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Summary

The main theme of this thesis is the interplay between the geometric quantization of a

Kähler manifold (M,ω) and its realization as a Kähler submanifold of some complex

projective space endowed with the Fubini-Study metric.

The thesis is divided into four chapters which are organized as follows.

In the first one, we shall recall the background about line bundles, connections,

hermitian structures, curvature, prequantization and quantization of a Kähler manifold.

Chapter two provides many examples of geometric quantization of Kähler manifolds

and these will form the basic material for the next chapters.

Chapter three deals with holomorphic isometric immersions of Kähler manifolds in

complex space forms. We shall apply the results of Calabi to show that the complex

torus V/Λ endowed with the flat form ΩN
0 and a Riemann surface Σg endowed with the

hyperbolic form ωhyp cannot be Kähler submanifolds of any complex projective space

(see 3.5.6). The same result is proved (at least in the case where the target complex

projective space is finite dimensional) for the regularized Kepler manifold (see 3.5.7).

In the second part of the chapter we shall study Hartogs domains (DF , ωF ) in C2

(see 3.20). We shall give necessary and sufficient conditions for (DF , ωF ) to admit

a holomorphic and isometric immersion in a complex space form. Furthermore, we

describe explicitly such an immersion in terms of the function F .

The last chapter is dedicated to the function epsilon, which plays a fundamental role

in the theory of quantization of Kähler manifolds carried out in [5], [6], [7], [8] and [26].

Given a quantization of a Kähler manifold (M,ω), the function epsilon measures the

obstruction for ω to be projectively induced via the coherent states map (see (4.2.2)).

We give explicit formulae for the function epsilon in the case of the punctured plane

(C∗, ω∗) (see 4.5), the complex torus (V/Λ,ΩN
0 ) (in terms of theta functions) and the

Riemann surfaces (Σg, ωhyp) (see 4.6 and 4.7).

We then shall consider a geometric quantization (L, h) for generalized bounded do-

mains endowed with the Bergman metric. The main result is Theorem 4.8.9 which
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gives necessary and sufficient conditions for the function epsilon to be constant.

At the end of the chapter we shall try to understand how the function epsilon varies

with ω in a fixed cohomology class (see Section 4.9).
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Introduction

The main theme of this thesis is the interplay between the two following topics:

1) the geometric quantization of a Kähler manifold (M,ω);

2) the realization of a Kähler manifold (M,ω) as a Kähler submanifold of some

complex projective space endowed with the Fubini-Study metric.

A geometric quantization of a Kähler manifold (M,ω) is a pair (L, h), where L is

a holomorphic line bundle over M and h is a hermitian structure on L such that its

curvature satisfies curv(L, h) = −2πiω. The curvature is calculated with respect to the

Chern connection, i.e. the unique connection compatible with both the holomorphic

structure and the hermitian structure h (see Section 1.4).

Not all manifolds admit such a pair. In terms of cohomology classes, a Kähler

manifold admits a geometric quantization if and only if the form ω is integral, i.e.

its cohomology class [ω]dR, in the de Rham group, is in the image of the natural map

H2(M,Z) ↪→ H2(M,C). In particular, when M is compact, the integrality of ω implies,

by a well-known theorem of Kodaira, that M is a projective algebraic manifold. This

means that there exists a holomorphic embedding of M into some complex projective

space PN (C), which is constructed by using global holomorphic sections of a suitable

tensor power Lk of L (see Section 2.0.5).

In the framework of a geometric quantization of a Kähler manifold (M,ω), a natural

map from M into a complex projective space can be constructed as follows. Let Hh be
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the space of holomorphic sections of L bounded with respect to the norm

‖s‖2h =< s, s >h=

∫
M
h(s(x), s(x))

ωn

n!
(x),

where n is the complex dimension of M . It turns out that (Hh, < ·, · >h) is a separable

complex Hilbert space (see [5]). Under suitable conditions, one can define a holomorphic

map, φ(L,h) : M → PN (C), the so called coherent states map, where N + 1 (N ≤ ∞)

is the complex dimension of Hh (see Section 4.2). When M is compact Hh coincides

with the space of holomorphic sections of L and φ(L,h) is a holomorphic map from M

into a finite dimensional complex projective space.

Let ΩN
FS be the Fubini-Study form in PN (C). It is natural to consider the following:

Problem 1 Given a Kähler manifold (M,ω) (not necessarily compact), under which

conditions does there exist a natural number N (the case N =∞ is not excluded) and

a holomorphic immersion

φ : (M,ω)→ (PN (C),ΩN
FS)

such that φ∗ΩN
FS = ω?

The first systematic study of this Problem is due to Calabi ([9]) in his Ph.D. thesis.

He studied the more general situation of holomorphic and isometric immersions of

Kähler manifolds into finite or infinite dimensional complex space forms. His ingenious

idea was to introduce, in the neighborhood U of every point of M , a real analytic

function Dω : U × U → R (see Section 3.1), which he christened diastasis, from the

greek “distance”, since in the case of the complex flat space it coincides with the square

of the distance between two points. A deep analysis of the diastasis and its expansion

in power series allowed Calabi to find necessary and sufficient conditions in order to

attack Problem 1.

On the other hand, in the theory of geometric quantization, it is important to

know when ω is projectively induced under the coherent states map. Working out the

obstruction for φ(L,h) to be a holomorphic isometric immersion one gets (see (4.2.2)):

φ∗(L,h)Ω
N
FS = ω +

i

2π
∂∂̄ log ε(L,h), (1)
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where ε(L,h) is a smooth function on M .

This function is the central object in the study of the quantization of Kähler man-

ifolds carried out in [5], [6], [7], [8] and [26]. When ε(L,h) is constant, the quantization

(L, h) is said to be regular. One can calculate the function ε(Lk,hk) for every natural

number k. Namely, one considers the Kähler form kω on M and (Lk, hk) the quantum

line bundle for (M,kω). If (Lk, hk) is regular for every k, then it is possible to apply

a procedure called quantization by deformation (see [5], [6], [7] and [8]). From this,

another Problem naturally arises:

Problem 2 Under which conditions does a Kähler manifold admit a regular quantiza-

tion?

Disregarding the applications to the theory of quantization, Problem 2 has its own

intrinsic geometric interest. First of all, by formula (1), a solution to Problem 2 gives

an answer to Problem 1. Secondly, we believe that the set of Kähler manifolds which

admit a regular quantization, is a very special subset of the set of all projectively

induced Kähler manifolds. For example, all the known cases are homogeneous and

simply connected.

In fact, we conjecture that:

a complete Kähler manifold which admits a regular geometric quantization has to

be simply connected and homogeneous (see Conjecture 1, Section 4.3).

One of the goals of this thesis is to study the geometric properties of the function

epsilon and to give consistency to our conjecture.

The thesis is divided into four chapters which are organized as follows.

In the first one we shall recall the basic background of line bundles, connections, her-

mitian structures and curvature. We then describe the prequantization of a symplectic

manifold, following Kostant’s ideas [16].

We then pass to the quantization of a Kähler manifold (M,ω). In order to describe

the set of all hermitian holomorphic line bundles (L, h) with curv(L, h) = −2πiω,

one introduces the following notion: two geometric quantizations (L1, h1) and (L2, h2)
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of a Kähler manifold (M,ω) are said to be equivalent if there exists a holomorphic

isomorphism ψ between L1 and L2 such that ψ∗h2 = h1.

The set of all quantizations, denoted in this thesis by Lhol(M,ω), can then be

partitioned into equivalence classes.

The main result (see Theorem 1.4) is that the group of isomorphism classes of pairs

(L0, h0) with zero curvature, identifiable with Hom(π1(M), S1), acts simply transitively

on Lhol(M,ω).

Chapter two provides many examples of geometric quantization of Kähler manifolds

and these will form the basic material for the next chapters. When M is compact and

not simply connected, a quantization of M can be described in terms of the factors of

automorphy. In particular, one can describe a quantization of: 1) the N dimensional

complex torus V/Λ endowed with the flat form ΩN
0 (see 2.1.1) and 2) the Riemann

surfaces Σg endowed with the hyperbolic form ωhyp (see 2.1.2). Since the manifolds

under consideration are compact, we shall use the typical tools of algebraic geometry,

for instance, the concept of theta functions.

Chapter three touches one of the main themes of this thesis: the holomorphic iso-

metric immersions of Kähler manifolds in spaces of constant holomorphic sectional

curvature (complex space forms). We will start by giving a detailed description of Cal-

abi’s work and we shall apply his results to show that the complex torus (V/Λ,ΩN
0 ) and

a Riemann surface (Σg, ωhyp) cannot be Kähler submanifolds of any complex projective

space (see Proposition 3.5.6). The same result is proved (at least in the case when

the target complex projective space is finite dimensional) for the regularized Kepler

manifold (see Proposition 3.5.7).

In the second part of the chapter, we shall study Hartogs domains DF in C2 (see

Section 3.6). Such domains are defined in terms of a function F : [0, x0) → R+ and

they admit a natural Kähler form ωF (see 3.21). In Theorems 3.6.5, 3.6.9 and 3.6.12 we

shall give necessary and sufficient conditions for (DF , ωF ) to admit a holomorphic and

isometric immersion in a complex space form. Furthermore, we will describe explicitly
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such immersions in terms of the function F .

We conclude the chapter by proving that:

if F can be extended to an analytic function on (−x0, x0) and ωF is Kähler-Einstein

then (DF , ωF ) is holomorphically isometric (up to homotheties) to the hyperbolic two

ball (see Theorem 3.6.17).

The last chapter is the heart of this thesis. In fact all the tools and concepts

developed in the previous chapters are used to study the function epsilon and to give

consistency to conjecture 1.

We give explicit formulae for the function epsilon, in the case of the punctured

plane (C∗, ω∗) (see 4.5), the complex torus (V/Λ,ΩN
0 ) (in terms of theta functions) and

Riemann surfaces (Σg, ωhyp) (see 4.6 and 4.7).

We shall then consider a geometric quantization (L, h) for generalized bounded do-

mains endowed with the Bergman metric. The main result is Theorem 4.8.9 which

compares the Hilbert space (Hh, 〈 · , · 〉h) with the Hilbert space (F , (·, ·)) consisting

of holomorphic n-forms α bounded with respect to (α, α) =
∫
M α ∧ ᾱ. We prove that

ε(L,h) is a positive constant λ if and only if the dimension of Hh equals the dimension

of F and the L2 scalar products are proportional, namely λ〈 · , · 〉h = (·, ·). The main

tool here is the Calabi’s rigidity Theorem (see 3.2.4) which is used throughout this

thesis. This theorem asserts that: if a Kähler form ω on a complex manifold M is

projectively induced, then the dimension N (N ≤ ∞) of the target complex projective

space in which (M,ω) admits a full holomorphic isometric immersion depends only on

ω. Furthermore, if φ is a full holomorphic isometric immersion in the N -dimensional

complex projective space, then all the other such maps are of the form U ◦ φ, for some

projective unitary transformation U .

In the last Section, we shall try to understand how the function epsilon varies

with ω in a fixed cohomology class. More precisely, if (M,ω0) is a quantizable, simply

connected compact Kähler manifold, we will try to understand the relationship between

εω and εω0 when ω varies in the set of all Kähler forms cohomologous to ω0.
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Restricting ourself to the case when (M,ω0) is a homogeneous simply connected

compact Kähler manifold, we conjecture that: if ω is cohomologous to ω0 and εω is

constant, then ω = f∗ω0 for some f ∈ Aut(M) (see Conjecture 2 Section 4.9). The

conjecture is true for the complex projective space endowed with the Fubini-Study form

(see 4.9.6). However, for the case of the 1-dimensional complex projective space P1(C),

endowed with twice the Fubini-Study form 2Ω1
FS , the situation is more complicated.

In this case, we are able to show that Conjecture 2 partially holds (see Theorem 4.9.8).

In fact we show that if φ : P1(C)→ P2(C) is a holomorphic map of the form

[(z0, z1)] 7→ [(az2
0 , bz0z1, cz

2
1)], a, b, c ∈ C∗

and ω = φ∗Ω2
FS has constant epsilon, then φ is equivalent to the Veronese map V2.

As a consequence of the previous theorem we will exhibit a family of projectively

induced Kähler forms with a non-constant epsilon, which shows that Problem 1 is not

equivalent to Problem 2, (see Remark 4.9.9).
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Chapter 1

Geometric quantization of Kähler

manifolds

We refer to [12] and [16] for the background material and the notations of this chapter.

1.1 Smooth and holomorphic line bundles

Let M be a smooth manifold.

A C∞ line bundle π : L → M over M is a complex vector bundle of rank 1, i.e.

∀x ∈M the fibre Lx = π−1(x) is a 1-dimensional vector space over C.

Two line bundles πi : Li → M, i = 1, 2, over M are said to be C∞ isomorphic if

there exists a smooth map ψ : L1 → L2 such that π2 ◦ ψ = π1, which is linear on the

fibres. The isomorphism class of L is denoted by [L].

The set of isomorphism classes of line bundles over M inherits a commutative group

structure via the tensor product: the neutral element is given by the trivial bundle and

the inverse of L is given by the dual bundle L∗. This group is denoted, in analogy to

the holomorphic case, by Pic∞(M). It has the following topological description.

Let L+ be the complement in L of the zero section. One can find an open covering

{Ui}i∈I such that for every i ∈ I there exists a trivialising section si : Ui → L+ and

the intersection of any finite number of open sets of the covering is contractible. On
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the intersection Ui ∩ Uj of two open sets of the covering there exists a complex valued

function gij such that si = gijsj . In the intersection Ui ∩ Uj ∩ Uk of three open sets of

the covering we have the cocycle relation

gik = gijgjk. (1.1)

This means that the {gij} form a degree 1 Čech cocycle of the covering {Ui}i∈I with

coefficients in the sheaf C∗M of smooth non-vanishing complex valued functions on M .

We refer to [16] for the proof of the following:

Theorem 1.1.1 The cohomology class of the Čech cocycle {gij} in H1(M,C∗M ) is in-

dependent of the open covering {Ui} and of the choice of the trivialising sections si.

Furthermore Pic∞(M) and H1(M,C∗M ) are isomorphic.

Next consider the exponential exact sequence of sheaves (see [12, p. 37])

0→ Z→ CM
e2πi→ C∗M → 0

which gives the long exact sequence of cohomology groups

· · · → H1(M,CM )→ H1(M,C∗M )
c1→ H2(M,Z)→ H2(M,CM )→ · · · .

One can show that the cohomology groups H i(M,CM ) = 0 for i > 0 (see [12]) and so

H1(M,C∗M ) is isomorphic to H2(M,Z) via the map c1, i.e. two C∞ line bundles L1

and L2 over M are isomorphic if and only if c1(L1) = c1(L2). If L is a line bundle over

M then c1(L) is called its first Chern class.

Suppose now that M is a complex manifold.

Two holomorphic line bundles πi : Li → M, i = 1, 2, over M are said to be iso-

morphic if there exists a holomorphic isomorphism of line bundles ψ : L1 → L2. The

isomorphism class of L is denoted by [L]hol. Take an open covering {Ui}i∈I such that

the intersection of any finite number of open sets of the covering is contractible and

for every open set Ui of the covering there exists a trivialising holomorphic section

si : Ui → L+. The functions gij are in this case non-vanishing holomorphic functions
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on Ui∩Uj and the cocycle relation (1.1) means that {gij} form a degree 1 Čech cocycle

of the covering {Ui}i∈I with coefficients in the sheaf O∗M of holomorphic non-vanishing

functions on M . We have the analogous of 1.1.1, i.e. the cohomology class of {gij}

in H1(M,O∗M ) of the 1 Čech cocycle {gij} is independent of the open covering {Ui}

and of the trivialising holomorphic sections si. Moreover, the Picard group Pic(M) of

isomorphism classes of holomorphic line bundles over M is isomorphic to H1(M,O∗M ).

As in the C∞ case the tool to study the Picard group is the exponential sequence

0→ Z→ OM
e2πi→ O∗M → 0

and the associated long exact sequence of cohomology groups

· · · → H1(M,OM )→ H1(M,O∗M )
c1→ H2(M,Z)→ H2(M,OM )→ · · · .

In the holomorphic case we cannot say anything about the map c1 since H1(M,OM )

and H2(M,OM ) are, in general, different from zero. If we suppose that the manifold

is simply connected then, from the Dolbeault Lemma (see [12]),

H1(M,OM ) = H0,1

∂̄
(M) = 0,

and so H1(M,O∗M ) injects in H2(M,Z). In other words:

Proposition 1.1.2 Two holomorphic line bundles L1 and L2 over a simply connected

complex manifold with c1(L1) = c1(L2) are holomorphically equivalent, i.e. [L1]hol =

[L2]hol.

We conclude this Section by describing a natural exterior differential operator on the

space Γ(L) of the smooth sections of a holomorphic line bundle L over M . The de-

composition of the exterior differential d = ∂ + ∂̄ gives rise to a decomposition of

the complexification of the tangent bundle TCM = T 1,0M + T 0,1M and of its dual

T ∗CM = Ω1,0(M) + Ω0,1(M) (see [12]). Let σ : U → L+ be a trivializing holomorphic

section of L over a open set U and let s be a smooth section of L. Then there exists a

smooth complex valued function f on U such that s = fσ. Define

∂̄s := ∂̄f ⊗ σ. (1.2)
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It is easy to see that definition (1.2) does not depend on the trivialising section σ and

so we can define a map

∂̄ : Γ(L)→ Γ(Ω0,1(M)⊗ L) : s 7→ ∂̄s,

which maps a smooth section s ∈ Γ(L) to the smooth section ∂̄s of the bundle

Ω0,1(M)⊗ L→M .

Remark 1.1.3 Notice that the space of global holomorphic sections of L, denoted by

H0(L), is the subspace of all s ∈ Γ(L) which satisfies

∂̄s = 0.

1.2 Connection, curvature and hermitian structures

A connection ∇ on a line bundle L over a smooth manifold M is a map

∇ : Γ(L)→ Γ(T ∗CM ⊗ L)

satisfying:

∇(fs) = f∇s+ df ⊗ s,

for every s ∈ Γ(L) and every complex valued function f on M .

The curvature curv(L,∇) of the connection ∇ is the closed complex 2-form on M

satisfying:

curv(L,∇)(X,Y )s := ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s, (1.3)

∀X,Y ∈ Γ(TCM) and ∀s ∈ Γ(L), where ∇Xs := (∇s)(X).

Let σ : U → L+ be a trivialising section over U ⊂M . Consider the complex valued

1-form β such that:

∇σ = β ⊗ σ (1.4)

It follows, by (1.3), that on U we have:

curv(L,∇) = dβ. (1.5)
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Suppose that ∇̃ is another connection on L. It is not difficult to see that curv(L, ∇̃) is

in the same de Rham cohomology class as curv(L,∇). Furthermore, one can show (see

[16] and [12, p. 139]) that the de Rham cohomology class of i
2π curv(L,∇) is the first

Chern class of L, i.e.

[
i

2π
curv(L,∇)]dR = c1(L). (1.6)

Let L1 and L2 be two C∞ line bundles over M equipped with connections ∇1 and ∇2,

respectively. One can define a connection on L1 ⊗L2, denoted by ∇1 ⊗∇2, as follows:

if s and t are smooth sections of L1 and L2, respectively, define

(∇1 ⊗∇2)(s⊗ t) := s⊗∇2t+∇1s⊗ t.

It follows by (1.3) that

curv(L1 ⊗ L2,∇1 ⊗∇2) = curv(L1,∇1) + curv(L2,∇2).

Let us now introduce the concept of a hermitian structure on a line bundle L.

Definition 1.2.1 A hermitian structure on a C∞ line bundle L over a smooth manifold

M is a smooth function h : L → R+ ∪ {0} such that h(λq) = |λ|2h(q), ∀q ∈ L, ∀λ ∈ C

and h(q) > 0, ∀q ∈ L+. A hermitian line bundle (L, h) over M is a C∞ line bundle

equipped with a hermitian structure h.

Given a hermitian structure h on L then, to every pair s, t ∈ Γ(L), one can associate a

smooth function on M by the formula

h(s, t)(x) :=
s(x)

σ(x)

t(x)

σ(x)
h(σ(x)), (1.7)

where σ is any trivialising section of L. It follows, by (1.7), that

h(λs, µt)(x) = λµ̄h(s(x), t(x)), ∀λ, µ ∈ C. (1.8)

Conversely, given a map h : Γ(L) × Γ(L) → C which satisfies (1.8), one can define a

hermitian structure on L by

h(q) := h(s, s)(x),
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where s is any smooth section of L with s(x) = q. In the sequel, we will write

h(s(x), s(x)) to mean the function h(s, s)(x).

Let (L1, h1) and (L2, h2) be two hermitian line bundles over M . One can define a

hermitian structure h1 ⊗ h2 on L1 ⊗ L2 by:

(h1 ⊗ h2)(s⊗ t, s⊗ t) := h1(s, s)h2(t, t), ∀s ∈ Γ(L1),∀t ∈ Γ(L2).

Next consider hermitian line bundles with connection.

Definition 1.2.2 Let (L, h) be a hermitian line bundle over a smooth manifold M . A

connection ∇ on L is said to be compatible with h or a h-connection if ∀s, t ∈ Γ(L)

and for every vector field X on M

Xh(s, t) = h(∇Xs, t) + h(s,∇Xt).

Proposition 1.2.3 The curvature of an h-connection ∇ is a purely imaginary closed

2-form.

