Kähler immersion

into `2(C) then there exists ε0 > 0 such that for all 0 < ε < ε0, (M, εg) does not admit

a local Kähler immersion into CP∞.

Proof. Fix a coordinate system (z1, . . . , zn) on an open set U ⊂ M and let DM
0 (z) be

the diastasis function for g on U centered at the origin. Let (ajk) be the matrix of

coefficients in the power expansion of DM
0 (z) around the origin given by (2.5). If (M, g)

does not admit a local Kähler immersion into `2(C) then there exists a submatrix

A = (ajk)s1≤j,k≤sr of (ajk) such that det(A) < 0. The power expansion around the

origin of eεDM0 − 1 can be written as

eεD
M
0 (z) − 1 =

∞∑
j,k=0

ε (ajk + εbjk) z
mj z̄mk .

for suitable bjk. Let B = (bjk)s1≤j,k≤sr . We have

det(A+ εB) = det(A) + P (ε), (4.1)

where P (ε) is a polinomial in the variable ε with coefficients depending on A and B and

such that P (0) = 0, resulting by expanding the left hand side of (4.1). Since P (ε) is a

polinomial, there exists ε0 < 1 such that P (ε) < | det(A)| for all ε < ε0. It follows that

for all ε < ε0, det(A + εB) < 0 and conclusion follows by Calabi’s criterion (Theorem

2.2.4).

Observe that we may also have P (ε) < 0 for some value of ε > 1. In that case we

could have det(A+εB) < 0 for some discrete values of ε. Notice also that the procedure

described does not determine the highest value of ε0 or the value of any discrete point.

In the next section we show how to establish exactly for which values of the constant

the immersion exists in the case when M is a bounded symmetric domain.
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Corollary 4.2.2. A Kähler manifold (M, cg) admits a local Kähler immersion into

CP∞ for all c > 0 if and only if (M, g) does into `2(C).

Proof. If (M, c0g) does not admit a Kähler immersion into CP∞ for some c0 > 0, then

by Bochner’s Theorem 3.3.2 (M, c0g) does not admit a Kähler immersion into `2(C)

either. Further by the discussion at the beginning of this section, (M, cg) does not

admit a Kähler immersion into `2(C) for any value of c > 0, in particular for c = 1.

Conversely, if (M, g) does not admit a Kähler immersion into `2(C), by previous lemma

there exists c0 small enough such that (M, c0g) cannot be Kähler immersed into CP∞,

and we are done.

4.3 The Wallach set and Kähler immersions into CP∞

A bounded symmetric domain (Ω, cgB) is uniquely determined by a triple of integers

(r, a, b), where r represents the rank of Ω and a and b are positive integers. It remains

defined by (r, a, b) the genus γ = (r − 1)a + b + 2. Observe that (Ω, cgB) = CHn if

and only if its rank is equal to 1. The table below summarizes the numerical invariants

and the dimension of Ω according to its type (for a more detailed description of this

invariants, which is not necessary in our approach, see e.g. [2], [58]).

Table 4.1: Bounded symmetric domains, invariants and dimension.

Type r a b γ dimension

Ω1[m,n] m 2 n−m n+m nm

Ω2[n] n 1 0 n+ 1 n(n+ 1)/2

Ω3[n] [n/2] 4
0 (n even)

n− 1 n(n− 1)/2
2 (n odd)

Ω4[n] 2 n− 2 0 n n

ΩV [16] 2 6 4 12 16

ΩV I [27] 3 8 0 18 27
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We give now the definition of the Wallach set of an irreducible bounded symmetric

domain (Ω, cgB) of genus γ and Bergman kernel K, referring the reader to [2], [21] and

[54] for more details and results. This set, denoted by W (Ω), consists of all η ∈ C such

that there exists a Hilbert space Hη whose reproducing kernel is K
η
γ . This is equivalent

to the requirement that K
η
γ is positive definite, i.e. for all n-tuples of points x1, . . . , xn

belonging to Ω the n×n matrix (K(xα, xβ)
η
γ ), is positive semidefinite. It turns out (cfr.