Proof: Let σ be a trivialising section on an open set U of M and let β be the 1-form

on U given by (1.4). If ∇ is a h-connection, then

d log h(σ(x), σ(x)) =
h(∇σ, σ)(x) + h(σ,∇σ)(x)

h(σ(x), σ(x))
= (β + β̄)(x). (1.9)

This formula has to be true for every section σ, so if we suppose that h(σ(x), σ(x)) = 1,

we get that β + β̄ = 0. Hence, by (1.5),

curv(L,∇) + curv(L,∇) = dβ + dβ̄ = d(β + β̄) = 0.

2

Let now M be a complex manifold and L a holomorphic line bundle over M endowed

with a connection ∇. The decomposition of 1-forms into type (1, 0) and (0, 1) induces

a decomposition

∇ = ∇1,0 +∇0,1,

where ∇1,0 : Γ(L)→ Γ(Ω1,0(M)⊗ L) and ∇0,1 : Γ(L)→ Γ(Ω0,1(M)⊗ L).
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Definition 1.2.4 A connection ∇ on a holomorphic line bundle L over a complex

manifold M is said to be holomorphic if ∇0,1 = ∂̄ (see (1.2)).

Remark 1.2.5 Notice that, by Remark 1.1.3, if ∇ is a holomorphic connection on a

holomorphic line bundle L→M , then the holomorphic sections s of L satisfy

∇Xs = 0, ∀X ∈ Γ(T 0,1M).

1.3 Prequantization

Let (M,ω) be a symplectic manifold, i.e. ω is a non-degenerate real closed 2-form on

M . From Proposition 1.2.3 the following definition makes sense:

Definition 1.3.1 A prequantization of a symplectic manifold (M,ω) is a triple

(L,∇, h), where L is a C∞ line bundle over M , equipped with a hermitian structure h

and a h-connection ∇ such that

curv(L,∇) = −2πiω.

From now on, by a triple (L,∇, h) on a smooth manifold M , we always mean a C∞

line bundle over M , endowed with a hermitian structure h and a h-connection ∇.

In order to study all the prequantizations of a symplectic manifold (M,ω) one gives

the following:

Definition 1.3.2 Two triples (L1,∇1, h1) and (L2,∇2, h2) are said to be equivalent if

there exists a C∞ isomorphism of line bundles ψ : L1 → L2 such that ψ∗(∇2) = ∇1

and ψ∗(h2) = h1.

The equivalence class of (L,∇, h) is denoted by [(L,∇, h)]. For a class [(L,∇, h)] define

curv([(L,∇, h)]) := curv(L,∇).

It is not difficult to see that this is well defined, i.e. it does not depend on the repre-

sentative in the equivalence class [(L,∇, h)].
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For any closed 2-form ω on M , let L(M,ω) be the set of all triples (L,∇, h) with

curv(L,∇) = −2πiω. The set L(M,ω) can be partitioned into equivalence classes

[(L,∇, h)]. We refer to [16] (cf. also Theorem 1.1.1 and (1.6)) for the proof of the

following:

Theorem 1.3.3 L(M,ω) is non-empty if and only if ω is integral, i.e. [ω]dR, the

cohomology class of ω in the de Rham group, is in the image of the natural map

H2(M,Z) ↪→ H2(M,C).

Let L(M, 0) be the set of isomorphism classes of triples (L0,∇0, h0) with zero curvature.

If (L,∇, h) is in L(M,ω) then (L⊗ L0,∇⊗∇0, h⊗ h0) is in L(M,ω). Therefore, one

has defined an action of L(M, 0) on L(M,ω). The following theorem holds (see [16] for

a proof):

Theorem 1.3.4 The set L(M,ω) is a principal homogeneous space under the action of

L(M, 0), i.e. if [(L1,∇1, h1)] and [(L2,∇2, h2)] are two equivalence classes in L(M,ω),

then there exists a unique [(L0,∇0, h0)] in L(M, 0) such that

[(L1 ⊗ L0,∇1 ⊗∇0, h1 ⊗ h0)] = [(L2,∇2, h2)].

Moreover L(M, 0) can be identified with

H1(M,S1) ∼= Hom(π1(M), S1)

the group of characters of the fundamental group of M .

1.4 The Kähler case

Throughout this thesis we are interested in the quantization of Kähler manifolds. A

Kähler manifold (M,ω) is a symplectic manifold with the additional requirements that

M is a complex manifold and ω is positive. The latter means that, if

ω =
i

2π

n∑
j,k̄=1

gjk̄dzj ∧ dz̄k̄ (1.10)
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is the expression of ω in local complex coordinates zj , then the matrix gjk̄ is positive

definite.

Definition 1.4.1 A geometric quantization, or simply, a quantization of a Kähler

manifold (M,ω) is a prequantization (L,∇, h) of (M,ω), with the additional condi-

tions that L is a holomorphic line bundle over M and ∇ is a holomorphic connection

on L. The line bundle L is called the quantum line bundle of (M,ω). A Kähler manifold

(M,ω) is said to be quantizable if it admits a quantization.

Notice that the holomorphic connection ∇ of 1.4.1 is uniquely determined by the

holomorphic line bundle L and by the hermitian structure h. In fact the space of h-

connections and the space of holomorphic connections on a holomorphic line bundle L

intersect in one point often called the Chern connection (see [12, p. 73]). This means

that to describe a quantization of a Kähler manifold (M,ω) it is enough to specify a

pair (L, h), where L is a holomorphic line bundle over M and h is a hermitian structure

on L satisfying

curv(L, h) := curv(L,∇) = −2πiω, (1.11)

where ∇ is the Chern connection.

Let (L, h) be a quantization of a Kähler manifold (M,ω) and ∇ the corresponding

Chern connection. Let σ : U → L+ be a trivialising holomorphic section and let β be

the 1-form on U given by (1.4).

For every vector field X ∈ Γ(T 0,1M) we have (cf. Remark 1.2.5)

∇Xσ = β(X)σ = 0.

Thus β is a form of type (1, 0) on U . It follows by (1.9) that

β = ∂ log h(σ(x), σ(x))

and by (1.5) that

curv(L, h) = dβ = (∂ + ∂̄)β = −∂∂̄ log h(σ(x), σ(x)). (1.12)
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In order to study all the quantizations of a Kähler manifold (M,ω) one gives the

following:

Definition 1.4.2 Two holomorphic hermitian line bundles (Li, hi)
πi→ (M,ω), i = 1, 2,

over a Kähler manifold (M,ω) are called equivalent if there exists an isomorphism of

holomorphic line bundles ψ : L1 → L2, such that ψ∗h2 = h1. The equivalence class of

(L, h) is denoted by [(L, h)]hol.

Define

curv([(L, h)]hol) := curv(L, h), (1.13)

(see (1.11)). One can see that this is well defined, i.e. it does not depend on the

representative of the equivalence class [(L, h)]hol.

For every real closed form ω of type (1, 1) on M , let Lhol(M,ω) be the set of all

pairs (L, h) with curv(L, h) = −2πiω. By (1.13), Lhol(M,ω) can be partitioned in

equivalence classes [(L, h)]hol.

Now, we want to compare the set L(M,ω) of all prequantizations of (M,ω), viewed

as a symplectic manifold, to Lhol(M,ω). We refer to ([17, p. 85]) for the proof of the

following Lemma:

Lemma 1.4.3 Let M be a complex manifold and L a C∞ line bundle over M equipped

with a connection ∇ such that curv(L,∇) is purely of type (1, 1). Then there exists a

unique holomorphic structure on L such that ∇ is a holomorphic connection (see 1.2.4).

Let (L,∇, h) be a prequantization of a Kähler manifold (M,ω). Since ω is of type

(1, 1), from Lemma 1.4.3, one can endow L with a unique holomorphic structure such

that ∇ is a holomorphic connection. Let denote by Lhol the line bundle L endowed

with this holomorphic structure.

Therefore, one can define a map

hol : L(M,ω)→ Lhol(M,ω) : (L,∇, h) 7→ (Lhol, h).
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Proposition 1.4.4 The map

hol : L(M,ω)→ Lhol(M,ω)

is a bijection between L(M,ω) and Lhol(M,ω). Moreover, the equivalence class of

(L,∇, h) in L(M,ω) is mapped to the equivalence class of (Lhol, h) in Lhol(M,ω).

Proof: Let (L, h) be in Lhol(M,ω). If ∇ is the Chern connection on (L, h), then

the triple (L,∇, h) defines its inverse.

In order to prove the second part of the proposition, let (L1,∇1, h1) be equivalent to

(L2,∇2, h2) in L(M,ω). This means that there exists ψ : L1 → L2 a C∞ isomorphism

of line bundles such that ψ∗(∇2) = ∇1 and ψ∗(h2) = h1. We claim that the map

ψ : L1hol → L2hol is holomorphic. In fact, let s1 be a holomorphic section of L1hol, i.e.

∇1
Xs1 = 0, ∀X ∈ Γ(T 0,1M) (cf. Remark 1.2.5). Then

∇2
X(ψs1) = ψ(∇1

Xs1) = 0,

i.e. ψs1 is a holomorphic section of L2hol. This means that the map ψ maps holomorphic

sections of L1hol to holomorphic sections of L2hol, and hence it is holomorphic. 2

Applying 1.4.4 to the 0-form on M one gets:

Corollary 1.4.5 Let Lhol(M, 0) denote the group of equivalence classes of holomorphic

hermitian line bundles (L0, h0) with curv(L0, h0) = 0.

The map hol : L(M, 0) → Lhol(M, 0) is an isomorphism of groups mapping the

equivalence class of (L0,∇0, h0) in L(M, 0) to the equivalence class of (L0hol, h0) in

Lhol(M, 0).

From 1.3.3, 1.3.4, 1.4.4 and 1.4.5 our results can be summarized as follows:

Theorem 1.4.6 A Kähler manifold (M,ω) admits a geometric quantization (L, h) if

and only if ω is integral. The set Lhol(M,ω) of equivalence classes [(L, h)]hol is acted

upon simply-transitively by Lhol(M, 0) ∼= Hom(π1(M), S1).
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We conclude this Section by describing a link between the geometric quantization

of a Kähler manifold (M,ω) and the space of smooth functions f on M satisfying the

functional equation ∂∂̄f = 0.

Let π : L → M be a holomorphic line bundle over a complex manifold M and h̃

and h two hermitian structures on L.

Let σ : U → L+ be a trivialising section of L. Define a smooth real valued function

on M by the formula

f(x) :=
h̃(σ(x), σ(x))

h(σ(x), σ(x))
(1.14)

We write h̃ = fh to mean that the function f satisfies (1.14).

Proposition 1.4.7 Let (Li, hi)
πi→ (M,ω) be two quantum line bundles over a Kähler

manifold (M,ω). Suppose that there exists an isomorphism ψ : L1 → L2 of holomorphic

line bundles. Let f be the smooth real valued function on M such that ψ∗h2 = fh1.

Then ∂∂̄ log f = 0.

Proof: Since (Li, hi) are two quantum line bundles over (M,ω), then curv(L1, h1) =

curv(L2, h2) = −2πiω. On the other hand, since ψ is holomorphic,

curv(L2, h2) = curv(L1, ψ
∗h2) = curv(L1, fh1).

Thus, if σ is any trivialising holomorphic section of L1, by (1.12) one obtains:

−∂∂̄ log h1(σ(x), σ(x)) = curv(L1, h1) = curv(L2, h2) = −∂∂̄ log fh1(σ(x), σ(x))

= −∂∂̄ log f − ∂∂̄ log h1(σ(x), σ(x))
,

therefore ∂∂̄ log f = 0. 2

The following, well-known, Lemmas will be of constant use throughout this thesis.

Lemma 1.4.8 Let (M,ω) be a compact Kähler manifold and f a smooth function on

M satisfying ∂∂̄f = 0. Then f is constant.

Proof: In a Kähler manifold the equation ∂∂̄f = 0 is equivalent to the fact that f is

harmonic and so it is constant, since M is compact. 2
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Lemma 1.4.9 Let (M,ω) be a simply connected complex manifold and f a smooth real

valued function on M satisfying ∂∂̄f = 0. Then there exists a holomorphic function k

on M such that f = <(k), where <(k) denotes the real part of k.

Proof: Suppose

∂∂̄f = d(∂f) = 0.

Since the manifold is simply connected there exists a complex valued function g on M

such that

∂f = dg.

Since ∂f is of type (1, 0), this implies that ∂̄g = 0, i.e. g is a holomorphic function on

M . The reality of f implies that ∂̄f = dḡ, i.e.

df = ∂f + ∂̄f = d(g + ḡ).

Thus, up to a constant, f = g + ḡ, i.e. f = <(k), where k = 2g. 2

When M is a simply connected Kähler manifold we know, from Theorem 1.4.6,

that Lhol(M,ω) consists of a single equivalence class. We can recover this result as

follows. Let (L1, h1) and (L2, h2) be two quantizations of a simply connected Kähler

manifold (M,ω). By (1.6), [ω]dR = c1(L1) = c1(L2) and since the manifold is simply

connected, it follows from 1.1.2 that there exists an isomorphism of holomorphic line

bundles ψ : L1 → L2. Let f be the real valued function on M such that ψ∗h2 = fh1.

From 1.4.7 and 1.4.9 log f = <(k) for some holomorphic function k on M . Then the

map ψ̃ = e
−k
2 ψ is a holomorphic isomorphism between L1 and L2 satisfying ψ̃∗h2 = h1.

In fact,

ψ̃∗(h2)(q) = h2(e
−k
2 ψ(q)) = e−<(k)h2(ψ(q)) = e−<(k)fh1(q) = h1(q), ∀q ∈ L1,

and so the claim.
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1.5 The group D[(L,h)](M)

Let (L, h) ∈ [(L, h)]hol ∈ Lhol(M,ω) be a geometric quantization of a Kähler manifold

(M,ω). Denote by Aut(L, h) the group of holomorphic diffeomorphisms F̃ : L →

L, linear on the fibres, such that F̃ ∗h = h, by Aut(M) the group of holomorphic

diffeomorphisms of M and by Isom(M,ω) the group of isometries of the Kähler manifold

(M,ω), i.e. the group of smooth maps F : M →M such that F ∗ω = ω.

For every F̃ ∈ Aut(L, h) there exists a unique F ∈ Aut(M) ∩ Isom(M,ω) which

makes the following diagram commutative:

(L, h)
F̃→ (L, h)

π ↓ π ↓

(M,ω)
F→ (M,ω)

The map F̃ is called a lifting of F . Denote by D[(L,h)](M) the group of all maps

F : M → M which admit a lifting F̃ . This notation is justified from the fact that

D[(L,h)](M) really depends on the equivalence class [(L, h)]hol.

Therefore, one can define a map

Aut(L, h)
P→ D[(L,h)](M) : F̃ 7→ F.

It can be shown that the kernel of P consists of constants of modulus one (see [26]). In

other words, there exists an exact sequence of groups:

1→ S1 → Aut(L, h)
P→ D[(L,h)](M)→ 1.

For F̃ ∈ Aut(L, h) and s ∈ H0(L) define

F̃ · s = F̃ ◦ s ◦ F−1,

where F = P (F̃ ). It is not difficult to see that F̃ · s is a holomorphic section of L and

this gives rise to a representation of Aut(L, h) on the space H0(L).

Notice that the group D[(L,h)](M) does not act on H0(L) due to the ambiguity on

the choice of F̃ with P (F̃ ) = F . On the other hand, this ambiguity is the multiplication

by a constant, therefore it disappears when one considers projective representations.
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We conclude that D[(L,h)](M) admits a projective representation in P(H0(L)).

Proposition 1.5.1 Let (L, h) be a geometric quantization of a simply connected Kähler

manifold (M,ω). Then the group D[(L,h)](M) is equal to Aut(M) ∩ Isom(M,ω).

Proof: By its very definition, D[(L,h)](M) is a subgroup of Aut(M)∩ Isom(M,ω). Let

F be in Aut(M)∩ Isom(M,ω). Take the pull-back (F ∗L,F ∗h) and consider the natural

diagram

(F ∗L,F ∗h)
F ∗−→ (L, h)

π∗ ↓ π ↓

(M,ω)
F−→ (M,ω)

It follows that curv(F ∗L,F ∗h) = −2πiω, i.e. (F ∗L,F ∗h) is a quantum line bundle for

(M,ω). Since M is simply connected, by (1.6) and 1.1.2, there exists an isomorphism

of holomorphic line bundles ψ : L → F ∗L such that ψ∗(F ∗h) = h. Then F̃ := F ∗ ◦ ψ

is the desired lifting of F. 2
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Chapter 2

Examples

2.0.1 The flat space (CN ,ΩN
0 )

Let N be a natural number and ΩN
0 the Kähler form on CN defined by:

ΩN
0 =

i

2

N∑
j=1

dzj ∧ dz̄j ,

where (z1, . . . , zN ) are global coordinates on CN . The trivial bundle L = CN×C→ CN

equipped with the hermitian structure:

h(z, t) = e−π
∑N
j=1 |zj |2 |t|2, ∀z ∈ CN , ∀t ∈ C,

defines a geometric quantization of (CN ,ΩN
0 ). Indeed, if σ(z) = (z, f(z)) is a global

holomorphic section of L, where f(z) is a holomorphic function in CN then, by (1.12),

one obtains:

curv(L, h) = −∂∂̄ log h(σ(z), σ(z)) = −2πiΩN
0 .

Since CN is simply connected, it follows, from 1.5.1, that

D[(L,h)](CN ) = Aut(CN ) ∩ Isom(CN ,ΩN
0 ).

Notice that the group Aut(CN ) ∩ Isom(CN ,ΩN
0 ) acts transitively on (CN ,ΩN

0 ), i.e.

(CN ,ΩN
0 ) is a homogeneous Kähler manifold.
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We are also interested in the case of the infinite dimensional space C∞. This is the

Hilbert space consisting of sequences of complex numbers zj satisfying

+∞∑
j=1

|zj |2 <∞.

In analogy with the finite dimensional case, C∞ can be endowed with the Kähler

form

Ω∞0 =
i

2

+∞∑
j=1

dzj ∧ dz̄j .

2.0.2 The unit disk (D, ωhyp)

Let D = {z ∈ C| |z|2 < 1} be the unit disk endowed with the hyperbolic Kähler form

ωhyp =
i

π

dz ∧ dz̄
(1− |z|2)2

.

The trivial bundle L := D× C→ D, endowed with the hermitian structure h given by

h(z, t) = (1− |z|2)2|t|2, ∀z ∈ D,∀t ∈ C, (2.1)

is a quantization of (D, ωhyp). Indeed, by (1.12),

curv(L, h) = −2∂∂̄ log(1− |z|2) =
2dz ∧ dz̄

(1− |z|2)2
= −2πiωhyp. (2.2)

Since D is simply connected, it follows from 1.5.1, that

D[(L,h)](D) = Aut(D) ∩ Isom(D, ωhyp).

This group is given by

SU(1, 1) = {
(
a b

b̄ ā

)
| |a|2 − |b|2 = 1},

(see [14]).

The example of the unit disk can be generalized by considering the complex hyper-

bolic space

DN = {(z1, . . . , zN ) ∈ CN | ‖z‖2 =

N∑
j=1

|zj |2 < 1}

29



endowed with the hyperbolic form

ΩN
hyp =

i

2π
∂∂̄ log

1

1− ‖z‖2
. (2.3)

More generally, one can consider D∞ the infinite dimensional complex hyperbolic space.

This is defined as the set of sequences zj in C∞ such that ‖z‖2 =
∑+∞

j=1 |zj |2 < 1 and

it can be endowed with the Kähler form

Ω∞hyp =
i

2π
∂∂̄ log

1

1− ‖z‖2
. (2.4)

2.0.3 The regularized Kepler manifold

Let T ∗0 S
n be the cotangent space to the n-dimensional sphere Sn minus its zero section

(see [25] and [26]). This can be realized as the space

X = {(e, x) ∈ Rn+1 × Rn+1 | e · e = 1, x · e = 0, x 6= 0},

where the “ · ” is the standard scalar product in Rn+1. One can endow X with the

natural symplectic form

Ω = dθ,

where

θ =
n+1∑
j=1

xjdej = x · de

is called the Liouville form. The manifold X can be further identified with the isotropic

cone

Cn = {z ∈ Cn+1 | z · z = 0, z 6= 0}

via the map

ψ : X → Cn : (e, x) 7→ |x|e+ ix ∈ Cn+1.

Therefore X becomes a complex manifold via the pull-back of the complex structure of

Cn+1. One can show that the symplectic form Ω is, in fact, a Kähler form and it can

be written as

Ω = 2i∂∂̄
√
z · z̄ = 2i∂∂̄|x|,
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(see [26]). Since Ω is exact it is trivially integral and, from 1.4.6, there exists a quan-

tization (L, h) of (X,Ω). Restricting to the case n ≥ 3, X is simply connected and,

since [Ω]dR = c1(L) = 0 it follows from 1.1.2, that L is holomorphically trivial over X.

When X is simply connected, it follows from Proposition 1.5.1 that

D[(L,h)](X) = Aut(X) ∩ Isom(X,ω).

The explicit description of this group can be found in [26].

2.0.4 The complex projective space

Given a natural number N , let PN (C) be the complex projective space and π : CN+1 \

{0} → PN (C) the standard projection map. Let U ⊂ PN (C) be an open set and

z : U → CN+1 \ {0} a lifting of U , i.e. a holomorphic map such that π ◦ z = id. Define

the differential form on U by the formula

ΩN
FS =

i

2π
∂∂̄ log ‖z‖2, (2.5)

where ‖z‖2 = 〈z, z〉 is the standard form on CN+1. If z̃ : V → CN+1 \ {0} is another

lifting then on U ∩V , there exists a non-zero holomorphic function f such that z̃ = fz.