[2, Cor. 4.4, p. 27] and references therein) that W (Ω) consists only of real numbers

and depends on two of the domain’s invariants, a and r. More precisely we have

W (Ω) =
{

0,
a

2
, 2
a

2
, . . . , (r − 1)

a

2

}
∪
(

(r − 1)
a

2
, ∞

)
. (4.2)

The set Wd =
{

0, a2 , 2a2 , . . . , (r − 1)a2
}
and the interval Wc =

(
(r − 1)a2 , ∞

)
are called

respectively the discrete and continuous part of the Wallach set of the domain Ω.

Remark 4.3.1. If Ω has rank r = 1, namely Ω is the complex hyperbolic space CHd,

then gB = (d+ 1)ghyp. In this case (and only in this case) Wd = {0} and Wc = (0,∞).

If d = 1, the Hilbert space H associated to the kernel

K =
1

(1− |z|2)α
, α > 0,

is the space

H =

f ∈ Hol(CH1), f(z) =
∞∑
j=0

ajz
j |

∞∑
j=0

Γ(α)Γ(j + 1)

Γ(j + α)
|aj |2 <∞

 ,

endowed with the scalar product

< g, h >=

∞∑
j=0

Γ(α)Γ(j + 1)

Γ(j + α)
bj c̄j ,

where g(z) =
∑∞

j=0 bjz
j , h(z) =

∑∞
j=0 cjz

j and Γ is the Gamma function.

If α > 1, H is the weighted Bergman space of Ω, namely the Hilbert space of analytic

functions f ∈ Hol(CH1) such that∫
CH1

|f(z)|2dµα(z) <∞,

where µα(z) is the Lebesgue measure on (CH1, αωB).
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Consider a bounded symmetric domain (Ω, cgB) and let K be its Bergman kernel.

The following proposition provides the expression of the diastasis function for (Ω, gB)

and proves a very useful property of the matrix of coefficients (bjk) given by (2.6).

Proposition 4.3.2. Let Ω be a bounded symmetric domain. Then the diastasis for its

Bergman metric gB around the origin is

DΩ
0 (z) = log(V (Ω)K(z, z)), (4.3)

where V (Ω) denotes the total volume of Ω with respect to the Euclidean measure of

the ambient complex Euclidean space. Moreover the matrix (bjk) given by (2.6) for DΩ
0

satisfy bjk = 0 whenever |mj | 6= |mk|.

Proof. The Kähler potential DΩ
0 (z) is centered at the origin, in fact by the reproducing

property of the kernel we have

1

K(0, 0)
=

∫
Ω

1

K(ζ, 0)
K(ζ, 0)dµ,

hence K(0, 0) = 1/V (Ω), and substituting in (4.3) we obtain DΩ
0 (0) = 0. By the

circularity of Ω (i.e. z ∈ Ω, θ ∈ R imply eiθz ∈ Ω), rotations around the origin are

automorphisms and hence isometries, that leave DΩ
0 invariant. Thus we have DΩ

0 (z) =

DΩ
0 (eiθz) for any 0 ≤ θ ≤ 2π, that is, each time we have a monomial zmj z̄mk in DΩ

0 (z),

we must have

zmj z̄mk = ei|mj |θzmje−i|mk|θz̄mk = zmj z̄mke(|mj |−|mk|)iθ,

implying |mj | = |mk|. This means that every monomial in the expansion of DΩ
0 (z)

has holomorphic and antiholomorphic part with the same degree. Hence, by Theorem

2.1.9, DΩ
0 (z) is the diastasis for gB. By the chain rule the same property holds true for

eDΩ
0 (z) − 1 and the second part of the proposition follows immediately.

Proof of Theorem 4.1.2. Let f : (Ω, cgB) → CP∞ be a Kähler immersion, we want to

show that cγ belongs to W (Ω), i.e. Kc is positive definite. Since Ω is contractible it

is not hard to see that there exists a sequence fj , j = 0, 1 . . . of holomorphic functions
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defined on Ω, not vanishing simultaneously, such that the immersion f is given by

f(z) = [. . . , fj(z), . . . ], j = 0, 1 . . . , where [. . . , fj(z), . . . ] denotes the equivalence class

in `2(C) (two sequences are equivalent iff they differ by the multiplication by a nonzero

complex number). Let x1, . . . , xn ∈ Ω. Without loss of generality (up to unitary

transformation of CP∞) we can assume that f(0) = e1, where e1 is the first vector of

the canonical basis of `2(C), and f(xj) /∈ H0, ∀ j = 1, . . . , n. Therefore, by Theorem

2.1.6 and Proposition 4.3.2, we have

cDΩ
0 (z) = log[V (Ω)c Kc(z, z)] = log

1 +
∞∑
j=1

|fj(z)|2

|f0(z)|2

 , z ∈ Ω \ f−1(H0).