Therefore

i

2π
∂∂̄ log ‖z̃‖2 =

i

2π
∂∂̄ log ‖z‖2 +

i

2π
∂∂̄ log f +

i

2π
∂∂̄ log f̄ = ΩN

FS ,

and consequently ΩN
FS defines a differential form on PN (C), since it is independent of

the lifting chosen.

Furthermore, one can show that ΩN
FS is an integral Kähler form (see [12]) and so,

from 1.4.6, there exists a hermitian line bundle (L, h) such that curv(L, h) = −2πiΩN
FS .

The line bundle L, known as the hyperplane bundle, is denoted by ON (1).

The global holomorphic sections of ON (1) can be identified with linear forms in the

N+1 variables (z0, . . . , zN ) (see [12, p. 164-167]). More generally, if ON (k) denotes the

k-th tensor power of ON (1), then the space H0(ON (k)) can be identified with the space

of homogeneous polynomials of degree k in (z0, . . . , zN ). A combinatorial calculation
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shows that

dimH0(ON (k)) =

(
N + k

N

)
.

The group Aut(PN (C)) equals PGL(N + 1,C), the projective linear group, and

Isom(PN (C),ΩN
FS) equals PU(N + 1) the group of projective unitary transformations

(see [13] for a proof). Since PN (C) is simply connected, it follows from 1.5.1, that

D[(ON (1),h)](PN (C)) = Aut(PN (C)) ∩ Isom(PN (C),ΩN
FS) = PU(N + 1).

Similar considerations can be done for the infinite dimensional complex projective space

defined as follows (see [18, p. 280]). Two sequences zj and wj in C∞ \ {0} are said to

be equivalent if zj = λwj for some λ ∈ C∗. The quotient space of C∞ \ {0} by this

equivalence relation is called the infinite dimensional complex projective space and it

is denoted by P∞(C). Let π : C∞ \ 0 → P∞(C) be the standard projection map. One

can define a Kähler form on P∞(C), analogous to (2.5), by:

Ω∞FS =
i

2π
∂∂̄ log ‖z‖2, (2.6)

where z : U → C∞ \ 0 is a lifting of an open set U ⊂ P∞(C).

One can also consider the projective space of a complex Hilbert space defined as

follows. Let (H, 〈 · , · 〉) be a separable complex Hilbert space. Define P(H) as the

quotient H \ {0}/∼, where s is equivalent to t if and only if there exists λ ∈ C∗ such

that s = λt. The space P(H) can be endowed with the Kähler form

ΩH =
i

2π
∂∂̄ log ‖s‖2, ‖s‖2 = 〈s, s〉 (2.7)

(see [26, p. 409]). A choice of a unitary basis sj , j = 0, 1, . . . N (N ≤ ∞), of (H, 〈 · , · 〉)

gives rise to a natural holomorphic diffeomorphism

b : H → CN : s 7→ [(. . . , 〈s, sj〉, . . .)]

which induces a map

b : P(H)→ PN (C),

satisfying b∗ΩN
FS = ΩH.
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2.0.5 Projective algebraic manifolds

Let M be a compact complex manifold. Suppose that there exists a natural number N

and a holomorphic embedding φ : M → PN (C). In this case the manifold M is called

a projective algebraic manifold. It is not difficult to see that ω = φ∗(ΩN
FS) is a Kähler

form and L = φ∗(ON (1)) is a holomorphic line bundle over M . Furthermore, L can

be endowed with a hermitian structure h such that curv(L, h) = −2πiω (see [12, pp.

148-149]) and so every projective algebraic manifold is quantizable.

If one starts from a compact quantizable Kähler manifold (M,ω), then ω is integral,

and therefore, by a well-known theorem of Kodaira, M can be embedded into some

complex projective space using sections of a suitable tensor power Lk of L (see [12]).

More precisely, let N(k) + 1 be the complex dimension of Lk and (s0, . . . , sN(k)) a basis

for H0(Lk). Suppose that the so called base point free condition is satisfied, i.e. for

every x ∈ M there exists a holomorphic section s of H0(Lk) such that s(x) 6= 0. For

σ : U → L+ a trivialising holomorphic section of Lk define

φk : U → CN(k)+1 : x 7→ (
s0(x)

σ(x)
, . . . ,

sN(k)(x)

σ(x)
). (2.8)

If τ : V → L+ is another holomorphic trivialisation then, there exists a holomorphic

function f on U ∩ V such that σ(x) = f(x)τ(x). Therefore the map (2.8) can be

extended to a map

φ : M → PN(k)(C) : x 7→ [(s0(x), . . . , sN(k)(x)]. (2.9)

The above mentioned theorem of Kodaira says that for k sufficiently large the base point

free condition is satisfied and the map φ is an embedding. Once that the map φ is given,

one has φ∗(ON (k)) = Lk, but in general φ∗(ΩN
FS) is different from the Kähler form kω.

This leads to the problem of holomorphic isometric immersions of Kähler manifolds in

complex projective spaces, which will be the main theme of the next chapter.

2.1 Factors of automorphy and holomorphic line bundles

All the material contained in this Section is taken from Appendix A in [23].
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Let M be a complex manifold, and p : M̃ → M its covering map. The topological

space M̃ inherits the structure of a complex manifold as follows. If (Ui, zi) is a holo-

morphic coordinate covering of M in which each set Ui is simply connected then any

connected component of p−1(Ui) is homeomorphic to Ui under the projection p and so

(p−1(Ui), zi ◦ p) is a holomorphic coordinate covering of M̃ .

The aim of this Section is to describe the holomorphic line bundles L over M in

terms of the holomorphic line bundles p∗(L) over M̃ .

Definition 2.1.1 Let π1(M) be the fundamental group of M . A map f : π1(M)×M̃ →

C∗, holomorphic for any fixed λ ∈ π1(M), is called a 1-cocycle if it satisfies the cocycle

relation

f(λµ, x̃) = f(λ, µ · x̃)f(µ, x̃), ∀λ, µ ∈ π1(M), ∀x̃ ∈ M̃,

where µ · x̃ denotes the action of π1(M) on M̃ .

Under multiplication the 1-cocycles form an abelian group which is denoted by

Z1(π1(M), H0(O∗
M̃

)), where H0(O∗
M̃

) is the set of non-vanishing holomorphic functions

on M̃ . The elements of Z1(π1(M), H0(O∗
M̃

)) are called the factors of automorphy.

Denote by B1(π1(M), H0(O∗
M̃

)) the subgroup of Z1(π1(M), H0(O∗
M̃

)) consisting of

f such that f(λ, x̃) = h(λx̃)h(x̃)−1 for some h ∈ H0(O∗
M̃

). Define the cohomology

group as the quotient

H1(π1(M), H0(O∗
M̃

)) = Z1(π1(M), H0(O∗
M̃

))/B1(π1(M), H0(O∗
M̃

))

Theorem 2.1.2 There is a canonical isomorphism

Φ : H1(π1(M), H0(O∗
M̃

))→ ker
(
p∗ : H1(M,O∗M )→ H1(M̃,O∗

M̃
)
)

Proof: Let {Ui}i∈I be an open covering of M with the property that for every i ∈ I

there exists a connected set Wi ⊂ p−1(Ui) such that pi = p|Wi : Wi → Ui are biholo-

morphisms. For every (i, j) ∈ I × I and x ∈ Ui ∩Uj there exists λij ∈ π1(M) such that

p−1
j (x) = λijp

−1
i (x). Therefore λijλjk = λik for every (i, j, k) ∈ I3. Let f be an element

in Z1(π1(M), H0(O∗
M̃

)). For (i, j) ∈ I × I and x ∈ Ui ∩ Uj define

gij(x) = f(λij , p
−1
i (x)). (2.10)
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It follows immediately that gijgjk = gik for every (i, j, k) ∈ I3, that is gij defines a

cocycle in Z1(M,O∗M ). Hence we have constructed a homomorphism

Φ : Z1(π1(M), H0(O∗
M̃

))→ Z1(M,O∗M ) : f 7→ gij .

One can show that Φ is independent of the choices involved: the covering Ui and the

maps pi. Furthermore, if f belongs to B1(π1(M), H0(O∗
M̃

)), i.e. f(λx̃) = h(λx̃)h(x̃)−1

for some h ∈ H0(O∗
M̃

), then its image under Φ is given by:

gij(x) = h(λijp
−1
i (x))h(p−1

i (x))−1 = h(p−1
j (x))h(p−1

i (x))−1.

This means that Φ induces a map

Φ̃ : H1(π1(M), H0(O∗
M̃

))→ H1(M,O∗M )

between cohomology groups. Let p∗(L) ∈ ker
(
p∗ : H1(M,O∗M )→ H1(M̃,O∗

M̃
)
)

be a

holomorphic trivial line bundle over M̃ . The action x̃→ λ · x̃ of π1(M) on M̃ induces

a holomorphic automorphism ρλ of p∗(L) over this action

p∗(L)
ρλ−→ p∗(L)

↓ ↓

M −→ M

λ 7−→ λ · x̃

Let A : p∗(L) → M̃ × C be a trivialisation of p∗(L) and ΦA
λ = A ◦ ρλ ◦ A−1 the

corresponding automorphism of the trivial bundle. The map ΦA
λ (x̃, t) is necessarily of

the form

(λx̃, fA(λ, x̃)t), (2.11)

for some fA : π1(M)× M̃ → C∗. Furthermore

ΦA
λµ = ΦA

λΦA
µ ,

i.e. fA(λ, x̃) ∈ Z1(π1(M), H0(O∗
M̃

). In other words, we have built a map, depending

on the trivialisation A,

ΨA : ker
(
p∗ : H1(M,O∗M )→ H1(M̃,O∗

M̃
)
)
→ Z1(π1(M), H0(O∗

M̃
))
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which assigns L to fA. If B : p∗(L)→ M̃ × C is another trivialisation, then

ΦB
λ = B ◦ ρλ ◦B−1 = B ◦A−1 ◦ ΦA

λ ◦A ◦B−1.

The map B ◦A−1 : M̃×C→ M̃×C is necessarily of the form B ◦A−1(x̃, t) = (x̃, h(x̃t))

with h ∈ H0(O∗
M̃

). Hence

ΦB
λ (x̃, t) = (λx̃, fB(λ, x̃)) = (λx̃, h(λx̃)fA(λ, x̃)h(x̃)−1t),

which shows that fA(λ, x̃) and fB(λ, x̃) are cohomologous in H1(π1(M), H0(O∗
M̃

).

Hence, the map ΨA gives rise to a map

Ψ : ker
(
p∗ : H1(M,O∗M )→ H1(M̃,O∗

M̃
)
)
→ H1(π1(M), H0(O∗

M̃
),

which it can be seen to be the inverse of Φ̃. 2

By formula (2.11), one deduces that, if L is a holomorphic line bundle over M and

p∗L is holomorphically trivial over M̃ , then the set of global holomorphic sections of L

can be identified with the set of holomorphic functions s on M̃ satisfying the functional

equation

s(λx̃) = fA(λ, x̃)s(x), (2.12)

where fA(λ, x̃) is the factor of automorphy corresponding to the trivialisation A.

We are interested in two cases which are treated in the next two subsections: the

complex tori and the compact Riemann surfaces of genus g greater or equal to two. In

these cases the universal covering space is either Cn or the unit disk D and they have

the important feature that any holomorphic line bundle over them is holomorphically

trivial. In fact, let M̃ be either CN or the unit disk D. Consider the cohomology long

exact sequence

· · · → H1(M̃,OM̃ )→ H1(M̃,O∗
M̃

)
c1→ H2(M̃,Z)→ · · · .

Since M̃ is contractible, H2(M̃,Z) = 0 and H1(M̃,OM̃ ) = H0,1

∂̄
(M̃) = 0. This implies

that H1(M̃,O∗
M̃

) ∼= Pic(M̃) = 0, and so the assertion.
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2.1.1 Quantization of complex tori

We refer to [23, Chapter 1] for the material of this Section. Let V be a complex vector

space of complex dimension N and Λ a 2n-lattice on V , i.e. a discrete subgroup of V of

rank 2n. The quotient V/Λ is a N -dimensional compact complex manifold called the

complex torus. The canonical projection p : V → V/Λ is the universal covering map

and the lattice Λ can be identified with the fundamental group of V/Λ. Consider the

set of maps H : V × V → C linear in the first factor and complex antilinear in the

second factor, such that ImH(Λ×Λ) ⊂ Z. Take the group of semicharacters of H, i.e.

the set of maps χ : Λ→ S1 such that

χ(λ+ µ) = χ(λ)χ(µ)eπiImH(λ,µ), ∀λ, µ ∈ Λ.

Define

A(λ, v) = χ(λ)eπH(v,λ)+π
2
H(λ,λ).

It follows immediately that A(λ + µ, v) = A(λ, v + µ)A(µ, v), thus A(λ, v) is a fac-

tor of automorphy, i.e. A(λ, v) belongs to Z1(Λ, H0(O∗V )). From Theorem 2.1.2 the

class [A(λ, v)] ∈ H1(Λ, H0(O∗V )) defines a holomorphic line bundle L on V/Λ which

is denoted by L(H,χ). Furthermore, it follows by (2.12) that the global holomorphic

sections of L(H,χ) can be seen as holomorphic functions θ on V satisfying

θ(v + λ) = A(λ, v)θ(v). (2.13)

The functions θ satisfying (2.13) are called the canonical theta functions.

Let H be a hermitian form on V , i.e. a map H : V × V → C complex linear in

the first factor and complex antilinear in the second factor such that H(v, v) ≥ 0 and

H(v, v) = 0 if and only if v = 0. Define the differential form on V

ΩN
0 :=

i

2
∂∂̄H.

It is easily seen that ΩN
0 is a Kähler form on V , invariant by translations. In particular,

ΩN
0 is invariant by the action of the lattice Λ and so it defines a Kähler form on V/Λ ,

denoted by the same symbol ΩN
0 .
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Proposition 2.1.3 The Kähler manifold (V/Λ,ΩN
0 ) admits a quantization if and only

if

ImH(Λ× Λ) ⊂ Z.

Proof: If ImH(Λ×Λ) ⊂ Z, then one can take the holomorphic line bundle L = L(H,χ)

where χ is any semicharacter associated to H. In order to introduce a hermitian

structure h on L, one defines a function F : V → R+, given by:

F (v) := e−πH(v,v).

A simple calculation shows that

F (v + λ) = e−2π<H(v,λ)−πH(λ,λ)F (v), ∀v ∈ V,∀λ ∈ Λ.

Let now θ be a holomorphic section of L. Define

h(θ(v), θ(v)) = F (v)|θ(v)|2.

It follows by (2.13) that the function h is invariant under the action of the lattice, i.e.

h(θ(v + λ), θ(v + λ)) = h(θ(v), θ(v)) ∀λ ∈ Λ.

Since H is positive definite, h defines a hermitian structure on L. Furthermore, by

(1.12),

curv(L(H,χ), h) = −∂∂̄ log h = −∂∂̄ logF = π∂∂̄H = −2πiΩN
0 .

This shows that (L, h) is a quantization of (V/Λ,ΩN
0 ). For the converse we refer to

[23]. 2

Remark 2.1.4 One can show that the condition ImH(Λ×Λ) ⊂ Z is equivalent to the

integrality of the Kähler form ΩN
0 . Hence Proposition 2.1.3 could also be deduced from

Theorem 1.3.3.

In the language of algebraic geometers, a complex torus with a Kähler form which ad-

mits a quantization is called an abelian variety. One can show that every 1-dimensional

complex torus is an abelian variety. This is false even in dimension two (see [31, pp.

214-16]).
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The group of translations which is a subgroup of

Aut(V/Λ) ∩ Isom(V/Λ,ΩN
0 )

acts transitively on the torus and therefore, (V/Λ,ΩN
0 ) is a homogeneous Kähler man-

ifold.

The group D[(L,h)](V/Λ) is finite. In fact, from Section 1.5, this group admits a

projective representation in P(H0(L)), and it can be shown that the group of automor-

phism of an abelian variety which admits a projective representation is finite (see [12,

p. 326] for a proof).

2.1.2 Quantization of Riemann surfaces

Let Σg be a compact Riemann surface of genus g ≥ 2. One can realize Σg as the

quotient D/Γ of the unit disk D ⊂ C under the fractional linear transformations of a

Fuchsian subgroup Γ of

SU(1, 1) = {
(
a b

b̄ ā

)
| |a|2 − |b|2 = 1}.

Here the action of γ =
(
a b
b̄ ā

)
∈ Γ is given by z 7→ γ(z) = az+b

b̄z+ā
. It is immediate to

check that the Kähler form

ωhyp =
i

π

dz ∧ dz̄
(1− zz̄)2

is invariant under fractional linear transformations, so it defines a Kähler form on Σg,

denoted by the same symbol ωhyp. Let p : D→ D/Γ be the natural projection map and

s a holomorphic form of type (1, 0) on Σg. This means that if (Uα, zα) is a complex

atlas for Σg and s(z) = sαdzα in Uα, then sα(z) are holomorphic functions on Uα.

For all z ∈ Uα ∩ Uβ one has sα(z)dzα = sβ(z)dzβ. Define kαβ :=
dzβ
dzα

; the chain rule

for differentiation implies that kαβ(z)kβγ(z) = kαγ(z) for every z ∈ Uα ∩ Uβ ∩ Uγ , so

there exists a holomorphic line bundle K, called the canonical bundle, which has these

functions as coordinates transformations. The line bundle p∗(L) is holomorphically

trivial and its global holomorphic sections are the form of type (1, 0) on D. If z denotes

the global holomorphic coordinate on D then such a forms are given by s(z)dz where
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s(z) is a holomorphic function on D. Hence, the global holomorphic sections of K can

be seen as the 1-forms s of type (1, 0) on D invariant by the action of Γ, i.e.

s(γ(z))d(γ(z)) = s(γ(z))γ′(z)dz = s(z)dz, ∀γ ∈ Γ, (2.14)

where γ′(z) denotes the derivative of γ(z) with respect to z (if γ(z) = az+b
b̄z+ā

then

γ′(z) = (b̄z + ā)−2). Thus, by (2.14), the factor of automorphy is given by (γ(z)′)−1.

Define

h(s(z), s(z)) := (1− |z|2)2|s(z)|2.

One can easily check that

(1− |γ(z)|2) = |γ′(z)|(1− |z|2), (2.15)

and so, by (2.14),

h(s(γ(z)), s(γ(z))) = h(s(z), s(z)), ∀s ∈ H0(K), ∀γ ∈ Γ.

Therefore h defines a hermitian structure on K. Moreover,

curv(K,h) = −2πiωhyp

(see (2.2)), which shows that (K,h) is a geometric quantization for the Riemann surface

(Σg, ωhyp).

One can show that Aut(Σg) is a finite group (see [19, p. 88]) and so, a fortiori, the

group

D[(L,h)](Σg) ⊂ Aut(Σg) ∩ Isom(Σg, ωhyp)

is finite.
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Chapter 3

Holomorphic isometric

immersions of Kähler manifolds

in complex space forms

All the material in Sections 3.1, 3.2, 3.3 and 3.4 is taken from [9] to which we refer

without further comments.

3.1 The Calabi’s diastasis function

Let (M,ω) be a Kähler manifold. On a contractible open set U ⊂M the Kähler form

ω can be written as ω = dβ where β is a real 1-form. One may write β = α + α, for

some form α of type (1, 0). Since ω is of type (1, 1),

ω = dβ = (∂ + ∂̄)(α+ ᾱ) = ∂α+ ∂̄α+ ∂ᾱ+ ∂̄ᾱ

implies ∂α = 0. Thus, from the Dolbeault Lemma, there exists a function g, defined

on a possibly smaller open set V ⊂ U , such that

ω = ∂̄∂g + ∂∂̄ḡ = ∂∂̄(ḡ − g) =
i

2π
∂∂̄Φω, (3.1)

where Φω = −2πi(g − ḡ) is a real valued function on V .
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Definition 3.1.1 A function Φω satisfying (3.1) is called a Kähler potential of ω.

A Kähler potential Φω is not unique. If ∂∂̄f = d(∂f) = 0 then locally there exists

a holomorphic function h such that ∂f = dh (see Lemma 1.4.9). The reality of f

implies that ∂̄f = dh̄, and thus df = d(h + h̄). Therefore f has to be the real part of

a holomorphic function. This means that a Kähler potential is defined up to the sum

with the real part of a holomorphic function.

Throughout this chapter our interest is devoted to the study of holomorphic iso-

metric immersions, denoted here by h.i.i., of a Kähler manifold in finite or infinite

dimensional complex space forms, i.e. spaces of constant holomorphic sectional curva-

ture (see [20, p. 165]). There are three types of complex space forms : flat, hyperbolic

or elliptic according as the holomorphic sectional curvature is zero, negative, or posi-

tive. Every N -dimensional complex space form (the case N = ∞ is not excluded) is,

after multiplying by a suitable constant, locally holomorphically isometric to one of the

following:

• the complex euclidean space CN endowed with the Kähler form ΩN
0 of zero holo-

morphic sectional curvature (see 2.0.1);

• the unit ball DN endowed with the Bergman form ΩN
hyp of negative holomorphic

sectional curvature (see 2.3 and 2.4);

• the N -dimensional complex projective space PN (C) endowed with the Fubini-

Study form ΩN
FS (see 2.0.4) of positive holomorphic sectional curvature.

We refer to [9, Theorem 1 and 7] for the proof of the following:

Theorem 3.1.2 If a Kähler manifold (M,ω) can be holomorphically and isometrically

immersed in a complex space form, then ω is real analytic.

If ω is a real analytic Kähler form then, in a complex coordinate system (z1, . . . , zn)

around a point p0, a Kähler potential can be expanded in power series

Φω(p) =

+∞∑
j,k=0

Φjkz(p)
mjz(p)

mk
.
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Here we are using the following convention: we arrange every n-tuple of non-negative

integers as the sequence mj = (m1,j ,m2,j , . . . ,mn,j)j=0,1,... such that m0 = (0, . . . , 0),

|mj | ≤ |mj+1|, with |mj | =
∑n

α=1mα,j and zmj =
∏n
α=1(zα)mα,j . A Kähler potential

can be complex analytically continued in an open neighborhood of the diagonal W ⊂

V × V as

Φω(p, q̄) =
+∞∑
j,k=0

Φjkz(p)
mjz(q)

mk
.

It is holomorphic in p and antiholomorphic in q.

The diastasis function is defined by

Dω(p, q) = Φω(p, p̄) + Φω(q, q̄)− Φω(p, q̄)− Φω(q, p̄), ∀p, q ∈W. (3.2)

Since the Kähler potential is independent of the coordinate system chosen so is Dω.

Furthermore, (3.2) shows that the ambiguity on the definition of a Kähler potential,

defined up to the sum of the real part of a holomorphic function, drops out and so Dω

depends only on the Kähler form ω.

The diastasis is real valued since Φω(p, q̄) = Φω(q, p̄), it is symmetric in p and q and

D(p, p) = 0.

For q ∈M , let Dω,q be the function defined by

Dω,q(p) = Dω(p, q), (3.3)

and let

Mω
q = {p ∈M | Dω,q is defined} (3.4)

its maximal domain of definition. The following proposition, for a proof of which we

refer to [9], is the key to studying the h.i.i. of a Kähler manifold (M,ω) into a complex

space form.

Proposition 3.1.3 Let φ : M → N be a holomorphic immersion of a complex manifold

M into a complex manifold N . Suppose that ωM and ωN are analytic Kähler forms on

M and N , respectively. Then φ∗(ωN ) = ωM if and only if DωM (p, q) = DωN (φ(p), φ(q)).
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3.2 H.i.i. in (CN ,ΩN
0 )

Throughout this Section, Sections 3.3 and 3.4, N will be either a natural number or

∞. We start by analysing the diastasis of ΩN
0 . From Example 2.0.1 a Kähler potential,

globally defined in CN , is given by:

ΦΩN0
(z, z̄) = π

N∑
j=1

|zj |2 = π‖z‖2.

Its complex analytic continuation in CN × CN is

ΦΩN0
(z, w̄) = π

N∑
j=1

zjw̄j = πz · w̄.

Thus, by (3.2), the diastasis function can be calculated as

DΩN0
(z, w) = π‖z‖2 + π‖w‖2 − z · w̄ − w · z̄ = π‖z − w‖2. (3.5)

It is a globally defined real analytic function on CN × CN , given by the square of the

distance between the points z and w times π.

Suppose now that a Kähler manifold (M,ω) admits a h.i.i. in (CN ,ΩN
0 ). Then,

from Theorem 3.1.2, ω is real analytic and so one can calculate its diastasis Dω. By

(3.5) and 3.1.3 one can easily deduce:

Corollary 3.2.1 If a Kähler manifold (M,ω), admits a h.i.i. in (CN ,ΩN
0 ), then Dω

is a non-negative real analytic function on M ×M and so Dω,q is globally defined for

all q ∈M .

We can carry out our analysis further by studying the power series expansion of the

diastasis in a neighborhood of a point as follows. Let p0 ∈ M and suppose that there

exists a neighborhood of it, say Up0 , and a holomorphic map φ : Up0 → (CN ,ΩN
0 )

which is an isometry with respect to the induced metric ω |Up0 on Up0 , i.e. φ∗ΩN
0 =

ω |Up0 . Let x = (x1, . . . , xn) be local coordinates around p0 and let (φ1, . . . , φN ) be the

components of φ. After a translation in CN we can suppose, without lost of generality,

that p0 is mapped onto the origin of CN . It follows, from Proposition 3.1.3, and (3.5),
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that Dω(p, p0) =
∑N

α=1 |φα(x(p))|2. The functions φα(z(p)) are holomorphic, so for

|xα| < ρα, α = 1, . . . , N , one can write φα(x(p)) =
∑+∞

j=0 φ
α
j x(p)mj . Thus,

Dω(p, p0) =

N∑
α=1

+∞∑
j,k=0

φαj φ̄
α
kx(p)mjx(p)

mk
=

+∞∑
j,k=0

Djkx(p)mjx(p)
mk
, (3.6)

where

Djk :=

N∑
α=1

φαj φ̄
α
k (3.7)

is a ∞ ×∞ matrix given by the product of the ∞ × n matrix φαj and its transpose

conjugate. Therefore it is semi-positive definite and its rank is at most N .

Definition 3.2.2 A real analytic Kähler form ω is said to be resolvable of rank N at

p0 ∈ M if the matrix Djk given by (3.6) is semi-positive definite and of rank N . If

N =∞ we say that ω is resolvable of infinite rank.

A theorem of Calabi asserts that the resolvability condition is also sufficient for the

existence of a h.i.i. of a neighborhood of p0 into (CN ,ΩN
0 ). Furthermore, the concept

of resolvability, even if it is defined locally, turns out to be a global concept. Hence,

one can speak of a real analytic Kähler form being resolvable without specifying the

point into consideration. The following theorem tells us that, in the simply connected

case, a local h.i.i. can always be extended to a global one.

Theorem 3.2.3 A simply connected complex manifold M endowed with a real analytic

Kähler form ω admits a h.i.i. in (CN ,ΩN
0 ) if and only if ω is resolvable of rank at most

N . The immersion is full if the rank is exactly N .

The main ingredient needed to prove the previous theorem is given by the Local

Rigidity Theorem which will be of constant use throughout this thesis:

Theorem 3.2.4 Let U ⊂M be a connected open set of M , φ : U → Cr and ψ : U → Cs

be two full holomorphic maps such that φ∗(Ωr
0) = ψ∗(Ωs

0) is a Kähler form on U . Then

r = s = N and there exists T an isometry of CN , i.e. a unitary transformation followed

by a translation, such that T ◦ φ = ψ.

Here a map φ : U → Cr is said to be full if φ(U) is not contained in Ct with t < r.
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3.3 H.i.i. in (DN ,ΩN
hyp)

Consider the open ball DN , endowed with the Kähler form

ΩN
hyp =

i

2π
∂∂̄ log

1

1− ‖z‖2
, ‖z‖2 =

N∑
j=1

|zj |2,

(see (2.3) and (2.4)). A Kähler potential, given by ΦΩNhyp
(z, z̄) = 1

1−‖z‖2 , can be complex

analytically continued to all DN ×DN as

ΦΩNhyp
(z, w̄) = log

1

1− z · w̄
, z · w̄ =

N∑
j=1

zj · w̄j .

Thus, by (3.2), the diastasis is given by:

DΩNhyp
(z, w) = − log

(1− ‖z‖2)(1− ‖w‖2)

(1− z · w̄)(1− z̄ · w)
. (3.8)

As for the flat case DΩNhyp
is a globally defined real analytic non-negative function on

DN ×DN . Hence, once again from 3.1.3, one obtains:

Corollary 3.3.1 If a Kähler manifold (M,ω) admits a h.i.i. in (DN ,ΩN
hyp), then Dω

is a non-negative real analytic function on M ×M and so Dω,q is globally defined for

all q ∈M .

Let M be a complex manifold endowed with a real analytic Kähler form ω. Suppose

that a neighborhood of a point p0 in M , say Up0 , admits a h.i.i. φ in (DN ,ΩN
hyp). Let

(x1, . . . , xn) be coordinates around the point p0 and let (φ1, . . . , φN ) be the components

of φ. From Proposition 3.1.3 it follows that:

Dω(p, p0) = − log(1−
N∑
α=1

|φα(x(p))|2).

Let

D−(p, p0) := 1− e−Dω(p,p0) =

N∑
α=1

|φα(x(p))|2) (3.9)

and

ω− =
i

2π
∂∂̄D−(p, p0).
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By (3.9) and the results of Section 3.2, one deduces that Up0 admits a h.i.i. in (DN ,ΩN
hyp)

if and only if ω− is resolvable of rank at most N . This means that if

D−(p, p0) =

+∞∑
j,k=0

D−jkx(p)mjx(p)
mk

denotes the expansion in power series of D−(p, p0) at p0, then the matrix D−jk is semi-

positive definite and of rank at most N . The analogous of Theorem 3.2.3 holds:

Theorem 3.3.2 A simply connected complex manifold M endowed with a real analytic

Kähler form ω admits a (full) h.i.i. in (DN ,ΩN
hyp) if and only if ω− is resolvable of

rank at most (precisely) N .

3.4 H.i.i. in (PN(C),ΩN
FS)

The Fubini-Study form in PN (C) can be written as:

ΩN
FS =

i

2π
∂∂̄ log ‖z‖2

where ‖z‖2 =
∑N

j=0 |zj |2 (see (2.5) and (2.6)). In the chart Uk = {zk 6= 0}, equipped

with coordinates uj =
zj
zk

, a Kähler potential is given by:

ΦΩNFS
(u, ū) = log(1 +

∑
j 6=k
|uj |2) = log(1 + ‖u‖2).

In this chart the diastasis has the following expression:

DΩNFS
(u, v) = log(1 + ‖u‖2) + log(1 + ‖v‖2)− log(1 + 〈u, v〉)− log(1 + 〈v, u〉).

This can be written in homogeneous coordinates as

DΩNFS
([z], [w]) = log

‖z‖2‖w‖2

|〈z, w〉|2
. (3.10)

In particular DΩNFS
> 0 unless [z] = [w]. For [w] ∈ PN (C) the function DΩNFS ,[w] is

everywhere defined apart from the set

PΩNFS
[w] = {[z] ∈ PN (C)| 〈z, w〉 = 0}, (3.11)
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where it takes infinity value. From now on we will say that a Kähler form on a complex

manifoldM is projectively induced if there exists a holomorphic and isometric immersion

φ of (M,ω) into some complex projective space (PN (C),ΩN
FS).

Suppose that ω is projectively induced via a map φ : M → PN (C). Consider the

set

Pωq = φ−1(φ(M) ∩ PΩNFS
φ(q) ), (3.12)

for q ∈M . This set is called the polar variety of M w.r.t. the point q.

Remark 3.4.1 Pωq is a (n−1)-dimensional complex variety (may be singular) (see [9,

pp. 3-4]). In the case of hermitian symmetric manifolds of compact type endowed with

the standard homogeneous form this set is shown to be the cut locus of the point q (see

[2]).

From 3.1.3 and 3.10 one easily obtains:

Corollary 3.4.2 Let (M,ω) be a complex manifold. Suppose that there exists a h.i.i.

in (PN (C),ΩN
FS). Then Dω is a non-negative real analytic function and Mω

q = M\Pωq

for every q ∈M , and so the function Dω,q is everywhere defined apart from the set Pωq .

To go deeper in our analysis we need, as in Section 3.2, to focus our attention in

the power series expansion of the diastasis . Suppose that a neighborhood of a point

p0, say Up0 , admits a h.i.i. in (PN (C),ΩN
FS). If x = (x1, . . . , xn) denote complex

local coordinates around p0, (φ0, . . . , φN ) the components of the immersion, then, from

Proposition 3.1.3, it follows that:

Dω(p, p0) = log(1 +

N∑
α=0

|φα(x(p))|2).

Consider the new diastasis function

D+(p, p0) = eDω(p,p0) − 1 =

N∑
α=0

|φα(x(p))|2 (3.13)

associated to the Kähler form ω+ = i
2π∂∂̄D

+(p, p0). By (3.13) and the results of

Section 3.2, one can deduce that a necessary and sufficient condition for ω |Up0 to be
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projectively induced in PN (C), is that ω+ is resolvable of rank at most N at p0. This

means that if

D+(p, p0) =

+∞∑
j,k=0

D+
jkx(p)mjx(p)

mk
(3.14)

denotes the power series expansion of D+(p, p0) at p0, then the matrix D+
jk is semi-

positive definite and of rank at most N .

Moreover, Calabi shows the global character of resolvability of ω+ and the projective

version of the Local Rigidity Theorem which reads:

Theorem 3.4.3 Let U ⊂ M be an open set of a complex manifold M , and φ : U →

Pr(C) and ψ : U → Ps(C) full holomorphic maps such that φ∗(Ωr
FS) = ψ∗(Ωs

FS) is

a Kähler form on U . Then r = s = N and there exists U ∈ PU(N + 1) such that

U ◦ φ = ψ.

Here a map φ : U → Pr(C) is said to be full if φ(U) is not contained in Pt(C) with

t < r. The analogous of 3.2.3 holds:

Theorem 3.4.4 A simply connected Kähler manifold M endowed with a real analytic

Kähler form ω admits a h.i.i. in (PN (C),ΩN
FS) if and only if ω+ is resolvable of rank

at most N . The immersion is full if the rank is precisely N .

3.5 Examples and remarks

Example 3.5.1 Let N be a natural number and ΩN
0 the flat Kähler form on CN (see

2.0.1). Let w0 be the origin of CN . By (3.13)

D+(z, w0) = e
DNΩ0

(z,w0) − 1 = eπ
∑N
α=1 |zα|2 − 1

=
∏N
α=1 e

π|zα|2 − 1

=
∑+∞

j1,...,jN=0
πj1+···+jN
j1!···jN ! |z1|2j1 · · · |zN |2jN − 1

=
∑+∞

j,k=0
δjkπ|mj |

mj !
zmj z̄mk − 1,

where mj ! = m1,j ! · · ·mN,j !. Then

D+
jk =

δjkπ
|mj |

mj !
, j, k > 1.
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This implies that

ω+ =
i

2π
∂∂̄D+(z, w0)

is resolvable of infinite rank. From Theorem 3.4.4, (CN ,ΩN
0 ) admits a h.i.i. in the

infinite dimensional projective space (P∞(C),Ω∞FS). This is given by:

(z1, . . . , zN )→ (. . . ,

√
π|mj |

mj !
zmj , . . .) (3.15)

In fact, by (2.6),

φ∗Ω∞FS =
i

2π
∂∂̄ log

+∞∑
j=0

π|mj |

mj !
|z|2mj =

i

2π
∂∂̄ log eπ‖z‖

2
= ΩN

0 .

Example 3.5.2 Let N be a natural number and ΩN
hyp the hyperbolic form on DN . Let

w0 denote the origin of CN . It follows, by (2.3), that:

DΩNhyp
(z, w0) = − log(1− ‖z‖2)

=
∑+∞

j1,...,jN=1
(j1+···+jN−1)!

j1!...jN ! |z1|2j1 · · · |zN |2jN

=
∑+∞

j,k=1
δjk(|mj |−1)!

mj !
zmj z̄mk .

Hence ΩN
hyp is resolvable of infinite rank and, from 3.2.3, (DN ,ΩN

hyp) admits a h.i.i. in

(C∞,Ω∞0 ). This is given explicitly by:

(z1, . . . , zN )→ (. . . ,

√
(|mj | − 1)!

mj !
zmj , . . .), (3.16)

as one can easily verify. Furthermore,

D+(z, w0) = e
D

ΩN
hyp

(z,w0)
− 1 = 1

1−‖z‖2 − 1

=
∑+∞

j1,...,jN=0
(j1+···+jN )!
j1!...jN ! zj11 · · · z

jN
N − 1.

We deduce that ω+ has infinite rank and so, from 3.3.2, (DN ,ΩN
hyp) admits a h.i.i. in

(P∞(C),Ω∞FS), This is given by:

(z1, . . . , zN )→ (. . . ,

√
|mj |!
mj !

zmj , . . .), j = 0, 1, . . . . (3.17)

Example 3.5.3 Let N be a natural number and ΩN
FS the Fubini-Study form on PN (C).

From 3.2.3 and 3.3.2, the existence of the polar variety implies that (PN (C),ΩN
FS)
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cannot be h.i.i. in any flat or hyperbolic space. Here we want to describe a h.i.i. of

(PN (C), kΩN
FS) in (PN(k)(C),Ω

N(k)
FS ), where N(k) =

(
N+k
N

)
is the complex dimension

of the space of homogeneous polynomials of degree k. Let φ : PN (C)→ PN(k)(C) be the

map defined as follows:

[(z0, . . . , zn)]→ [(. . . ,

√
k!

j0! . . . jN !
zj00 · · · z

jN
N , . . .)], (3.18)

where j0 + · · ·+ jN = k. The map (3.18) is holomorphic and

φ∗Ω
N(k)
FS = i

2π∂∂̄ log
∑

j0+···+jN=k
k!

j0!···jN ! |z0|2j0 · · · |zN |2jN

= i
2π∂∂̄ log(|z0|2 + · · ·+ |zN |2)k = kΩN

FS .

Remark 3.5.4 Examples 3.5.1, 3.5.2 and 3.5.3 show that a finite dimensional complex

space form cannot be holomorphically and isometrically immersed in a complex space

form of different type (see [9, p. 22]).

This fact has been generalized in [29] as follows:

Theorem 3.5.5 Any Kähler manifold which can be h.i.i. in a finite dimensional flat

space cannot be h.i.i. in a finite dimensional hyperbolic or elliptic space. Any Kähler

manifold h.i.i. in a finite complex hyperbolic space cannot be h.i.i. in a finite dimen-

sional flat or elliptic space.

Notice that (CN ,ΩN
0 ) and (DN ,ΩN

hyp) are examples of non compact homogeneous

Kähler manifolds, and so the fact that ΩN
0 and ΩN

hyp are not projectively induced (in a

finite dimensional complex projective space) could also be deduced from a Theorem in

[27], which asserts that a homogeneous Kähler manifold (M,ω) which admits a h.i.i.

in a finite dimensional complex projective space has to be compact.

Every homogeneous Kähler manifold, not necessarily compact, admits a h.i.i. in

some complex projective space via the coherent states map, as we will see in the next

chapter. For the case of compact homogeneous Kähler manifolds, we refer to [27], where

one can find a description of their immersions in complex projective spaces in terms of

Dynkin diagrams.
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Proposition 3.5.6 Let (M,ω) be either the N -dimensional complex torus (V/Λ,ΩN
0 )

or the Riemann surface (Σg≥2, ωhyp) (see 2.1.1 and 2.1.2). Then, (M,ω) cannot holo-

morphically and isometrically immersed in any complex projective space of any dimen-

sion.

Proof: Suppose that this is not the case. Then there exists a natural number N and

a h.i.i. φ of (M,ω) in (PN (C),ΩN
FS). Then φ ◦ p : (M̃, ω̃) → (PN (C),ΩN

FS) is a h.i.i.,

where p : (M̃, ω̃) → (M,ω) is the universal covering map. Since ω̃, is either the flat

form ΩN
0 on CN or the hyperbolic form ωhyp on the unit disk D, this is impossible by

Remark 3.5.4. 2

Proposition 3.5.7 The regularized Kepler manifold X, endowed with the Kähler form

Ω = 2i∂∂̄
√
z · z̄,

cannot be holomorphically and isometrically immersed in any finite dimensional com-

plex projective space endowed with the Fubini-Study metric, (see 2.0.3).

Proof: Assume the contrary, i.e. there exists a natural number N and a h.i.i. φ :

(X,Ω)→ (PN (C),ΩN
FS). Let U ⊂ C∗ be a simply connected open subset of C∗ endowed

with the Kähler form

ω =
i

2
∂∂̄|z|.

Take the holomorphic embedding:

j : (U, ω)→ (X,Ω)

defined by

j(z) = (
z

4
√

2
, i

z

4
√

2
, 0, . . . , 0).

It is immediate to verify that j∗Ω = ω, and hence φ ◦ j is a h.i.i. from (U, ω) into a

finite dimensional complex projective space. On the other hand, the map

ψ : (U, ω)→ (C,Ω1
0) : z 7→

√
z
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is a h.i.i. from (U, ω) into (C,Ω1
0), i.e. ψ∗Ω1

0 = ω (the map ψ can be defined since on

U one can choose a single branch of the logarithm). This is a contradiction in view of

Theorem 3.5.5. 2

Remark 3.5.8 We do not know if (X,Ω) admits a h.i.i. in an infinite dimensional

complex projective space, since we are not able to describe explicitly the ∞×∞ matrix

D+
jk, obtained by the power series expansion of the diastasis (see (3.13) and (3.14)).

Sometimes a complex manifold admits a Kähler form given by the solution of compli-

cated partial differential equations, therefore the diastasis and even the Kähler form

cannot be given explicitly. A typical example is the Kähler-Einstein metric (see the

definition below) given by the solution of the Calabi’s conjecture (see [1]).

Given a Kähler form one can associate the Ricci form ρω defined, in a complex

coordinate system zj , by

ρω = − i

2π
∂∂̄ log det gjk̄,

where the gjk̄’s are given in (1.10).

Definition 3.5.9 A Kähler form ω on a complex manifold M is said to be Kähler-

Einstein if

ρω = λω, (3.19)

where λ is a constant called the scalar curvature.