V (Ω)c Kc(xα, xβ) = 1 +
∞∑
j=1

gj(xα)gj(xβ), gj =
fj
f0
.

Thus for every (v1, . . . vn) ∈ Cn one has

n∑
α,β=1

vαKc(xα, xβ)v̄β =
1

V (Ω)c

∞∑
k=0

|v1gk(x1) + · · ·+ vngk(xn)|2 ≥ 0, g0 = 1,

and hence the matrix (Kc(xα, xβ)) is positive semidefinite.

Conversely, assume that cγ ∈ W (Ω). Then, by the very definition of Wallach set,

there exists a Hilbert space Hcγ whose reproducing kernel is Kc =
∑∞

j=0 |fj |2, where

fj is an orthonormal basis of Hcγ . Then the holomorphic map f : Ω → `2(C) ⊂ CP∞

constructed by using this orthonormal basis satisfies f∗(gFS) = cgB. In order to prove

that this map is equivariant write Ω = G/K where G is the simple Lie group acting

holomorphically and isometrically on Ω and K is its isotropy group. For each h ∈ G

the map f ◦ h : (Ω, cgB) → CP∞ is a full Kähler immersion and therefore by Calabi’s

rigidity (Theorem 2.2.5) there exists a unitary transformation Uh of CP∞ such that

f ◦ h = Uh ◦ f and we are done.

Remark 4.3.3. In [2] it is proven that if η belongs to W (Ω) \ {0} then G admits a

representation in the Hilbert space Hη. This is in accordance with our result. Indeed

if cγ belongs to W (Ω) \ {0} then the correspondence h 7→ Uh, h ∈ G defined in the last

part of the proof of Theorem 4.1.2 is a representation of G.
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Observe that by Corollary 4.2.2 it follows that a bounded symmetric domain (Ω, cgB)

admits a Kähler immersion into `2(C) if and only if Ω = CHn1 × · · · × CHnk and

cgB = c1ghyp ⊕ · · · ⊕ ckghyp, for some suitable positive constant c1, . . . , ck. In fact, by

Theorem 4.1.2, the hyperbolic space is the only bounded symmetric domain admitting

a Kähler immersion into CP∞ for any value of the constant multiplying the metric.

This can be an alternative proof of Theorem 3.3.8 (see also [19]).

Furthermore, if (Ω, cgB) admits a Kähler immersion into CHN (resp. CH∞) then

(Ω, cgB) = (CHn, ghyp) and c = 1 (resp. c ≤ 1). In fact, a Kähler manifold which

admits a Kähler immersion into a complex hyperbolic space is locally irreducible (cfr.

[1, Th. 17]), and by Theorem 3.3.3 any bounded symmetric domain different from the

hyperbolic space cannot be Kähler immersed into CH∞. The values of c follow from

Calabi’s Theorem 3.3.1.

4.4 Proof of the main result

Let Ω be an irreducible bounded symmetric domain of complex dimension d and genus

γ. For all positive real numbers µ consider the family of Cartan-Hartogs domains

MΩ(µ) =
{

(z, w) ∈ Ω× C, |w|2 < Nµ
Ω(z, z)

}
, (4.4)

where NΩ(z, z) is the generic norm of Ω, i.e.

NΩ(z, z) = (V (Ω)K(z, z))
− 1
γ ,

with V (Ω) the total volume of Ω with respect to the Euclidean measure of the ambient

complex Euclidean space and K(z, z) is its Bergman kernel.