The first result about h.i.i. of complex manifolds endowed with a Kähler-Einstein form

in complex projective spaces can be found in [10] and it is expressed by the following:

Theorem 3.5.10 Let M be an hypersurface in PN (C). Suppose that the restriction of

ΩN
FS to M is Kähler-Einstein. Then M is either a complex projective space endowed

with the Fubini–Study form, or the hyperquadric

QN−1(C) = {(z0, . . . , zN ) ∈ PN (C) |
N∑
j=0

|zj |2 = 0},

endowed with the standard Kähler form (see also [20, p. 278]).
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In [28] Theorem 3.5.10 has been generalized to the codimension two case. The case of

general codimension is still an open problem. The h.i.i. of Kähler-Einstein manifolds

in finite dimensional hyperbolic and flat spaces is treated in [29]:

Theorem 3.5.11 Let M be a complex manifold. Suppose that there exists a natural

number N and a holomorphic immersion φ : M → CN (resp. φ : M → DN ) such that

φ∗ΩN
0 (resp. φ∗ΩN

hyp) is Kähler-Einstein. Then (M,ω) is totally geodesic in (CN ,ΩN
0 )

(resp. in (DN ,ΩN
hyp)).

3.6 Applications to Hartogs domains in C2

Let F : [0, x0) → (0,+∞] be a non increasing lower semicontinuous function from the

interval [0, x0) ⊂ R to the extended positive reals (0,+∞] (the case x0 = +∞ is not

excluded). Consider the following domain:

DF = {(z1, z2) ∈ C2 | |z1|2 < x0, |z2|2 < F (|z1|2)} (3.20)

This is called the Hartogs domain corresponding to the function F . The lower semi-

continuity of F assures us that DF is an open set. In the hypothesis that F (0) < ∞,

one can define a real valued function on DF by

log
1

H(z)
,

where z = (z1, z2) ∈ DF and H(z) = F (|z1|2)− |z2|2. Suppose, furthermore, that F is

C2 in [0, x0) and let ωF be the real 2-form on DF defined by

ωF :=
i

2π
∂∂̄ log

1

F (|z1|2)− |z2|2
. (3.21)

In this Section we give necessary and sufficient conditions for (DF , ωF ) to admit a h.i.i.

in a complex space form. Moreover, we describe such immersions explicitly.

Proposition 3.6.1 Suppose that F is C2 in [0, x0). Then ωF is a Kähler form if and

only if (
xF ′

F

)′
< 0, ∀x ∈ [0, x0), (3.22)

where the prime denotes the derivative w.r.t. the variable x.
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Proof: Let ωF = i
2π

∑2
j,k=1 gjk̄dzj∧dz̄k be the local expression of ωF in the coordinates

(z1, z2). A calculation (see [11, pp. 440-441]) shows that

g11̄ = −HF ′−H|z1|2F ′′+|z1|2F ′2
H2 |x=|z1|2 ,

ḡ12̄ = g21̄ = −F ′
H2 z1z̄2 |x=|z1|2 ,

g22̄ = F
H2 |x=|z1|2 .

It follows that:

det gjk̄ = g11̄g22̄ − |g12̄|2 = −F
2

H3

(
xF ′

F

)′
|x=|z1|2 . (3.23)

The form ωF is Kähler if and only if the matrix gjk̄ is positive definite and, since

F (0) > 0 and g22̄ > 0, this is the case if and only if det gjk̄ > 0. By (3.23) this

condition turns out to be equivalent to (3.22). 2

Suppose that ωF is a Kähler form on DF . Consider the function F̃ : D√x0
→ R+

defined by

F̃ (z1) := F (|z1|2) (3.24)

on

D√x0
= {z1 ∈ C | |z1| <

√
x0}. (3.25)

Suppose that (DF , ωF ) admits a h.i.i. in a complex space form. From Theorem 3.1.2,

ωF has to be real analytic and, by (3.21), this is equivalent to the requirement that F̃

is real analytic in D√x0
. Under this hypothesis, a Kähler potential, globally defined in

DF , is given by:

ΦωF (z, z̄) = log
1

F (|z1|2)− |z2|2
, ∀z = (z1, z2) ∈ DF .

It can be complex analytically extended to DF ×DF as

ΦωF (z, w̄) = log
1

F (z1w̄1)− z2w̄2
, ∀z = (z1, z2), w = (w1, w2) ∈ DF ,

where F (z1w̄1) := F̃ (z1, w̄1) and F̃ (z1, z̄1) = F̃ (z1). The diastasis has the form

DωF (z, w) = log
|F (z1w̄1)− z2w̄2|2

(F (|z1|2)− |z2|2)(F (|w1|2)− |w2|2)
. (3.26)
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Notice that the polar variety PωFw reduces to the empty set for every w ∈ DF . From

Corollaries 3.2.1, 3.3.1 and 3.4.2, a necessary condition for (DF , ωF ) to admit a h.i.i. in

some complex space form, is that DωF (z, w) ≥ 0, ∀z, w ∈ DF . By (3.26), this condition

is equivalent to

(F (|z1|2)− |z2|2)(F (|w1|2)− |w2|2)

|F (z1w̄1)− z2w̄2|2
≤ 1, ∀z = (z1, z2), w = (w1, w2) ∈ DF . (3.27)

Condition (3.27) has been studied in [11] for a different purpose, and it turns out to

be equivalent to the fact that F (|z1|) ≤ |F (z1)|, ∀z1 ∈ Dx0 = {z ∈ C | |z| < x0}. In

Proposition 3.6.3 below we shall give a proof of this fact for completeness. First we

need the following (see [11, p. 437 and p. 444]):

Lemma 3.6.2 Let z1 and w1 be in D√x0
. Define u = log |z1|2 and v = log |w1|2. Take

the real valued function

g : [−∞, log x0)→ R

defined by g(u) = logF (eu). Then the following conditions are equivalent:

(i)
F (|z1|2)F (|w1|2)

F (|z1w1|)2
≤ 1, ∀z1, w1 ∈ D√x0

;

(ii) g is strictly concave;

(iii) ωF is a Kähler form.

Proof: To be strictly concave is equivalent to g(u) + g(v)− 2g(u+v
2 ) ≤ 0 with equality

if and only if u = v. Thus

F (|z1|2)F (|w1|2)

(F (|z1w1|))2
=
F (eu)F (ev)

(F ( e
u+v

2 ))2
≤ 1.

This proves that (i) is equivalent to (ii).

The function g is strictly concave if and only if its second derivative is strictly less

than zero. A simple calculation gives

d2g(u)

d2u
=

d

du

euF ′(eu)

F (eu)
= eu

(
xF ′(x)

F (x)

)′
x=eu

,

which, by Proposition 3.6.1, shows that (ii) is equivalent to (iii) and therefore our claim.

2
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Proposition 3.6.3 Suppose that ωF is a Kähler form on DF and F̃ , given by (3.24),

is real analytic in D√x0
. Then the following conditions are equivalent:

(i)
(F (|z1|2)− |z2|2)(F (|w1|2)− |w2|2)

|F (z1w̄1)− z2w̄2|2
≤ 1, ∀z = (z1, z2), w = (w1, w2) ∈ DF ;

(ii)
F (|z1|2)F (|w1|2)

|F (z1w̄1)|2
≤ 1, ∀z1, w1 ∈ D√x0

;

(iii) F (|z1|) ≤ |F (z1)|, ∀z1 ∈ Dx0.

Proof:

(i) ⇒ (ii)

Immediately if one takes z = (z1, 0) and w = (w1, 0) in DF .

(ii) ⇒ (i)

Define s(z, w̄) = z2w̄2
F (z1w̄1) . Then

(F (|z1|2)− |z2|2)(F (|w1|2)− |w2|2)

|F (z1w̄1)− z2w̄2|2
=
F (|z1|2)F (|w1|2)

|F (z1w̄1)|2
(1− s(z, z̄))(1− s(w, w̄))

|1− s(z, w̄)|2
.

Thus, if (ii) is satisfied, we are left to show that

(1− s(z, z̄))(1− s(w, w̄))

|1− s(z, w̄)|2
≤ 1. (3.28)

By (ii) it follows that

|s(z, w̄)|2 =
|z2|2|w2|2

|F (z1w̄1)|2
≤ |z2|2

F (|z1|2)

|w2|2

F (|w1|2)
.

Consequently

|1− s(z, w̄)| ≥ 1− |s(z, w̄)| ≥ 1−
√
s(z, z̄)s(w, w̄).

On the other hand, from the definition of the domain DF , 0 ≤ s(z, z̄) < 1, ∀z ∈ DF

and so

|1− s(z, w̄)|2 ≥ (1−
√
s(z, z̄)s(w, w̄))2.

Hence

(1− s(z, z̄))(1− s(w, w̄))

|1− s(z, w̄)|2
≤ (1− s(z, z̄))(1− s(w, w̄))

(1−
√

(s(z, z̄)(s(w, w̄))2

= 1−

( √
s(z, z̄)− s(w, w̄)

(1−
√
s(z, z̄)s(w, w̄)

)2

≤ 1,
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which proves (3.28).

(ii) ⇒ (iii)

Let z1 ∈ Dx0 different from zero. Define η1 = |z1|
1
2 and ξ1 = z1|z1|−

1
2 . The complex

numbers η1 and ξ1 belong to D√x0
and, by (ii),

F (|z1|)2

|F (z1)|2
≤ 1.

(iii) ⇒ (ii)

Let z1, w1 be in D√x0
. Then

F (|z1|2)F (|w1|2)

|F (z1w̄1)|2
=
F (|z1w1|)2

|F (z1w̄1)|2
F (|z1|2)F (|w1|2)

F (|z1w1|)2
≤ F (|z1|2)F (|w1|2)

F (|z1w1|)2
≤ 1.

We apply (iii) to z1w1 ∈ Dx0 and the last inequality follows from Lemma 3.6.2. 2

Our results so far can be summarised as

Proposition 3.6.4 If (DF , ωF ) admits a h.i.i. in a complex space form then:

(i) The function F̃ , given by (3.24), is analytic in D√x0
;

(ii) F (|z1|) ≤ |F (z1)|, ∀z1 ∈ Dx0.

3.6.1 H.i.i. of (DF , ωF ) in (CN ,ΩN
0 ).

Suppose that (DF , ωF ) admits a h.i.i. in (CN ,ΩN
0 ). It follows that the condition (i) in

3.6.4 is satisfied. Then

DωF (z, w0) = log
F (0)

F (|z1|2)− |z2|2
,

where w0 is the origin of C2. Let ρj = |zj |2, j = 1, 2, and define

C(ρ1, ρ2) = log
F (0)

F (ρ1)− ρ2
. (3.29)

Since F is a real analytic function it follows that C is real analytic in the open set

{(ρ1, ρ2) ∈ R2 | ρ1 <
√
x0, ρ2 <

√
F (ρ1)}. Hence, (3.29) can be expanded in power

series as

C(ρ1, ρ2) =

+∞∑
j,k=0

cjkρ
j
1ρ
k
2,
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where

cjk =
∂j+kC

∂ρj1ρ
k
2

(w0). (3.30)

Therefore,

DωF (z, w0) = C(|z1|2, |z2|2) =
+∞∑
j,k=0

cjk|z1|2j |z2|2k =
+∞∑
j,k=0

δjkcmjz
mj z̄m

k
,

where cmj = cm1jcm2j . Consequently Djk = δjkcmj .

Theorem 3.6.5 (DF , ωF ) admits a h.i.i. in some flat space if and only if all the cjk’s

given by (3.30) are greater or equal than zero. Under this hypothesis, the number N of

the cjk’s strictly greater than zero is the complex dimension of the flat space in which

(DF , ωF ) admits a full holomorphic isometric immersion. The h.i.i. in (CN ,ΩN
0 ) is

given by:

φ(z1, z2) = (1, . . . ,
√
cmjz

mj , . . .), j = 1, . . . , N

Proof: The stated conditions are equivalent to the resolvability of rank N of ωF . Thus

the result follows from 3.2.3 since DF is simply connected (even contractible). The last

assertion is immediate. In fact

φ∗ΩN
0 =

i

2π
∂∂̄

+∞∑
j=0

cmj |z|2mj = ωF .

2

Corollary 3.6.6 (DF , ωF ) cannot be h.i.i. in any finite dimensional flat space.

Proof: Suppose that the contrary holds, that is DωF is resolvable of finite rank. From

Theorem 3.6.5 only a finite number of the cjk’s are strictly greater than zero. On the

other hand, It is not difficult to see that

c0k =
∂kC

∂ρk2
(w0) = (F (0))−k > 0 ∀k,

which gives the desired contradiction. 2

Theorem 3.6.5 gives an infinite number of conditions which involve the derivatives

of all orders of the function F at w0. For example c10 ≥ 0 is equivalent to ∂C
∂ρ1

(w0) =
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−F ′(0)
F (0) , which is automatically satisfied since F (0) > 0 and F is a non increasing

function. The first non trivial condition comes from c20 ≥ 0. In fact

c20 =
∂2C

∂ρ2
1

(w0) =
(F ′(0))2 − F ′′(0)F (0)

F (0)2
≥ 0,

i.e.

F ′′(0) ≤ (F ′(0))2

F (0)
. (3.31)

Example 3.6.7 Let F (x) = e−x, x ∈ [0,+∞). The function F is non-increasing and(
xF ′

F

)′
= −1 < 0. Hence, condition (3.22) is satisfied and

ωe−x =
i

2π
∂∂̄ log

1

e−|z1|2 − |z2|2

is a Kähler form on De−x. This domain is considered also in [11, p. 451] and it is

called the Spring domain. One can construct a h.i.i. of (De−x , ωe−x) into the infinite

dimensional flat space (C∞,Ω∞0 ) as follows. First of all, consider

log
1

e−|z1|2 − |z2|2
. (3.32)

Since

− log(1− x) =
+∞∑
k=1

k−1xk, 0 < x < 1,

(3.32) can be expanded in power series as

log 1

e−|z1|
2−|z2|2

= |z1|2 − log(1− e|z1|2 |z2|2)

= |z1|2 +
∑+∞

k=1 k
−1ek|z1|

2 |z2|2k

= |z1|2 +
∑+∞

j=0

∑+∞
k=1

kj−1

j! |z1|2j |z2|2k.

The h.i.i. in (C∞,Ω∞0 ) is then given by

(z1, z2)→ (z1, . . . ,

√
kj−1

j!
zj1z

k
2 , . . .)j = 0, 1 . . . , k = 1, 2, . . . .

Example 3.6.8 Consider the function F (x) = e−x + 2 , x ∈ [0, 1). Since(
xF ′

F

)′
= −1 + 2ex(1− x)

(1 + 2ex)2
< 0, ∀x ∈ [0, 1),

60



it follows from 3.6.1 that ωe−x+2 is a Kähler form on De−x+2. Furthermore, since

F (|z|) = e−|z| + 2 ≤ |e−z + 2|,

the conditions (i) and (ii) of Proposition 3.6.4 are satisfied. On the other hand,

F ′′(0) = 1 >
1

3
=

(F ′(0))2

F (0)
.

Therefore condition (3.31) is not satisfied, and so (De−x+2, ωe−x+2) cannot be h.i.i. in

any flat space.

3.6.2 H.i.i. of (DF , ωF ) in (DN ,ΩN
hyp)

Suppose that F is a real analytic function on (−x0, x0) (see condition (i) in 3.6.4) and let

F (x) =
∑+∞

j=0 Fjx
j be its power series expansion at the origin, where Fj = ∂jF

∂xj
(0), ∀j.

Theorem 3.6.9 (DF , ωF ) admits a h.i.i. in (DN ,ΩN
hyp) if and only if Fj ≤ 0, ∀j ≥ 1.

Under this hypothesis, let N be the number of the Fj’s strictly less than zero. A full

h.i.i. in (DN ,ΩN
hyp) is given by:

φ(z1, z2) = (
z2√
F (0)

, 1, . . . ,

√
−Fj√
F (0)

zj1, . . .), j = 1, . . . , N

Proof:

1− e−DωF (z, 0) = 1 + (|z2|2 − F (|z1|2))F (0)−1 = 1 + (|z2|2 −
+∞∑
j=0

Fj)F (0)−1

and so the conclusion follows easily from Theorem 3.3.2. 2

Since the second derivative of e−x at 0 is positive it follows, from 3.6.9, that

Corollary 3.6.10 The Spring domain (De−x , ωe−x) cannot be holomorphically and iso-

metrically immersed in any hyperbolic space of any dimension.

Remark 3.6.11 Notice that, there is no upper bound on the dimension of the target

hyperbolic space in which (DF , ωF ) admits a h.i.i. (cf. Corollaries 3.6.6 and 3.6.13).
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3.6.3 H.i.i. of (DF , ωF ) in (PN(C),ΩN
FS)

Suppose that condition (i) in Proposition 3.6.4 is satisfied. Let w0 be the origin of C2.

Define

G(z1, z2) = eDωF (z,w0) − 1 =
F (0)

F (|z1|2)− |z2|2
− 1.

Let ρi = |zi|2, i = 1, 2. The function G(ρ1, ρ2) is a real analytic function on the open

set {ρ2
1 < x0, ρ

2
2 < F (ρ1)}. Take its power series expansion

G(ρ1, ρ2) =
+∞∑
j,k=0

ajkρ
j
1ρ
k
2,

where ajk = ∂Gj+k

∂ρj1ρ
k
2

(w0). It follows that

G(z1, z2) =
+∞∑
j,k=0

ajkz
j
1z
k
2 z̄1

j z̄2
k =

+∞∑
j=0

amjz
mj z̄mj =

+∞∑
j,k=0

δjkamjz
mj z̄mk ,

where amj = am1jm2j . Therefore

D+
jk = δjkamj − 1,

and D+
jk is semipositive definite if and only if ajk ≥ 0, ∀j, k = 0, 1, . . . From Theorem

3.4.4 one then deduces:

Theorem 3.6.12 The form ωF is projectively induced if and only if F is analytic and

ajk ≥ 0, ∀j, k = 0, 1, . . . Under this hypothesis, the number N of the ajk’s strictly greater

than zero is the dimension of the complex projective space in which (DF , ωF ) admits a

full h.i.i.

Corollary 3.6.13 There is not any h.i.i. of (DF , ωF ) in a finite dimensional complex

projective space.

Proof: Suppose the contrary. From the previous theorem, only a finite number of ajk’s

are strictly greater than zero. On the other hand,

a0k =
∂kG

∂ρk2
(w0) = k!F (0)−k > 0, ∀k,

hence the desired contradiction. 2
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Notice that, once that all the ajk’s are known to be non-negative, then we can

construct a h.i.i. in (P∞(C),Ω∞FS) explicitly. In fact, the map

φ : (DF , ωF )→ (P∞(C),Ω∞FS)

given by

φ(z1, z2) = [(. . . ,
√
ajkz

j
1z
k
2 , . . .)], j, k = 1, . . . , N

is holomorphic and

φ∗Ω∞FS =
i

2π
∂∂̄ log

+∞∑
j,k=0

ajk|z1|2j |z2|2k =
i

2π
∂∂̄ log

1

H
= ωF .

Example 3.6.14 (see Example 3.6.7)

Let F (x) = e−x, x ∈ [0,+∞). One can construct a h.i.i. of (De−x , ωe−x) in the

infinite dimensional projective space as follows. First of all, consider the expression

1

e−|z1|2 − |z2|2
=

e|z1|
2

1− e|z1|2 |z2|2
= e|z1|

2
+∞∑
k=0

(e|z1|
2 |z2|2)

k
.

This can be further developed as

+∞∑
k=0

ek+1|z1|2 |z2|2k =

+∞∑
j,k=0

|z1|2j |z2|2k(k + 1)j

j!
=

+∞∑
j,k=0

(k + 1)j

j!
|z1|2j |z2|2k.

So ajk = (k+1)j

j! ≥ 0 and, from 3.6.12, (De−x , ωe−x) admits a h.i.i. in (P∞(C),Ω∞FS)

via the map

(z1, z2)→ (. . . ,

√
(k + 1)j

j!
zj1z

k
2 , . . .) j, k = 0, 1, . . . .

Example 3.6.15 (cf. [11, p. 450])

Let F (x) = (1− x)p, x ∈ [0, 1).

F ′(x) = −p(1− x)p−1,

(
xF ′(x)

F (x)

)′
=

−p
(1− x)2

< 0.

It follows from 3.6.1 that ω(1−x)p is a Kähler form on

DF = {(z1, z2) ∈ C2||z1|2 < 1, |z2|2 < (1− |z1|2)p}.

Consider the following development

1

(1− |z1|2)p − |z2|2
=

1

(1− |z1|2)p

+∞∑
k=0

|z2|2k

(1− |z1|2)pk
.
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Since

1

(1− x)a+1
=

+∞∑
j=0

(
j + a

j

)
xj , 0 < x < 1,

the previous expression can be further developed as

+∞∑
k=0

|z2|2k

(1− |z1|2)p(k+1)
=

+∞∑
j,k=0

(
p(k + 1) + j − 1

j

)
|z1|2j |z2|2k.

From 3.6.12, (D(1−x)p , ω(1−x)p) admits a h.i.i. in (P∞(C),Ω∞FS) given by:

(z1, z2)→ (. . . , (

(
p(k + 1) + j − 1

j

)
)

1
2 zj1z

k
2 , . . .), j, k = 1, 2, . . .

3.6.4 Further results about Hartogs domains

Let F : [0, x0)→ R+ be a non increasing function such that ωF defines a Kähler form

on DF .

In this Section we prove that, under suitable conditions, (DF , ωF ) is holomorphically

isometric (up to a homothety) to the hyperbolic two ball in C2. We start with an

elementary fact:

Lemma 3.6.16 Let φ be a holomorphic function on a open set U ⊂ C containing the

origin. Suppose that there exists a real analytic function f : (−x0, x0) → R such that

|φ(z)|2 = f(|z|2). Then φ(z) reduces to the constant φ(0).

Proof: Let φ(z) =
∑+∞

j=0 ajz
j be the power series expansion of φ at the origin, and

f(x) =
∑+∞

l=0 blx
l the Taylor expansion of f at the origin. By hypothesis,

+∞∑
j,k=0

aj ākz
j z̄k =

+∞∑
l=0

bl|z|2l,

which implies that all the terms of the form aj ākz
j z̄k with j 6= k, are zero. It follows

that aj = 0 for j > 0, and so the result. 2

Theorem 3.6.17 Let F : [0, x0) → R+ be a non-increasing function such that the

corresponding form ωF is Kähler-Einstein (see 3.22). Suppose that F can be extended

to a real analytic function in (−x0, x0). Then (DF , 3ωF ) is holomorphically isometric

to (D2,Ω
2
hyp).
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Proof: If ωF is Kähler-Einstein, then, by (3.19) and (3.21),

ρωF = − i

2π
∂∂̄ log det gjk̄ = λωF = λ

i

2π
∂∂̄ log

1

H
= − i

2π
∂∂̄ logHλ, (3.33)

where λ is the scalar curvature and ρωF is the Ricci form. From (3.33) we deduce that

∂∂̄ logH−λ det gjk̄ = 0.

Since the domain DF is simply connected, it follows from Lemma 1.4.9, that there

exists a holomorphic function φ on DF such that

H−λ det gjk̄ = |φ|2.

Therefore, by (3.23),

H−λ det gjk̄ = − F 2

Hλ+3

(
xF ′

F

)′
|x=|z1|2 = −(F ′ + |z1|2F ′′)F − |z1|2F ′2

Hλ+3
|x=|z1|2 = |φ|2.

By hypothesis, F is analytic in (−x0, x0), and it is not hard to see, using Lemma 3.6.16,

that the function φ equals a constant, say C. Hence

(F ′ + |z1|2F ′′)F − |z1|2F ′2

Hλ+3
= −C2. (3.34)

The numerator of (3.34) depends only on |z1|2, while the denominator depends also on

|z2|2. Therefore λ = −3 and

(F ′ + xF ′′)F − xF ′2 = −C2, ∀x ∈ (−x0, x0). (3.35)

Taking the first derivative of (3.35) at zero one gets:

2F (0)F ′′(0) = 0.

Since F (0) 6= 0, it follows that F ′′(0) = 0. Taking the higher order derivatives of (3.35)

at zero it is not difficult to see that:

0 =
∂k(F ′ + xF ′′)F − xF ′2

∂xk
(0) = (k + 1)F (0)

∂kF

∂xk
(0), k ≥ 1,

and so ∂kF
∂xk

(0) = 0. Since F is analytic in (−x0, x0), it follows that F (x) = α − βx,

where α and β are positive constants. Consider now the holomorphic map

φ : Dα−βx → D2 : (z1, z2) 7→ (

√
β

α
z1,

√
1

α
z2).
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It is easy to check that

φ∗Ω2
hyp = 3ωα−βx,

hence the conclusion. 2

Corollary 3.6.18 If (DF , ωF ) admits a h.i.i. in a complex space form and ωF is

Kähler-Einstein, then (DF , 3ωF ) is holomorphically isometric to the hyperbolic two

ball.

Proof: In the hypothesis of Corollary 3.6.18, condition (i) in 3.6.4 is satisfied and

therefore F is a real analytic function in (−x0, x0). Hence the conclusion follows from

Theorem 3.6.17. 2
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Chapter 4

The function epsilon

4.1 Definition and elementary properties

Let (L, h)
π→ (M,ω) be a geometric quantization of a Kähler manifold (M,ω). Consider

the space Hh ⊂ H0(L) consisting of global holomorphic sections s of L, which are

bounded with respect to

〈s, s〉h = ‖s‖2h =

∫
M
h(s(x), s(x))

ωn(x)

n!
.

On can show that (Hh, 〈·, ·〉h) is a separable complex Hilbert space (see [5]). Let x ∈M

and q ∈ L+ such that π(q) = x. If one evaluates s ∈ Hh at x, one gets a multiple δq(s)

of q, i.e. s(x) = δq(s)q. It can be shown that δq : Hh → C is a linear continuous

functional of s (see [5]) thus, from Riesz theorem, there exists a unique eq ∈ Hh such

that δq(s) = 〈s, eq〉h, i.e.

s(x) = 〈s, eq〉hq. (4.1)

Definition 4.1.1 The holomorphic section eq ∈ Hh is called the coherent state, rela-

tive to the point q ∈ L+.

It follows, by (4.1), that

ecq = c−1eq, ∀c ∈ C∗.

Then, one can define a real valued function on M by the formula

ε(L,h)(x) := h(q, q)‖eq‖2h, (4.2)
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where q ∈ L+ is any point on the fibre of x. We will speak about the function epsilon

when the pair (L, h) is clear from the context. Let sj , j = 0, . . . , N (N ≤ ∞), be a

unitary basis for (Hh, 〈 · , · 〉h). Take λj ∈ C such that sj(x) = λjq, j = 0, . . . , N . Then

s(x) =

N∑
j=0

〈s, sj〉hsj(x) =

N∑
j=0

〈s, sj〉hλjq = 〈s,
N∑
j=0

λ̄jsj〉hq.

By (4.1) it follows that

eq =
N∑
j=0

λ̄jsj , (4.3)

and

ε(L,h)(x) = h(q, q)‖eq‖2h =
N∑
j=0

h(sj(x), sj(x)). (4.4)

When M is compact, the dimension of Hh = H0(L) is finite and, by (4.4), one obtains:∫
M
ε(L,h)(x)

ωn(x)

n!
= dimHh. (4.5)

In order to write down the local expression of the function epsilon, let σ : U → L+ be

a trivialising section on a open set U ⊂M . Once again by (4.4) one obtains

ε(L,h)(x) =

N∑
j=0

h(sj(x), sj(x)) = h(σ(x), σ(x))

N∑
j=0

sj(x)

σ(x)

sj(x)

σ(x)
, ∀x ∈ U.

In a possibly smaller open set V ⊂ U one can write

ε(L,h)(x) = e−Φω(x)
N∑
j=0

sj(x)

σ(x)

sj(x)

σ(x)
, ∀x ∈ V, (4.6)

where Φω is a Kähler potential for ω.

We conclude this Section by describing how the function ε(L,h) varies with the pair

(L, h) in Lhol(M,ω). By its very definition, it follows that ε(L,h) does not depend on the

representative (L, h) in the class [(L, h)]hol ∈ Lhol(M,ω). When M is simply connected,

Lhol(M,ω) consists of a single equivalence class (see 1.4.6). Therefore, in this case, the

function epsilon depends only on the Kähler form ω.

Remark 4.1.2 When (M,ω) is a quantizable simply connected Kähler manifold we

will often write εω instead of ε(L,h).

Another important fact, for the proof of which we refer to [5], is the following:
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Proposition 4.1.3 The function ε(L,h) is invariant under the group D[(L,h)](M), i.e.

F ∗(ε(L,h)) = ε(L,h), for every F ∈ D[(L,h)](M) (see Section 1.5).

Corollary 4.1.4 Let (L, h) be a quantization of a simply connected homogeneous

Kähler manifold (M,ω). Then the function ε(L,h) is constant.

Proof: Since the manifold is simply connected, it follows from 1.5.1, that the group

D[(L,h)](M) equals Aut(M)∩ Isom(M,ω). Since (M,ω) is homogeneous, the latter acts

transitively on M and so, from Proposition 4.1.3, εω turns out to be constant . 2

4.2 The coherent states map

Let (L, h) be a geometric quantization of a Kähler manifold (M,ω). In analogy with

the compact case we say that (L, h) is base point free if for all x ∈ M there exists

s ∈ Hh such that s(x) is different from zero (see Section 2.0.4). In this hypothesis, one

can define a map

φ̃(L,h) : L+ → H∗h \ {0} : q 7→ 〈·, eq〉h,

where H∗h is the dual of Hh. Consider the holomorphic map φ(L,h) : M → P(H∗h) which

makes the following diagram commutative:

L+
φ̃(L,h)−→ H∗h \ {0}

↓ ↓

M
φ(L,h)−→ P(H∗h)

Definition 4.2.1 The map φ(L,h) is called the coherent states map.

The following theorem can be found in [26] and [5]. Here we give a different proof.

Theorem 4.2.2 Suppose that (L, h) is base point free. Then φ(L,h) is a full holomor-

phic map from M to P(H∗h). Moreover, if ΩH∗h denotes the Fubini-Study form on P(H∗h),

then

φ∗(L,h)ΩH∗h = ω +
i

2π
∂∂̄ log ε(L,h), (4.7)

(see (2.7)).
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Proof: Let sj , j = 0, 1, . . . , N (N ≤ ∞) be a unitary basis for (Hh, 〈 · , · 〉h) and

σ : U → L+ a trivialising holomorphic section on a open set U ⊂ M . Define the

holomorphic map

φσ : U → CN+1 : x 7→
(
. . . ,

sj(x)

σ(x)
, . . .

)
.

As in the compact case, this map can be extended to a holomorphic map

φ : M → PN (C) : x 7→ [(. . . , sj(x), . . .)] , (4.8)

(see (2.8) and (2.9)). Let b : H∗h \ {0} → C∞ \ {0} defined by: b(s∗) = (. . . , s∗(sj), . . .).

Denote with the same symbol b the induced map in the complex projective spaces

b : P(H∗h) → PN (C). It follows immediately, by the very definition of the coherent

states map, that

φ = b ◦ φ(L,h).

In fact, by (4.8),

b ◦ φ(L,h)(x) = [(. . . , 〈sj , eq〉h, . . .)] = [(. . . ,
sj(x)

q
, . . .)] = φ(x). (4.9)

Formula (4.9) shows that the coherent states map is full, since it is constructed by

the evaluation of a basis of Hh. In order to prove the second part of the theorem, let

U ⊂M be an open set where a Kähler potential Φω can be defined. Then

φ∗(L,h)ΩH∗h = (b ◦ φ(L,h))
∗(ΩN

FS) = φ∗ΩN
FS

= i
2π∂∂̄ log

∑N
j=0

sj(x)
σ(x)

sj(x)
σ(x)

= i
2π∂∂̄ log

∑N
j=0

sj(x)
σ(x)

sj(x)
σ(x) + ω − ω

= i
2π∂∂̄ log

∑N
j=0

sj(x)
σ(x)

sj(x)
σ(x) + ω + i

2π∂∂ log(e−Φω)

= ω + i
2π∂∂̄ log(e−Φω

∑N
j=0

sj(x)
σ(x)

sj(x)
σ(x) )

= ω + i
2π∂∂̄ log ε(L,h),

where the last equality follows by (4.6). 2

Corollary 4.2.3 Let (L, h) be a quantization of a Kähler manifold (M,ω). If ε(L,h)

is a constant different from zero, then ω is projectively induced via the coherent states

map.
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Proof: If ε(L,h) equals a positive constant then it follows, by (4.4), that (L, h) is

base point free and consequently the coherent states map can be defined. Thus the

conclusion follows by (4.7). 2

From Lemma 1.4.8 and formula (4.7) one deduces:

Corollary 4.2.4 Let (L, h) be a quantization of a compact Kähler manifold (M,ω).

Then the function ε(L,h) is equal to a constant if and only if the coherent states map is

a full h.i.i. in (P(H∗h),ΩH∗h).

4.3 On the constancy of the function epsilon

The following notion can be found in [5]:

Definition 4.3.1 A hermitian holomorphic line bundle (L, h) over a Kähler manifold

(M,ω) such that curv(L, h) = −2πiω is called regular if the function ε(L,h) is constant.

One can calculate the function ε(Lk,hk) for every natural number k. Namely, one con-

siders the Kähler form kω on M and (Lk, hk) the quantum line bundle for (M,kω),

where Lk is the k-tensor power of L and hk := h⊗ . . .⊗ h, k-times.

Definition 4.3.2 A quantization (L, h) of a Kähler manifold (M,ω) is called regular

if, for any natural number k, (Lk, hk) is regular.

In the programme of quantization of Kähler manifolds carried out in [5], [6], [7], [8] and

[26], the Kähler manifolds (M,ω) which admit a regular quantization play a promi-

nent role. In fact, under this hypothesis, it is possible to apply a procedure called

quantization by deformation (we refer to the above mentioned papers for details).

By Corollary 4.1.4 a homogeneous simply connected Kähler manifold admits a reg-

ular quantization. Not all the homogeneous manifolds admit a regular quantization.

An example is given by the complex torus V/Λ, equipped with the flat form ΩN
0 . In

fact, suppose that (L, h) is a regular quantization of (V/Λ,ΩN
0 ), then, from Corollary

4.2.3, ΩN
0 would be projectively induced, contradicting 3.5.6. An example of regular

quantization over a non homogeneous Kähler manifold can be constructed as follows.

71



Example 4.3.3 Let (O1(1), h) be the quantization of (P1(C),Ω1
FS) described in 2.0.4.

Since (P1(C),Ω1
FS) is a simply connected Kähler manifold, then, from 4.1.4, the quan-

tization is regular, i.e. εkΩ1
FS

is constant for every non negative integer k. Take the

chart

U0 = {[(z0, z1)]| z0 6= 0} ⊂ P1(C)

endowed with coordinate z = z1
z0

. The restriction of Ω1
FS to U0 can be expressed as

ω := Ω1
FS |U0

=
i

2π
∂∂̄ log(1 + |z|2) =

i

2π

dz ∧ dz̄
(1 + |z|2)2

.

It is immediate to verify that the trivial bundle L0 := U0 × C → U0 over U0, endowed

with the hermitian structure

h(z, t) :=
|t|2

(1 + |z|2)
, ∀z ∈ U0, ∀t ∈ C,

is a geometric quantization of (U0, ω). The Hilbert space (Hh, 〈 · , · 〉h) consists of

holomorphic functions on C bounded w.r.t.

‖f‖h = 〈f, f〉h =

∫
C

|f(z)|2

(1 + |z|2)3

i

2
dz ∧ dz̄.

It is easy to check that (Hh, 〈 · , · 〉h) consists of polynomials of degree 1 in z, i.e.

α− βz with α and β in C. Furthermore, one can show that (1, z) is a unitary basis for

(Hh, 〈 · , · 〉h) and so, by (4.4), εω = 1. A similar argument shows that εkω is constant

for every natural number k, and hence the quantization (L0, h) of (U0, ω) is regular.

Notice that the quantization (L0, h) of (U0, ω), described in the previous example, is

just the restriction of the quantization (O1(1), h) of (P1(C),Ω1
FS) to (U0, ω). We believe

that this is a very special case

Conjecture 1 Let (M,ω) be a complete Kähler manifold which admits a regular quan-

tization. Then (M,ω) is simply connected and homogeneous.

The first explicit calculation of the function epsilon in the case when it is not constant

is given in [26] for the regularized Kepler manifold (X,Ω) (see 2.0.3 and 3.5.7).

In Section 4.6 and 4.7 we shall calculate the function ε(Lk,hk) for the complex tori

and the Riemann surfaces.
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4.4 Some examples

Example 4.4.1 Let k and N be natural numbers and

ω = kΩN
0 =

ki

2

N∑
j=1

dzj ∧ dz̄j

the flat Kähler form on CN . The trivial bundle on CN , endowed with the hermitian

structure

hk(z, w) = e−kπ‖z‖
2 |t|2, ∀z ∈ CN ,∀t ∈ C,

defines a geometric quantization of (CN , kΩN
0 ). Let (Hhk , 〈 · , · 〉hk) be the complex

Hilbert space consisting of holomorphic functions s on CN which are bounded w.r.t.

‖s‖2hk = 〈s, s〉hk =

∫
CN

e−kπ‖z‖
2
s(z)s̄(z)

ωN

N !
.

It is well-known and not hard to verify that sj := zji1 · · · z
jN
N is a orthogonal basis for

(Hhk , 〈 · , · 〉hk). Furthermore,

‖sj‖2hk =

∫
CN

e−kπ‖z‖
2 |z1|2ji . . . |zN |2jN

ωN

N !

=
kN

N !

N∏
l=1

∫
C
e−kπ|zl|

2 |zl|2jl
iN

2N
dzl ∧ dz̄l.

The last expression can be written in polar coordinates (rl, θl) as

kN

N !

N∏
l=1

∫ +∞

rl=0
e−kπr

2
l r2jl
l 2rldrl =

kN

N !

N∏
l=1

∫ +∞

ρl=0
e−kπρlρl

jldρl

=
kN

N !

N∏
l=1

jl!

(kπ)jl+1
=
kN

N !

N∏
l=1

jl!

(kπ)jl
.

Therefore

‖sj‖2hk =
kN

N !

N∏
l=1

jl!

(kπ)jl
.

By (4.4) one obtains:

εkΩN0
(z) =

N !

KN
e−kπ‖z‖

2
N∏
l=1

+∞∑
jl=0

(kπ)jl

jl!
|zl|2jl =

N !

KN
.

It is not difficult to see that the coherent states map is given by

(z1, . . . , zN )→ [(. . . ,

√
kπ|mj |

mj !
zmj , . . .)] (4.10)

(see (3.15)).
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Example 4.4.2 This Example is taken from [7] and it will be used later to calculate

the function epsilon for the Riemann surfaces. Let k be a natural number and let kωhyp

be the Kähler form on the unit disk D (see 2.0.2). The trivial line bundle D× C → D

on D, endowed with the hermitian structure

hk(z, t) = (1− |z|2)2k|t|2, ∀z ∈ D,∀t ∈ C,

defines a geometric quantization of (D, kωhyp). Here we want to calculate the function

εkωhyp which, from 4.1.4, it is known to be a constant. Let σ : D → D × C∗ be the

holomorphic section of the trivial bundle on D which maps z to (z, 1). Let w ∈ D and

ekσ(w) the coherent state relative to the point σ(w), i.e. the holomorphic function on D

such that

s(w) = 〈s, ekσ(w)〉hkσ(w), ∀s ∈ Hhk . (4.11)

By (4.2) and (4.11),

εkωhyp = ‖ekσ(w)‖
2
hkh

k(σ(w), σ(w)) = ‖ekσ(w)‖
2
hk(1− |w|2)2k.

By extending the previous expression holomorphically in z and antiholomorphically in

w, one obtains:

〈ekσ(w), e
k
σ(z)〉hk = εkωhyp(1− zw̄)−2k.

By (4.11),

ekσ(w)(z) = 〈ekσ(w), e
k
σ(z)〉hkσ(z) = εkωhyp(1− zw̄)−2kσ(z). (4.12)

For w = 0 the previous expression becomes

ekσ(0)(z) = εkωhypσ(z), ∀z ∈ D.

Once again, by (4.11), σ(0) = 〈σ, ekσ(0)〉hkσ(0). Therefore

1 = 〈σ, ekσ(0)〉hk =

∫
D
εkωhyph

k(σ(z), σ(z))
ik

π

dz ∧ dz̄
(1− |z|2)2

=
2k

π
εkωhyp

∫
D

(1− |z|2)2k−2 i

2
dz ∧ dz̄.
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The last expression can be written in polar coordinates (r, θ) as follows:

1 = 2kεkωhyp

∫ 1

0
(1− r2)2k−22rdr = 2kεkωhyp

∫ 1

0
(1− ρ)2k−2ρdρ =

2k

2k − 1
εkωhyp .

Therefore

εkωhyp =
2k − 1

2k
,

and from (4.12) one concludes

ekσ(w)(z) =
2k − 1

2k
(1− zw̄)−2kσ(z). (4.13)

Example 4.4.3 Let k and N be natural numbers and ω = kΩN
FS k-times the Fubini–

Study form on PN (C). The k-th tensor power ON (k) of the hyperplane bundle ON (1),

equipped with the hermitian structure hk described in 2.0.4, defines a geometric quan-

tization of (PN (C), ω) The quantization is regular in this case as well, by 4.1.4. By

(4.5), we get

εω = dimH0(ON (k))(volPN (C))−1 =

(
N + k

N

)
(volPN (C))−1,

where

vol(PN (C)) = kN
∫
PN (C)

ωN

N !
.

Furthermore, by 4.2.3 the coherent states map is given by (3.18).

Example 4.4.4 Let DF be an Hartogs domain in C2, equipped with the Kähler form

ωF (see 3.6). The trivial line bundle DF × C → DF over DF , endowed with the

hermitian structure

h(z, t) = (F (|z1|2)− |z2|2)|t|2, ∀z = (z1, z2) ∈ DF ,∀t ∈ C,

is a geometric quantization of (DF , ωF ). In [11, p. 448] the function εωF is calculated

in terms of the function F . The only known cases when εωF is constant are obtained

for F (x) = 1 − x and thus (D1−x, ω1−x) is a homogeneous Kähler manifold in accord

with Conjecture 1 (see also question at the end of p. 477 in [11]).
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4.5 The function epsilon for (C∗, ω∗)

Let exp : C → C∗ be the map defined by exp(z) := ez and ω∗ the Kähler form on C∗

which satisfies

exp∗ω∗ = Ω1
0 =

i

2
dz ∧ dz̄.

It follows easily that

ω∗ =
i

2

dz ∧ dz̄
|z|2

.