The domain Ω is called the base of the Cartan–Hartogs domain MΩ(µ) (one also

says that MΩ(µ) is based on Ω). Consider on MΩ(µ) the metric g(µ) whose globally

defined Kähler potential around the origin is given by

D0(z, w) = − log(Nµ
Ω(z, z)− |w|2). (4.5)
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The following theorem summarizes what we need about these domains (see [41] and

[55] for a proof).

Theorem 4.4.1 (G. Roos, A. Wang, W. Yin, L. Zhang, W. Zhang). Let µ0 = γ/(d+1).

Then (MΩ(µ0), g(µ0)) is a complete Kähler–Einstein manifold which is homogeneous if

and only if the rank of Ω equals 1, i.e. Ω = CHd.

Remark 4.4.2. Observe that when Ω = CHd, we have µ0 = 1, MΩ(1) = CHd+1 and

g(1) = ghyp.

In the following proposition, interesting on its own sake, we describe the Kähler

immersions of a Cartan–Hartogs domain into CP∞ in terms of its base.

Proposition 4.4.3. The potential D0(z, w) given by (4.5) is the diastasis around the

origin of the metric g(µ). Moreover, cg(µ) is projectively induced if and only if (c +

m)µγ gB is projectively induced for every integer m ≥ 0.

Proof. The power expansion around the origin of D0(z, w) can be written as

D0(z, w) =

∞∑
j,k=0

Ajk(zw)mj (z̄w̄)mk (4.6)

where mj are ordered (d+ 1)-uples of integer and

(zw)mj = z
mj,1
1 · · · zmj,dd wmj,d+1 .

In order to prove that D0(z, w) is the diastasis for g(µ) we need to verify that Aj0 =

A0j = 0 (see Theorem 2.1.9). This is straightforward. Indeed if we take derivatives with

respect either to z or z̄ is the same as deriving the function − log(Nµ
Ω(z, z)) = µ

γDΩ
0 (z)

that is the diastasis of (Ω, µγ gB), thus we obtain 0. If we take derivatives with respect

either to w or w̄ we obtain zero no matter how many times we derive with respect to z

or z̄, since D0(z, w) is radial in w.

In order to prove the second part of the proposition take the function

ecD0(z,w) − 1 =
1

(Nµ
Ω(z, z)− |w|2)c

− 1, (4.7)
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and using the same notations as in (4.6) write the power expansion around the origin

as

ecD0(z,w) − 1 =

∞∑
j,k=0

Bjk(zw)mj (z̄w̄)mk .

By Calabi’s criterion (Theorem (2.2.4)), cg(µ) is projectively induced if and only if

B = (Bjk) is positive semidefinite of infinite rank. The generic entry of B is given by

Bjk =
1

mj ! ·mk!

∂|mj |+|mk|

∂(zw)mj∂(z̄w̄)mk

(
1

(Nµ
Ω(z, z)− |w|2)c

− 1

) ∣∣∣∣∣
0

,

where mj ! = mj,1! · · ·mj,d+1! and ∂(zw)mj = ∂z
mj,1
1 · · · ∂zmj,dd ∂wmj,d+1 . By Proposition

(4.3.2) we have

mj,1 + · · ·+mj,d 6= mk,1 + · · ·+mk,d ⇒ Bjk = 0, (4.8)

and since (4.7) is radial in w we also have

mj,d+1 6= mk,d+1 ⇒ Bjk = 0. (4.9)

Thus, B is a ∞×∞ matrix of the form

B =



0 0 0 0 0 0

0 E1 0 0 0 . . .

0 0 E2 0 0 . . .

0
... 0 E3 0 . . .

0
... 0

. . .


,

where the generic block Ei contains derivatives ∂(zw)mj∂(z̄w̄)mk of order 2i, i = 1, 2, . . .

such that |mj | = |mk| = i. We can further write

Ei =


Fz(i)(0) 0 0

0 Fw(i)(0) 0

0 0 F(z,w)(i)(0)

 , (4.10)

where Fz(i)(0) (resp. Fw(i)(0), F(z,w)(i)(0)) contains derivatives ∂(zw)mj ∂(z̄w̄)mk (of

order 2i with |mj | = |mk| = i) such thatmj,d+1 = mk,d+1 = 0 (resp. mj,d+1 = mk,d+1 =

i, mj,d+1,mk,d+1 6= 0, i). (Notice also that we have 0 in all the other entries because of
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(4.8) and (4.9)). Since the derivatives are evaluated at the origin, deriving (4.7) with

respect to ∂(zw)mj ∂(z̄w̄)mk with |mj | = |mk| = i and mj,d+1 = mk,d+1 = 0 is the

same as deriving the function

1

(Nµ
Ω(z, z))c

− 1 = e
cµ
γ

DΩ
0 (z) − 1. (4.11)

Thus, by Calabi’s criterion, all the blocks Fz(i)(0) are positive semidefinite if and only if

cµγ gB is projectively induced. Observe that the blocks Fw(i)(0) is semipositive definite

without extras assumptions. Indeed if we consider derivatives ∂(zw)mj∂(z̄w̄)mk of (4.7)

with |mj | = |mk| = i and mj,d+1 = mk,d+1 = i, since Nµ
Ω(z, z) evaluated in 0 is equal

to 1, it is the same as deriving the function 1/(1− |w|2)c − 1 =
(∑∞

j=0 |w|2j
)c
− 1 and

the claim follows. Finally, consider the block F(z,w)(i)(0). It can be written as

F(z,w)(i)(0) =



Hz(i−1),w(1)(0) 0 0 0

0 Hz(i−2),w(2)(0) 0 0

...
. . .

0 0 0 Hz(1),w(i−1)(0)


where the generic block Hz(i−m),w(m)(0), 1 ≤ m ≤ i − 1, contains derivatives ∂(zw)mj

∂(z̄w̄)mk of order 2i such that |mj | = |mk| = i and mj,d+1 = mk,d+1 = m evaluated at

zero (as before, by (4.8) and (4.9) all entries outside these blocks are 0). Now it is not

hard to verify that these blocks can be obtained by taking derivatives ∂(zw)mj∂(z̄w̄)mk

of order 2(i −m) such that |mj | = |mk| = 2(i −m) and mj,d+1 = mk,d+1 = 0 of the

function
(m+ c− 1)!

(c− 1)! m! N
µ(c+m)
Ω (z, z)

− 1 = e
(c+m)µ

γ
DΩ

0 (z) − 1, (4.12)

and evaluating at z = z̄ = 0. Thus, again by Calabi’s criterion, F(z,w)(i)(0) is positive

semidefinite iff (c + m)µγ gB, m ≥ 1, is projectively induced and this ends the proof of

the proposition.

Remark 4.4.4. Proposition 4.4.3 can be also proved for “general” Cartan-Hartogs

domains with dimension n = d+ r, namely

MΩ(µ) =
{

(z, w) ∈ Ω× Cr, ||w||2 < Nµ
Ω(z, z)

}
,
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where ||w||2 = |w1|2 + · · · + |wr|2. In that case Equation (4.12) can be obtained using

the following formula

1

m1!2 · · ·mr!2
∂2m

∂wm1
1 ∂w̄m1

1 · · · ∂wmrr ∂w̄mrr

(
1

f(z, z̄)− ||w||2

)c
=

=
1

m1!2 · · ·mr!2

m1+1∑
k1=1

· · ·
mr+1∑
kr=1

[
(
∑r

j=1(kj) +m+ c− r − 1)!

(c− 1)!
·

·
r∏
i=1

[(
mi

ki − 1

)2

(mi + 1− ki)!(wiw̄i)ki−1

]
1

(f(z, z̄)− ||w||2)
∑r
j=1(kj)+m+c−r

]
.

We are now in the position to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. Take µ = µ0 = γ/(d+ 1) in (4.4) and Ω 6= CHd. By Theorem

4.4.1 (MΩ(µ0), cg(µ0)) is Kähler-Einstein, complete and nonhomogeneous for all positive

real number c. By Proposition 4.4.3 cg(µ0) is projectively induced if and only if c+md+1 gB

is projectively induced, for all nonnegative integer m. By Theorem 4.1.2 this happens if

(c+m)
d+1 ≥

(r−1)a
2γ . Hence cg(µ0) with c ≥ (r−1)(d+1)a

2γ is the desired family of projectively

induced Kähler-Einstein metrics.