In this Section we describe explicitly the set Lhol(C∗, ω∗) and how the function ε(L,h)

varies with (L, h) in Lhol(C∗, ω∗). From Theorem 1.4.6, the group

Lhol(C∗, 0) ∼= Hom(π1(C∗), S1) = Hom(S1, S1) ∼= S1

acts simply transitively on Lhol(C∗, ω∗). On the other hand, any holomorphic line

bundle L over C∗ is holomorphically trivial. Therefore, any pair (L, h) in Lhol(C∗, ω∗)

can be seen as the trivial line bundle L0 := C∗ × C → C∗, endowed with a hermitian

structure h satisfying

curv(L0, h) = −2πiω∗.

Define an action of R on Lhol(C∗, ω∗) by

λ · (L0, h) = (L0, hλ), ∀λ ∈ R, (4.14)

where

hλ(z, t) = |z|2λh(z, t), ∀z ∈ C∗,∀t ∈ C. (4.15)

Let µ be a real number such that λ− µ ∈ Z. It is easy to see that the map

ψ : (L0, hµ)→ (L0, hλ) : (z, t) 7→ (z, zν−λt)

is a holomorphic automorphism of the trivial bundle and ψ∗(hλ) = hν , i.e.

[(L0, hµ)]hol = [(L0, hλ)]hol.

Furthermore, if λ − µ /∈ Z then [(L, hλ)]hol 6= [(L, hµ)]hol. To see this, suppose that

ψ : L0 → L0 is a holomorphic automorphism of the trivial bundle, such that ψ∗hλ = hµ.
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It follows that ψ(z, t) = (z, f(z)t), where f is a holomorphic function on C∗, satisfying

|f(z)|2 = |z|2(µ−λ). This is impossible unless λ− µ is an integer.

Let fix a reference pair (L0, h0) ∈ Lhol(C∗, ω∗), where

h0(z, t) = e
−π
2

log2 |z|2 |t|2, ∀z ∈ C∗, ∀t ∈ C.

Our result can be then summarized as follows:

Proposition 4.5.1 There exists a bijection between the set of equivalence classes in

Lhol(C∗, ω∗) and S1 = R/Z. Moreover, every class in Lhol(C∗, ω∗) can be represented

by a pair (L0, h0λ), where L0 is the trivial line bundle of C∗ and

h0λ(z, t) := e
−π
2

log2 |z|2 |z|2λ|t|2, ∀z ∈ C∗, ∀t ∈ C. (4.16)

Let k be a natural number and consider the Kähler form kω∗ on C∗. The trivial line

bundle L0 on C∗, endowed with the hermitian structure

hk0(z, t) = e
−kπ

2
log2 |z|2 |t|2, ∀z ∈ C∗, ∀t ∈ C,

defines a geometric quantization of (C∗, kω∗). As before, one can deduce that there

exists a bijection between Lhol(C∗, kω∗) and S1 = R/Z and each class in Lhol(C∗, kω∗)

can be represented by a pair (L0, h
k
0λ), where

hk0λ(z, t) := e
−kπ

2
log2 |z|2 |z|2λ|t|2, ∀z ∈ C∗,∀t ∈ C, (4.17)

for λ ∈ R.

Let Hhk0λ be the space of holomorphic functions f in C∗ such that

‖f‖2
hk0λ

= 〈f, f〉hk0λ =

∫
C∗
e
−kπ

2
log2 |z|2 |z|2λ|f(z)|2k i

2

dz ∧ dz̄
|z|2

< +∞.

One can check that the functions zj , with j ∈ Z, form an orthogonal system for

(Hhk0λ , 〈 · , · 〉hk0λ). Since every holomorphic function in C∗ can be expanded in Laurent

series, it follows that zj are in fact an orthogonal basis for (Hkλ, 〈 · , · 〉hk0λ). Their norms

are given by

‖zj‖2
hk0λ

= k

∫
C∗
e
−kπ

2
log2 |z|2 |z|2(j+λ) i

2

dz ∧ dz̄
|z|2

= kπ

∫ +∞

0
e
−kπ

2
log2 r2

r2(j+λ) 2r

r2
dr.
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By the change of variable eρ = r2 one obtains:

‖zj‖2
hk0λ

= kπ

∫ +∞

−∞
e
−kπ

2
ρ2
e(j+λ)ρdρ = kπe

(j+λ)2

2kπ

∫ +∞

−∞
e
−
(√

kπ
2
ρ−
√

1
2kπ

(j+λ)

)2

= kπe
(j+λ)2

2kπ

√
2

kπ

∫ +∞

−∞
e−t

2
dt =

√
2kπe

(j+λ)2

2kπ ,

where we have used the well-known Gauss integral
∫ +∞
−∞ e−t

2
dt =

√
π. Hence, by (4.4),

ε(Lk,hk0λ)(z) =
e
−kπ

2
log2 |z|2 |z|2λ√

2kπ

+∞∑
j=−∞

e−
(j+λ)2

2kπ |z|2j . (4.18)

One can immediately check that (4.18) depends, in fact, on the class [λ] ∈ S1, that is

if µ ∈ R is such that λ− µ ∈ Z, then ε(Lk,hk0λ)(z) = ε(Lk,hk0µ)(z).

4.6 The function epsilon for Complex tori

We refer to 2.1.1 for the material contained in this Section. Let

Λ = {p+ iq | p, q ∈ Z}

be the lattice in C generated by (1, 0) and (0, 1) and C/Λ be the 1-dimensional complex

torus. Let H(z, w) = zw̄ be the standard hermitian form on C and

Ω1
0 =

i

2
∂∂̄|z|2 =

i

2
dz ∧ dz̄

the flat Kähler form on C/Λ. A simple calculation shows that

ImH(λ, µ) = mq − pn, ∀λ = p+ iq, µ = m+ in,

i.e. H is integral on the lattice. Let χ : Λ→ S1 be defined by

χ(λ) = eiπpq, ∀λ = p+ iq ∈ Λ.

It is immediate to verify that

χ(λ1 + λ2) = χ(λ1)χ(λ2)eiπImH(λ1,λ2), ∀λ1, λ2 ∈ Λ.

Therefore χ is a semicharacter associated to H. Consider the factor of automorphy

A(λ, z) = χ(λ)eπzλ̄+π
2
|λ|2
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and the holomorphic line bundle L = L(H,χ), endowed with the hermitian structure

h(θ(z), θ(z)) = e−π|z|
2 |θ(z)|2,

where θ is a global holomorphic section of L. The space H0(L) of global holomorphic

sections of L can be realized as the space of holomorphic functions on C satisfying the

functional equation

θ(z + λ) = A(λ, z)θ(z) = χ(λ)eπzλ̄+π
2
|λ|2θ(z), ∀λ ∈ Λ.

The Riemann-Roch theorem tells us that the space H0(L) is 1-dimensional (see [12]).

Furthermore, the function

θ(z) =
∑
m∈Z

e
π
2
z2
e(−πm2+2πimz)

is a generator of H0(L) (see [24, p.1] for a proof). One can check (see the calculation

below) that

‖θ‖2h = 〈θ, θ〉h =

∫
e−π|z|

2 |θ|2 i
2
dz ∧ dz̄ =

1√
2
.

Thus, by (4.4), the function epsilon becomes

ε(L,h)(z) =
√

2e−π|z|
2 |θ(z)|2.

For every natural number k consider (C/Λ, kΩ1
0) and the factor of automorphy

Ak(λ, z) = ekπpqiekπzλ̄+ kπ
2
|λ|2 .

The global holomorphic sections of Lk, can be seen as the holomorphic functions θ on

C satisfying

θ(z + λ) = Ak(λ, z)θ(z), ∀λ ∈ Λ. (4.19)

Define the hermitian structure hk on Lk by

hk(θ(z), θ(z)) = e−kπ|z|
2 |θ(z)|2, ∀θ ∈ H0(Lk).

Since curv(Lk, hk) = −2πkiΩ1
0, it follows that the couple (Lk, hk) is a geometric quanti-

zation of (C/Λ, kΩ1
0). By the Riemann-Roch theorem H0(Lk) = Hhk is k-dimensional.
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For j = 0, . . . , k − 1 consider

θj(z) = ek
π
2
z2
∑
m∈Z

e
−π
k

(km+j)2+2πi(km+j)z

It is easy to check that the functions θj ’s satisfy the functional equation (4.19). Futher-

more

Proposition 4.6.1
(

( 2
k )

1
4 θ0, . . . , (

2
k )

1
4 θk−1

)
form a unitary basis for (Hhk , 〈 · , · 〉hk).

Proof: For a, b = 0, 1, . . . , k − 1

〈θa, θb〉hk

=
∑
m,p∈Z

e
−π
k

((km+a)2+(kp+b)2)

∫
C/Λ

e−kπ|z|
2
e
kπ
2

(z2+z̄2)e2πi(km+a)ze−2πi(km+a)z̄kΩ1
0.

If z = x+ iy, the previous integral can be written as

∑
m,p∈Z

e
−π
k

((km+a)2+(kp+b)2)

∫ 1

0

∫ 1

0
e−2kπy2

e2πi(k(m−p)+(a−b))xe−2π(k(m+p)+(a+b))ykdx∧dy.

Integrating with respect to x we obtain∫ 1

0
e2πi(k(m−p)+(a−b))xdx = δ0k(m−p)+b−a = δmpδab,

where the last equality follows from the fact that b − a is divisible by k if and only if

b = a. Thus,

〈θa, θb〉hk = kδab
∑
m∈Z

e
−π
k

((km+a)2+(km+b)2)

∫ 1

0
e−2kπy2

e−4π(km+a+b
2

)ydy.

Therefore the θj ’s form an orthogonal basis for (Hhk , 〈 · , · 〉hk). For a = b = j one gets:

‖θj‖2hk = k

∫ 1

0
e−2kπy2

∑
m∈Z

e
−2π
k

(km+j)2
e−4π(km+j)ydy

= k
∑
m∈Z

∫ 1

0
e−2kπ(y+m+ j

k
)2
dy.

By the change of variable t = y +m+ j
k one obtains:

‖θj‖2hk = k

∫ +∞

−∞
e−2kπt2dt =

√
k

2
.

80



2

By (4.4) and 4.6.1, the function epsilon can be calculated as

ε(Lk,hk)(z) = e−kπ|z|
2

√
2

k

k−1∑
j=0

|θj(z)|2.

Remark 4.6.2 The previous calculation can be generalized to a N -dimensional com-

plex abelian variety (V/Λ,ΩN
0 ) (see [15, pp. 40-43]). Similar calculations can be found

in ([4, Appendix b]), where the authors claim that ε(Lk,hk) is constant for all natural

numbers k ([4, p. 229]). This is clearly wrong, since kΩN
0 cannot be projectively induced

(see Section 4.3).

4.7 The function epsilon for Riemann surfaces

Let (Σg, ωhyp) be a Riemann surface of genus g greater or equal to 2. Let (K,h) be the

geometric quantization of (Σg, ωhyp) described in Section (2.1.2). For a natural number

k, let Kk be the k-th tensor power of K. A global holomorphic section of Kk can be

seen as a holomorphic function s on D satisfying the functional equation

s(γ(z)) = (γ′(z))−ks(z), (4.20)

(see 2.14). Let hk be the hermitian structure on Kk defined by

hk(s(z), s(z)) = (1− |z|2)2k|s(z)|2, ∀s ∈ H0(Lk) = Hhk .

By (1.12), curv(Lk, hk) = −2πikωhyp, and so (Kk, hk) is a geometric quantization for

(Σg, kωhyp). In order to calculate the coherent states for the Hilbert space (Hhk , 〈·, ·〉hk),

let w ∈ D and

ekσ(w)(z) =
2k − 1

2k
(1− zw̄)−2kσ(z)

the coherent states for the unit disk, where σ(z) = (z, 1), (see 4.13). Consider the series

∑
γ∈Γ

(1− γ(z)w̄)−2k(γ
′
(z))k. (4.21)
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Classical theorems going back to Poincare’ (see [21, pp. 101-104]) assert that the series

(4.21) converges almost uniformly for all z ∈ D. Consider the holomorphic function on

D defined by:

ẽkσ(w)(z) :=
∑
γ∈Γ

ekσ(w)(γ(z))(γ
′
(z))k. (4.22)

It is easily seen that

ẽkσ(w)(γ(z)) = (γ
′
(z))−kẽkσ(w)(z), ∀γ ∈ Γ.

This means that ẽkσ(w)(z) can be identified with a global holomorphic section of Kk.

Let U be a fundamental domain in D for the action of Γ and s a holomorphic section

for Kk. By (2.15), (4.11), (4.13) and (4.22) one obtains

〈s, ẽkσ(w)〉hk =

∫
Σg

s(z)ẽkσ(w)(z)(1− |z|
2)2kkωhyp(z)

=
∑
γ∈Γ

∫
U
s(z)ekσ(w)(γ(z))(γ̄

′
(z))k(1− |z|2)2kkωhyp(z)

=
∑
γ∈Γ

∫
U
s(γ(z))ekσ(w)(γ(z))(1− |γ(z)|2)2kkωhyp(z)

=

∫
D
s(z)ekσ(w)(z)(1− |z|

2)2kkωhyp(z) = s(w),

i.e. ẽkσ(w) is the coherent state relative to σ(w). Therefore, by (4.2), it follows that:

ε(Kk,hk)(z) = ‖ẽkσ(z)‖
2
hkh

k(σ(z), σ(z)) =
2k − 1

2k
(1− |z|2)2k

∑
γ∈Γ

(1− γ(z)z̄)−2k(γ
′
(z))k.

4.8 The function epsilon and bounded domains

4.8.1 The Bergman metric

Let M be a n-dimensional complex manifold and K its canonical bundle, i.e. the

holomorphic line bundle whose global holomorphic sections are the holomorphic n-

forms on M . If α belongs to H0(K), then in a complex coordinate system U , endowed

with local coordinates (z1, . . . , zn), there exists a holomorphic function fα such that

α(z) = fα(z)dz1 ∧ . . . ∧ dzn, ∀z ∈ U. (4.23)
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Let (w1, . . . , wn) be a complex local coordinate system in an open set V and gα be

holomorphic function on V such that

α(z) = gα(z)dw1 ∧ . . . ∧ dwn.

On U ∩ V

gα(z) = det(
∂wi
∂zj

(z))fα(z), ∀z ∈ V. (4.24)

Consider the space F consisting of holomorphic n-forms α bounded with respect to

‖α‖2 = (α, α) :=
in

2n

∫
M
α ∧ ᾱ <∞.

The space F turns out to be a separable complex Hilbert space with respect to the

scalar product

(α, β) =
in

2n

∫
M
α ∧ β̄, (4.25)

(see [18]). Let αj , j = 0, 1, . . . N(N ≤ ∞) be an unitary basis for (F , (·, ·)). Define a

2n-form K on M ×M by

K(z, w̄) =
in

2n

N∑
j=0

αj(z) ∧ ᾱj(w) =
in

2n

N∑
j=0

fαj (z)f̄αj (w)dµ(z, w̄), (4.26)

where

dµ(z, w̄) = dz1 ∧ . . . ∧ dzn ∧ dw̄1 ∧ . . . ∧ dw̄n. (4.27)

It is immediate to check that this is independent of the choice of the unitary basis. We

call K the Kernel form of M . Define the 2n-form on M

K(z, z̄) =
in

2n

N∑
j=0

αj(z) ∧ ᾱj(z) =
in

2n
K∗(z, z̄)dµ(z, z̄), (4.28)

where K∗ is the real analytic function on U given by

K∗(z, z̄) =

N∑
j=0

fαj (z)f̄αj (z). (4.29)

Suppose now that the following conditions are satisfied:

(A.1) for every x ∈M there exists α ∈ F such that α(x) 6= 0;
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(A.2) for every x ∈M and every tangent vector

Z =
n∑
k=1

ak
∂

∂zk
|x , ak ∈ C

at x, there exists α ∈ F such that α(x) = 0 and Z(fα) 6= 0.

If (A.1) is satisfied, then K∗ is a real analytic positive function. One can then

consider the form on M defined by:

ωB =
i

2π
∂∂̄ logK∗.

One can show (see [18, Theorem 3.1]) that (A.1) implies that ωB is semipositive definite.

Furthermore (A.2) turns out to be equivalent to the fact that ωB is a Kähler form on

M . This form is called the Bergman metric.

Example 4.8.1 Let D ⊂ CN be a bounded domain. The canonical bundle over D is

trivial and the space (F , (·, ·)) can be identified with the space of holomorphic functions

on M bounded w.r.t. to the Lebesgue measure. Hence, in this case, the expression

(4.26) equals the reproducing kernel for (F , (·, ·)) (we refer to [14, p. 364] for details).

Example 4.8.2 Let M be a compact hypersurface of degree d > n + 2 in PN (C). In

this case conditions (A.1) and (A.2) are satisfied. (see [18, pp. 287-288] for details).

Suppose now that the group Aut(M), acts transitively on M . Let f be the function

on M such that ωnB = fK. Since both ωB and K are invariant by Aut(M) (see [18] for

a proof), it follows that f is an invariant under the action of Aut(M), and hence it is

a constant, say λ. Let

ωB =
i

2π

n∑
j,k̄=1

gjk̄dzj ∧ dz̄k̄

be the expression of the Bergman metric in local coordinates (z1, . . . , zn). It follows

that

ωnB =
in

(2π)
det(gjk̄)dµ, (4.30)

where

dµ = dz1 ∧ . . . ∧ dzn ∧ dz̄1 ∧ . . . ∧ dz̄n.
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By (4.26) one obtains

det(gjk̄) = πnλK∗. (4.31)

In particular,

ρωB = − i

2π
∂∂̄ log det(gjk̄) = − i

2π
∂∂̄ logK∗ = −ωB, (4.32)

where ρωB is the Ricci form (see 3.5.9). Therefore (see [18, p. 274]):

Theorem 4.8.3 Let M be a complex manifold such that (A.1) and (A.2) are satisfied.

Suppose that Aut(M) acts transitively on M , i.e. (M,ωB) is a homogeneous Kähler

manifold. Then ωB is Kähler-Einstein with scalar curvature λ = −1.

4.8.2 H.i.i. in complex projective spaces

Here we want to prove that the conditions (A.1) and (A.2) of the previous Section are

equivalent to the fact that ωB is projectively induced. This fact is stated in [16, p. 283]

without a proof. We shall give a proof of this fact for later use. If (A.1) holds then, by

(4.24), the map

j : M → P(F∗)

given by

j(x)(α) := fα(x), ∀α ∈ F (4.33)

is well defined.

Proposition 4.8.4 The map j is a full holomorphic immersion if and only if condition

(A.2) holds. Furthermore, under this hypothesis, j∗(ΩF∗) = ωB, where ΩF∗ is the

Fubini-Study form on P(F∗).

Proof: Let U ⊂ M be an open set of M and ̃ : U → P(F∗) a lift of j, i.e. a

holomorphic map such that p ◦ ̃ = j, where p : F∗\0 → P(F∗) denotes the standard

projection map. The tangent space of F∗\0 at a point α∗ can be naturally identified

with F∗. Moreover, the tangent space of P(F∗) at a point [α∗] can be seen as the

subspace F∗α∗ of F∗ consisting of those β∗ orthogonal to α∗ (see [18, pp. 280-281]). As
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for the finite dimensional case, the differential of the map p at a point α∗, dpα∗ : F →

Tp(α∗)P(F∗) ∼= F∗α∗ , is given by the projection on F∗α∗ , i.e.

dpα∗(β
∗) = β∗ − (β∗, α∗)∗

α∗

‖α∗‖2
, ∀β∗ ∈ F∗, (4.34)

where ‖α∗‖2 = (α∗, α∗)∗ and ( · , · )∗ is the natural scalar product in F∗ induced by

( · , · ). In order to calculate the differential djx(Z) of the map j at a point x ∈ M

applied to a tangent vector Z at x, we need to specify its value at α ∈ F . We claim

that:

djx(Z)(α) = Z(fα)− (d̃x(Z), ̃(x))∗

‖̃(x)‖2
fα(x). (4.35)

It is not hard to see, using formula (4.35), that j is a holomorphic immersion if and

only if (A.2) is satisfied. This proves the first part of the Proposition.

In order to prove (4.35), let γ(t) be a curve in U with γ(0) = x and dγ
dt |0 = Z. By

(4.33)

d̃x(Z)(α) =
d

dt
(̃(γ(t))α) |t=0 =

d

dt
fα(γ(t)) |t=0 = Z(fα).

Therefore, by (4.34),

djx(Z)(α) = dp̃(x)d̃x(Z)(α) = Z(fα)− (d̃x(Z), ̃(x))∗

‖̃(x)‖2
̃(x)(α),

and so the claim.

In order to prove the second part of the Proposition, let

b̃ : P(F∗)→ PN (C) : α∗ 7→ [(. . . , α∗(αj), . . .)], j = 0, . . . N,

where N + 1 is the complex dimension of F . By (4.33),

(b̃ ◦ j)(x) = [(. . . , fαj (x), . . .)], j = 0, 1, . . . N, (4.36)

which establishes that j is a full holomorphic map. Furthermore, by the very definition

of the Bergman metric

j∗ΩF∗ = j∗(b̃∗ΩN
FS) = (b̃ ◦ j)∗ΩN

FS =
i

2π
∂∂̄log

N∑
j=0

|fαj |2 = ωB,

and this concludes the proof of the proposition. 2
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4.8.3 Geometric quantization

Let M be a complex manifold such that (A.1) and (A.2) are satisfied. By (4.24) one

can define a hermitian structure h on K by

h(α, α) =
|fα|2

K∗
, ∀α ∈ H0(K). (4.37)

By (1.12), one obtains:

curv(K,h) = −∂∂̄log 1

K∗
= −2πiωB,

which shows that the pair (K,h) is a geometric quantization for (M,ωB).