Remark 4.4.5. Observe that the scalar curvature of Cartan–Hartogs domains is nega-

tive. It still is an open question whether there exists or not a nonhomogeneous Ricci–flat

projectively induced manifold. Notice also that the Taub-NUT metric described in Ex-

ample 1.3.6 is not projectively induced. More precisely, we can prove that for m > 1/2

it does not exist a Kähler immersion of (C2, ωTN ) into CP∞. In fact, it is enough to

show that the holomorphic submanifold defined by z2 = 0, z1 = z, endowed with the

induced metric (still denoted ωTN ) having potential φ = u2 + mu4, with u defined

implicitly by zz̄ = e2mu2
u2, does not admit a Kähler immersion into CP∞ for m > 1/2.

Let us denote u2 = w and let w̃ (resp. φ̃) be the real function associated to w (resp. to

φ). In order to use Calabi’s criterion, we need to calculate the coefficients of the power

series development of G+ = eφ − 1 = ew+mw2 − 1. By direct computation we get

dkw̃

dxk
(0) = (−2km)k−1,
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and in particular we obtain
d2G̃+

dx2
(0) = 1− 2m,

for G̃+ = eφ̃ − 1. Thus, for m > 1/2 this term is negative and by Calabi’s criterion

({z2 = 0}, ωTN ) does not admit a Kähler immersion into CP∞. It is still an open

question if the same holds for all m > 0. Although, one notices that going on with

computation gets
d3G̃+

dx3
(0) = 1− 6m+ 12m2,

d4G̃+

dx4
(0) = 1− 12m+ 60m2 − 128m3,

d5G̃+

dx5
(0) = 1− 20m+ 180m2 − 880m3 + 2000m4,

and so on. Thus it seems to be true that for any m > 0 there exists k ∈ N such that

dkG̃+

dxk
(0) is negative. Observe also that, by Calabi’s criterion follows easily that for any

m 6= 0 it does not exist a Kähler immersion of (C2, ωTN ) into `2(C) or CH∞.

By applying the same argument with 0 < c < a(d+1)
2γ (and r 6= 1) one also gets the

following:

Corollary 4.4.6. There exists a continuous family of nonhomogeneous, complete, Kähler-

Einstein metrics which does not admit a local Kähler immersion into CPN for any

N ≤ ∞.

Remark 4.4.7. As direct consequence of Corollary 4.4.6 together with Corollary 4.2.2,

we get that a Cartan-Hartogs domain (MΩ(µ0), cg(µ0)) does not admit a Kähler im-

mersion into `2(C). Further by Theorem 3.3.3, it does not admit a Kähler immersion

into CH∞ for any value of c > 0 either.
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Chapter 5

A characterization of CHn

This chapter deals with Kähler immersions of bounded symmetric domains into the indefinite com-

plex Euclidean space. The first section describes what we need about indefinite Kähler metrics and

introduces our third and last result, to the proof of which the second section is dedicated.

5.1 Indefinite Kähler metrics

In Section 3.3 we saw that the hyperbolic space CHn is the only bounded symmetric

domain admitting a Kähler immersion into `2(C) (cfr. Theorem 3.3.8 or [19]). In this

chapter we address the problem of extending this result when the ambient space is the

indefinite complex Euclidean space Cr,s = (Cr+s, gr,s), r, s ∈ N∪{∞}, {r, s} 6= {∞,∞}.

Here gr,s is the indefinite Kähler metric on Cr+s whose associated (indefinite) Kähler

form is given by

ωr,s =
i

2
∂∂̄(

r∑
j=1

|zj |2 −
r+s∑

k=r+1

|zk|2),

when r ∈ N and s ∈ N ∪ {∞}, and by

ω∞,s =
i

2
∂∂̄(−

s∑
j=1

|zj |2 +
+∞∑
k=s+1

|zk|2), (5.1)

when s ∈ N and r = ∞. One calls s the index of gr,s. Notice that we are exclud-

ing the case when both s = ∞ and r = ∞, since by Theorem 2.2.1 every real ana-

lytic Kähler manifold admits a local Kähler immersion into C∞,∞. Observe also that
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(CHn, (n+ 1)ghyp) can be Kähler immersed into C∞,s via the map i ◦ f : CHn → C∞,s,

where i : `2(C) → C∞,s denotes the natural inclusion and f is the map described in

Section 3.3 (Eq. (3.3)). It is worth pointing out that one can construct infinitely many

noncongruent Kähler immersion of (CHn, (n+ 1)ghyp) into C∞,s. For example for any

holomorphic function ψ on CHn the map z 7→ (ψ(z), ψ(z), f(z)) is a Kähler immersion

of CHn into C∞,1.

Behind the pure mathematical interest, indefinite Kähler geometry can be viewed

in the case when s = 1, as a combination of the Lorentzian geometry of space-time and

the symplectic geometry of phase space. Among the authors that have been studying

the geometry of Kähler submanifolds of finite indefinite space forms we cite M. Barros,

A. Romero, Y. J. Suh and M. Umehara (see [5], [40], [51]).

In the next section we show that (CHn, ghyp) can be characterized among irreducible

bounded symmetric domains as the only one which admits a Kähler immersion into

C∞,s, s <∞, more precisely we have (cfr. [32]):

Theorem 5.1.1 (A. Loi, M. Zedda). Let (Ω, gB) be a Cartan domain. Assume that

there exists a local Kähler immersion (Ω, gB) into Cr,s, then r =∞, s ∈ N and (Ω, gB) =

(CHn, (n+ 1)ghyp).

5.2 Proof of the main result

The proof of Theorem 5.1.1 is based on the following lemma.

Lemma 5.2.1. Let (M, g) be a Kähler manifold and let A = (ajk) be the∞×∞ Hermi-

tian matrix given by equation (2.5) for the diastasis function DM
0 of g on a neighborhood

U of a point p ∈ M . If (U, g|U ) admits a Kähler immersion into C∞,s (resp. Cr,∞)

then the number of negative eigenvalues of A is less or equal than s (resp. r).

Proof. Let {z1, . . . , zn} be complex coordinates centered at the origin of U . In order to

prove the lemma we introduce the following notations. Denote by {vi}i∈N a sequence
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of complex numbers and consider the complex vector space

V =

{
{vi}i∈N |

+∞∑
i=0

viz
mi <∞

}
.

Every holomorphic function ψ =
∑+∞

i=0 aiz
mi induces a linear functional ψ̂ ∈ V ∗ =

Hom(V,C) by

ψ̂(v) =
+∞∑
i=0

aivi, v = {vi}i∈N ∈ V.

Define a sesquilinear form on V by

D̂M
0 : V × V → R, D̂M

0 (u, v) = uAv∗. (5.2)

Assume now that f : U → C∞,s is a Kähler immersion of a neighbourhood of a point

p ∈M into C∞,s. We can assume that f(p) = 0 (the case Cr,∞ is treated similarly). In

local coordinates f is given by

f(z) = (f1(z), . . . , fs(z), fs+1(z), . . . ) ∈ C∞,s,

for suitable holomorphic functions fj . Since f is a Kähler immersion it follows by (5.1)

and by the very definition of the diastasis function that

DM
0 (z) = −|f1(z)|2 − · · · − |fs(z)|2 +

+∞∑
k=s+1

|fk(z)|2.

Hence in our notation

D̂M
0 (u, v) = −f̂1(u)f̂1(v)− · · · − f̂s(u)f̂s(v) +

+∞∑
k=s+1

f̂k(u)f̂k(v). (5.3)

Let W ⊂ V be the complex subspace of V consisting of those w ∈ V such that

D̂M
0 (w,w) < 0. By (5.2) each eigenvector of a negative eigenvalue of the matrix A

belongs to W . Hence, in order to prove the lemma we need to show that dimW ≤ s.

Assume, by a contradiction, that dimW > s and let ξ̂1, . . . , ξ̂m, m ≤ s be a basis for the

subspace of V ∗ spanned by the linear functionals f̂1, . . . , f̂s. Ifm = 0 then f(U) ⊂ `2(C)

and by Calabi’s criterion the matrix A does not have negative eigenvalues. On the other

hand, if m ≥ 1, the C-linear map L : W → Cm defined by

L(w) = (ξ̂1(w), . . . , ξ̂m(w))
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is surjective. Thus there exists 0 6= w0 ∈ W such that ξ̂1(w0) = · · · = ξ̂m(w0) = 0 and

hence f̂1(w0) = · · · = f̂s(w0) = 0. By (5.3) D̂M
0 (w0, w0) ≥ 0 which contradicts the fact

that w0 ∈W .

Recall that by Proposition 4.3.2 the diastasis function around the origin for the

Bergman metric gB of a Cartan domain Ω is globally defined and given by

DΩ
0 (z) = log(V (Ω)KΩ(z, z)). (5.4)

and furthermore, if (ajk) is the matrix in (2.5) for DΩ
0 , we have ajk = 0 whenever

|mj | 6= |mk|.

In order to simplify the proof of our theorem we introduce the following definition. We

say that a square submatrix C of a square matrix M is central if its diagonal lies on

the diagonal of M . Furthermore we say that M is a block matrix if it is of the form

M =



0 0 0 0 . . .

0 M1 0 0 . . .

... 0 M2 0 . . .

... 0
. . .


,

where each block Mi is a central submatrix of M .

Notice that Proposition 4.3.2 says that the matrix (ajk) given by (2.5) for the

diastasis DΩ
0 of a Cartan domain Ω, is a block matrix, where each block Mi contains

the elements ajk with |mj | = |mk| = i.

We can now prove the main theorem:

Proof of Theorem 5.1.1. Let (Ω, gB) be a Cartan domain. Then it is easily seen that

(CH1, γ ghyp) admits a Kähler immersion in (Ω, gB) where γ is the genus of Ω. By

equation (1.5) the matrix (ajk) for γghyp is the diagonal matrix given by ajk = δjk/j,

thus it has infinite positive eigenvalues (given by γ/j, j = 1, 2, . . . ). By Lemma 5.2.1 it

follows that CH1, and hence (Ω, gB), can not be Kähler immersed into Cr,s with r ∈ N,

s ≤ ∞.
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Thus it remains to prove that a Cartan domain of rank greater than 1 can not admit

a Kähler immersion into C∞,s for s ∈ N.

Assume, by contradiction, that there exists f : Ω→ C∞,s. Without loss of generality

we can assume f(0) = 0. We are going to prove that the matrix (ajk) in (2.5) for DΩ
0

has infinite negative eigenvalues. By Lemma 5.2.1 this will be the desired contradiction.

Any irreducible bounded symmetric domain of rank at least two can be exhausted by

totally geodesic submanifolds isomorphic to Ω4[3] (cfr. Remark 1.3.4), hence we need

only to prove the assertion for the case Ω = Ω4[3].

By Proposition 4.3.2 and equation (1.7) the diastasis of (Ω4[3], gB) is given by

DΩ4
0 (z) = −3 log(1− 2(|z1|2 + |z2|2 + |z3|2) + (z2

1 + z2
2 + z2

3)(z̄2
1 + z̄2

2 + z̄2
3)).

We will show that every block (except the first one) has at least one negative eigenvalue.

Consider the 3× 3 matrix

B =
12(2|z3|2 + 1)

(1− 2|z3|2 + |z3|4)2


1 −1 −1

−1 1 −1

−1 −1 1

 .

LetB0 be the matrix obtained by evaluatingB at z3 = z̄3 = 0. ThenB0 is the submatrix

of (ajk) with j, k corresponding to the triples (2, 0, 0), (0, 2, 0) and (0, 0, 2). Further let

Bn be the submatrix of (ajk) with j, k corresponding to the triples (2, 0, n), (0, 2, n),

(0, 0, n + 2). The matrix Bn can be obtained from B by deriving each of its entries n

times with respect to z3, n times with respect to z̄3 and evaluating at z3 = z̄3 = 0.

From
∂2n

∂zn3 ∂z̄
n
3

12(2|z3|2 + 1)

(1− 2|z3|2 + |z3|4)2

∣∣
z3=z̄3=0

> 0,

we have det(Bn) < 0 for all n ∈ N. Thus every Bn must have a negative eigenvalue. This

implies that the (n+ 2)th block of (ajk) which contains Bn as a central submatrix, has

at least one negative eigenvalue and hence (ajk) has infinite negative eigenvalues.
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