Consider the complex Hilbert space Hh consisting of holomorphic n-forms bounded

with respect to

〈s, s〉h = ‖s‖2h =

∫
M
h(s(x), s(x))

ωnB(x)

n!
,

(see Section 4.1). It follows, by (4.4), that

ε(K,h) =

N∑
j=0

|fsj |2

K∗
, (4.38)

where sj = fsjdz1 ∧ . . . ∧ dzn is a unitary basis for (Hh, 〈 · , · 〉h).

In this Section we want to compare the two Hilbert spaces (F , (·, ·)) and (Hh, 〈·, ·〉h)

with the help of the function ε(K,h).

Theorem 4.8.5 Let M be a n-dimensional complex manifold such that (A.1) and (A.2)

hold. Suppose that the following conditions are satisfied:

(i) the complex dimension of F is equal to the complex dimension of Hh;

(ii) there exists a positive constant λ such that
ωnB
n! = λK.

Then ε(K,h) = 1
λ .

Proof: If (ii) holds, then, by (4.26),

h(s, s)
ωnB
n!

=
|fs|2λK
K∗

dµ = λ|fs|2
in

2n
dµ, ∀s ∈ H0(K).

87



Thus

〈s, s〉h =

∫
M
h(s(x), s(x))

ωnB(x)

n!
= λ

∫
M
|fs|2

in

2n
dµ = λ(s, s), ∀s ∈ H0(K). (4.39)

Suppose that (i) holds. Let N + 1 = dimHh = dimF and αj , j = 0, 1, . . . N a unitary

basis for (F , (·, ·)). From (4.39) it follows that

Cfsj = fαj ,

where |C|2 = λ. Hence, by (4.38),

ε(K,h) =

∑N
j=0 |fsj |2

K∗
=

∑N
j=0 |fsj |2∑N
j=0 |fαj |2

=
1

λ
.

2

Remark 4.8.6 It is not clear to us if the converse of Theorem 4.8.5 is true, since we

do not know whether 〈 · , · 〉h = λ(·, ·) implies
ωnB
n! = λK.

Remark 4.8.7 According with conjecture 1, we believe that if (M,ωB) is a complete

Kähler manifold and conditions (i) and (ii) of 4.8.5 are satisfied, then (M,ωB) is a

homogeneous Kähler manifold.

By (4.32) we know that, if condition (ii) in 4.8.5 is satisfied, then ωB is Kähler-Einstein.

When M is compact, it is not hard to see, using Lemma (1.4.8), that the converse also

holds. Therefore, by the previous theorem, it follows:

Corollary 4.8.8 Let M be a compact complex manifold such that (A.1) and (A.2) are

satisfied. Suppose that (i) of 4.8.5 holds and ωB is Kähler-Einstein. Then ε(k,h) is a

constant.

Theorem 4.8.9 Let M be a complex manifold such that (A.1) and (A.2) are satisfied.

Then ε(K,h) equals the constant 1
λ if and only if the complex dimensions of Hh and F

are the same and 〈 · , · 〉h = λ(·, ·).
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Proof: Suppose that dimHh = dimF and 〈 · , · 〉h = λ(·, ·). Then, from the proof

of Theorem 4.8.5, ε(K,h) = 1
λ (see (4.39)). Conversely, suppose that ε(K,h) = 1

λ . From

4.2.2 and (4.9) the coherent states map

b ◦ φ(L,h) : (M,ωB)→ (PN
′
(C),ΩN

′

FS) : x 7→ [(. . . , fsk , . . .)], k = 0, 1, . . . N
′
,

where N
′
+ 1 = dimHh, is a full h.i.i. in (PN

′
(C),ΩN

′

FS). On the other hand, from 4.8.4

b̃ ◦ j : (M,ωB)→ (PN (C),ΩN
FS) : x 7→ [(. . . , fαj (x), . . .)], j = 0, 1, . . . N,

where N + 1 = dimF , is a full h.i.i. in (PN (C),ΩN
FS) (see formula (4.36)). It follows

from the Calabi’s Rigidity Theorem 3.4.3 that N = N
′
, i.e. dimHh = dimF and there

exist a N + 1×N + 1 unitary matrix ujk and a complex number C such that

C

N∑
k=0

ujkfsk = fαj .

Thus, 〈 · , · 〉h = |C|2(·, ·). and, from the proof of the first part, |C|2 = λ. 2

4.9 Fixing the cohomology class

Let (L0, h0) be a quantization of a compact Kähler manifold (M,ω0). Suppose that M

is simply connected, so that the epsilon function εω0 depends only on the Kähler form

ω0 and not on the pair (L0, h0) ∈ Lhol(M,ω0) chosen (cf. remark 4.1.2). Consider the

space

Cω0 = {ω ∼ ω0 | ω is Kähler}

of Kähler forms on M , cohomologous to ω0.

Definition 4.9.1 We say that a Kähler form ω on M is N-projectively induced if there

exists a full holomorphic immersion φ : M → PN (C) such that φ∗(ΩN
FS) = ω.

We denote by

Pω0 = {ω ∈ Cω0 | ω is N-projectively induced }

the set of all N -projectively induced Kähler forms ω cohomologous to ω0.
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Definition 4.9.2 We say that A and B in PGL(N+1,C), the group of automorphism

of PN (C), are equivalent, and we write A ∼ B, if and only if there exists U ∈ PU(N+1)

such that A = UB.

Let PGL(N + 1,C)/∼ be the corresponding quotient space. The following proposition

shows that Pω0 is a “very small” subset of Cω0 . We borrow a classical fact from algebraic

geometry

Lemma 4.9.3 Let M be a compact algebraic manifold and φ : M → Pr(C) a full

holomorphic map. Then there exist (s0, . . . , st), t ≤ r, linearly independent holomorphic

sections of φ∗(Or(1)), such that

φ(x) = [(s0(x), . . . , sr(x))],

(see [12, pp. 176-177] and (2.9)).

Proposition 4.9.4 Let (M,ω0) be a simply connected Kähler manifold such that

ω0 is N -projectively induced via a map φ0. Then there exists a bijection between

PGL(N + 1,C)/∼ and Pω0.

Proof: Let

Φ : PGL(N + 1,C)→ Pω0

be defined by Φ(A) = (A ◦ φ0)∗ΩN
FS for A ∈ PGL(N + 1,C). Since ΩN

FS is invariant

under the group PU(N + 1), it follows that the map Φ gives rise to a map, denoted by

the same symbol,

Φ : PGL(N + 1,C)/∼ → Pω0 .

Let φ and ψ be two full holomorphic maps such that φ∗ΩN
FS = ψ∗ΩN

FS = ω. From the

Calabi’s Rigidity Theorem 3.4.3, there exists U ∈ PU(N + 1) such that U ◦ φ = ψ,

which implies that Φ is injective. In order to prove the surjectivity of Φ, let ω ∈

Pω0 and φ : M → PN (C) a full holomorphic map such that φ∗ΩN
FS = ω. Consider

L = φ∗(ON (1)) the pull-back via φ of the hyperplane bundle on PN (C). Since ω0

and ω are cohomologous, it follows that L and L0 have the same first Chern class,
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i.e. L and L0 are holomorphically equivalent (see 1.1.2). Therefore, from 4.9.3, there

exist {sj} and {tj} bases of H0(L0) such that φ(x) = [(t0(x), . . . , tN (x))] and φ0(x) =

[(s0(x), . . . , sN (x))]. Consider the N + 1×N + 1 invertible matrix A = {ajk} such that

tj =
∑N

k=0 ajksk. Define A : PN (C) → PN (C) by the action of the matrix A on the

homogeneous coordinates of PN (C). Therefore φ = A ◦ φ0, which shows that the map

Φ is surjective. 2

Consider the set

Eω0 = {ω ∈ Cω0 ∩H2(M,Z) | εω is constant} ⊂ Pω0 ,

of all integral Kähler forms ω cohomologous to ω0 with constant epsilon. It follows

from (4.2.3) that

Eω0 ⊂ Pω0 .

The set Eω0 could be empty, so suppose that (M,ω0) is a homogeneous Kähler manifold.

By 4.1.4 εω0 is constant and by (4.2.2) the map φ0 equals the coherent states map. In

the sequel the coherent states map associated to a Kähler form ω is denoted by φω (cf.

Remark 4.1.2). Consider the orbit of ω0 under the action of Aut(M), i.e. the set

[ω0]hom = {ω = f∗(ω0) | f ∈ Aut(M)}. (4.40)

Notice that the pair (M,f∗ω0) is a homogeneous Kähler manifold with respect to

the group f ◦ (Aut(M) ∩ Isom(M,ω0)) ◦ f−1. Therefore, by (4.1.4), εω is constant,

∀ω ∈ [ω0]hom. On the other hand, an element of [ω0]hom, could belong to a cohomology

class different from that of ω0, depending on the connectedness of Aut(M). Thus,

consider the set

Cω0 ∩ [ω0]hom ⊂ Eω0 .

In accordance with Conjecture 1 we state,

Conjecture 2

Cω0 ∩ [ω0]hom = Eω0 ,

i.e. the integral Kähler forms ω cohomologous to ω0 such that εω is constant are precisely

the homogeneous one.
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We want to restate Conjecture 2, in terms of coherent states maps. We need the

following:

Definition 4.9.5 We say that φ and φ0 two full holomorphic immersions from M

to PN (C) are equivalent if there exists f ∈ Aut(M) and U ∈ PU(N + 1) such that

U ◦ φ = φ0 ◦ f .

It follows, by the previous definition, that ω belongs to Cω0 ∩ [ω0]hom if and only if φω

is equivalent to φω0 . Therefore, Conjecture 2 can be stated as follows:

Let (M,ω0) be a compact simply connected homogeneous Kähler manifold. If ω

belongs to Eω0, then φω is equivalent to φω0.

Example 4.9.6 Let M = PN (C) and ω0 = ΩN
FS. The quantum line bundle is given

by the hyperplane bundle L0 = ON (1) and the space of holomorphic sections of L0 has

complex dimension N + 1. Since H2(M,Z) = Z, it follows that:

[ω0]hom ∩ Cω0 = [ω0]hom.

Moreover, in this case, the following equalities hold:

[ω0]hom = Eω0 = Pω0 , (4.41)

which, in particular, show that Conjecture 2 holds. The proof of 4.41 is immediate. In

fact, let ω ∈ Pω0 and φ : PN (C) → PN (C) be a full h.i.i. such that φ∗ΩN
FS = ω. This

implies that φ belongs to Aut(PN (C)) = PGL(N + 1,C), and thus ω ∈ [ω0]hom.

Consider the caseM = P1(C), endowed with the Kähler form ω0 = 2Ω1
FS . The quantum

line bundle L0 is given by O1(2) and the space of holomorphic sections of L0 is 3-

dimensional (see 2.0.4). Let z0 and z1 be homogeneous coordinates in P1(C). The

global holomorphic sections of O1(2) can be identified to the homogeneous polynomials

of degree two in the variables z0 and z1. The coherent states map φω0 is given, by the

Veronese map

V2 : (P1(C), 2Ω1
FS)→ (P2(C),Ω2

FS) : [(z0, z1)]→ [(z2
0 , αz0z1, z

2
1)], (4.42)
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with |α|2 = 2. In fact, it follows immediately that V ∗2 Ω2
FS = 2Ω1

FS . Therefore, in this

case, Conjecture 2 reads as follows:

Let ω = φ∗(Ω2
FS) be an integral Kähler form on P1(C) such that εω is constant.

Then there exists f ∈ PGL(2,C) and U ∈ PU(3) such that

φω ◦ f = U ◦ V2. (4.43)

Even if this case is extremely elementary, we are able to attack Conjecture 2 only

when the map φω has a diagonal form, (see Theorem 4.9.8 below). First we need the

following:

Lemma 4.9.7 Let A be a positive real number and n a natural number. Let

In =

∫ +∞

ρ=0

1

(1 +Aρ+ ρ2)n
dρ.

Then, the following equalities hold:∫ +∞

ρ=0

ρ

(1 +Aρ+ ρ2)3
dρ =

1

4
− A

2
I3;∫ +∞

ρ=0

ρ2

(1 +Aρ+ ρ2)3
dρ =

1

4
I2 +

A2

4
I3 −

A

8
;∫ +∞

ρ=0

ρ3

(1 +Aρ+ ρ2)3
dρ =

1

4
+
A2

16
− 3A

8
I2 −

A3

8
I3;∫ +∞

ρ=0

ρ4

(1 +Aρ+ ρ2)3
dρ =

3

8
I1 +

3A2

8
I2 +

A4

16
I3 −

5A

16
− A3

32
.

Proof:∫ +∞

ρ=0

ρ

(1 +Aρ+ ρ2)3
dρ =

1

2

∫ +∞

ρ=0

(2ρ+A)−A
(1 +Aρ+ ρ2)3

dρ

=
−1

4
(1 +Aρ+ ρ2)−2|+∞0 − A

2
I3 =

1

4
− A

2
I3.

∫ +∞

ρ=0

ρ2

(1 +Aρ+ ρ2)3
dρ =

1

2

∫ +∞

ρ=0

ρ(2ρ+A)−Aρ
(1 +Aρ+ ρ2)3

dρ

=
−ρ
4

(1 +Aρ+ ρ2)−2|+∞0 +
1

4
I2 −

A

2

∫ +∞

ρ=0

ρ

(1 +Aρ+ ρ2)3
dρ

=
1

4
I2 +

A2

4
I3 −

A

8
.
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∫ +∞

ρ=0

ρ3

(1 +Aρ+ ρ2)3
dρ =

1

2

∫ +∞

ρ=0

ρ2(2ρ+A)−Aρ2

(1 +Aρ+ ρ2)3
dρ

=
−ρ2

4
(1 +Aρ+ ρ2)−2|+∞0 +

1

2

∫ +∞

ρ=0

ρ

(1 +Aρ+ ρ2)2
dρ

− A

2

∫ +∞

ρ=0

ρ2

(1 +Aρ+ ρ2)3
dρ

=
1

4

∫ +∞

ρ=0

(2ρ+A)−A
(1 +Aρ+ ρ2)2

dρ− A

2
(
1

4
I2 +

A2

4
I3 −

A

8
)

= −1

4
(1 +Aρ+ ρ2)−1|+∞0 − A

4
I2 −

A

8
I2 −

A3

8
I3 +

A2

16

=
1

4
+
A2

16
− 3A

8
I2 −

A3

8
I3.

∫ +∞

ρ=0

ρ4

(1 +Aρ+ ρ2)3
dρ =

1

2

∫ +∞

ρ=0

ρ3(2ρ+A)−Aρ3

(1 +Aρ+ ρ2)3
dρ

=
−ρ3

4
(1 +Aρ+ ρ2)−2|+∞0 +

3

4

∫ +∞

ρ=0

ρ2

(1 +Aρ+ ρ2)2
dρ

− A

2

∫ +∞

ρ=0

ρ3

(1 +Aρ+ ρ2)3
dρ

=
3

8

∫ +∞

ρ=0

ρ(2ρ+A)−Aρ
(1 +Aρ+ ρ2)2

dρ− A

2
(
1

4
+
A2

16
− 3A

8
I2 −

A3

8
I3)

= −3

8
ρ(1 +Aρ+ ρ2)−1|+∞0 +

3

8
I1 −

3A

8

∫ +∞

ρ=0

ρ

(1 +Aρ+ ρ2)2
dρ

− A

8
− A3

32
+

3A2

16
I2 +

A4

16
I3

=
3

8
I1 −

3A

8
[−1

2
(1 +Aρ+ ρ2)−1|∞0 −

A

2
I2]

− A

8
− A3

32
+

3A2

16
I2 +

A4

16
I3

=
3

8
I1 +

3A2

8
I2 +

A4

16
I3 −

5A

16
− A3

32
.

2

We are now in the position to prove the main Theorem of this Section.

Theorem 4.9.8 Let φ : P1(C)→ P2(C) be given by

φ([(z0, z1)]) = [(az2
0 , bz0z1, cz

2
1)], (4.44)

where a, b and c are element in C∗. Consider ω = φ∗(Ω2
FS) and suppose that εω is

constant. Then, φ is equivalent to the Veronese map V2, (see definition 4.9.5).
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Proof: Under the action of f ∈ PGL(2,C), we can suppose that the map (4.44) is

given by

φ([(z0, z1)]) = [(z2
0 , αz0z1, z

2
1)],

for α ∈ C∗ (see (4.43). Namely, one defines f([(z0, z1)]) = [( 1√
a
z0,

1√
c
z1)]. In the chart

U0 = {z0 6= 0}, equipped with coordinate z = z1
z0

, the map φ is given by

φ : U0 → C2 : z 7→ (1, αz, z2).

One can easily see that

ω = φ∗(Ω2
FS) =

i

2π
∂∂̄ log(1 +A|z|2 + |z|4) =

i

2π

A+ 4|z|2 +A|z|4

(1 +A|z|2 + |z|4)2
dz ∧ dz̄,

where |α|2 = A. If P (z) and Q(z) are polynomials of degree 2 in z, then the hermitian

structure h in O1(2) satisfying curv(O1(2), h) = −2πiω is given on U0 by:

h(P (z), Q(z)) =
P (z)Q̄(z)

1 +A|z|2 + |z|4
.

Furthermore,

〈P,Q〉h =

∫
C

(A+ 4|z|2 +A|z|4)PQ̄

(1 +A|z|2 + |z|4)3

i

2π
dz ∧ dz̄.

This can be written in polar coordinates (r, θ) as

〈P,Q〉h =
1

π

∫ +∞

r=0

∫ 2π

θ=0

(A+ 4r2 +Ar4)PQ̄

(1 +Ar2 + r4)3
rdrdθ.

By the change of variable r2 = ρ, one obtains

〈P,Q〉h =

∫ +∞

ρ=0

(A+ 4ρ+Aρ2)PQ̄

(1 +Aρ+ ρ2)3
dρ. (4.45)

It follows immediately by (4.45) that {1, z, z2} is an orthogonal basis of (Hh, 〈 · , · 〉h).

Furthermore,

‖1‖2h = 〈1, 1〉h =

∫ +∞

ρ=0

(A+ 4ρ+Aρ2)

(1 +Aρ+ ρ2)3
dρ,

A‖z‖2h = 〈αz, αz〉h = A

∫ +∞

ρ=0

(Aρ+ 4ρ2 +Aρ3)

(1 +Aρ+ ρ2)3
dρ,

‖z2‖2h = 〈z2, z2〉h =

∫ +∞

ρ=0

(Aρ2 + 4ρ3 +Aρ4)

(1 +Aρ+ ρ2)3
dρ.
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A direct calculation, using Lemma (4.9.7), gives:

‖1‖2h = (
A3

4
−A)I3 +

A

4
I2 + 1− A2

8
, (4.46)

‖αz‖2h = (
A3

2
− A5

8
)I3 + (A− 3A3

8
)I2 +

A4

16
, (4.47)

‖z2‖2h = (
A5

16
− A3

4
)I3 + (

3A3

8
− 5A

4
)I2 +

3A

8
I1 + 1− 3A2

16
− A4

32
. (4.48)

If A = 2, the case of the Veronese map, one has

I1 =

∫ +∞

0

1

(1 + ρ)2
dρ = 1,

I2 =

∫ +∞

0

1

(1 + ρ)4
dρ =

1

3
,

I3 =

∫ +∞

0

1

(1 + ρ)6
dρ =

1

5
,

and by (4.46),(4.47) and (4.48) one obtains: ‖1‖2h = 2‖z‖2h = ‖z2‖2h = 2
3 in accordance

with the fact that V2 is the coherent states map.

In order to prove the theorem we need to show that if A 6= 2, then either ‖1‖2h 6=

A‖z‖2h, or ‖1‖2h 6= ‖z2‖2h. Suppose, for example, that ‖1‖2h = A‖z‖2h. Then, by sub-

tracting (4.46) from (4.47) one obtains:

−32 + 6A2 + 3A4 − 12AI1 + (72A− 24A3)I2 + 6A3(A2 − 4)I3 = 0. (4.49)

We distinguish two cases: 0 < A < 2 and A > 2.

• For 0 < A < 2, we easily obtain:

I1 =
π√

4−A2
− 2√

4−A2
arctan

A√
4−A2

,

I2 =
2π

(
√

4−A2)3
− A

4−A2
− 4

(
√

4−A2)3
arctan

A√
4−A2

,

I3 =
6π

(
√

4−A2)5
+

A3 − 10A

2(4−A2)2
− 12

(
√

4−A2)5
arctan

A√
4−A2

.

By (4.49) one gets:

−(8 +A2)
√

4−A2 + 6aπ − 12Aarctan
A√

4−A2
= 0,

which can not hold for 0 < A < 2.
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• For A > 2, we get:

I1 = − 1√
A2 − 4

log
A−
√
A2 − 4

A+
√
A2 − 4

,

I2 =
A

A2 − 4
+

2

(
√
A2 − 4)3

log
A−
√
A2 − 4

A+
√
A2 − 4

,

I3 =
A3 − 10A

2(A2 − 4)2
− 6

(
√
A2 − 4)5

log
A−
√
A2 − 4

A+
√
A2 − 4

.

By (4.49) one gets:

(8 +A2)
√
A2 − 4 + 6Alog

A−
√
A2 − 4

A+
√
A2 − 4

,

which can not hold for A > 2. 2

Remark 4.9.9 Theorem 4.9.8 provides us with a family of projectively induced Kähler

forms ω with εω not constant. Hence, in the case ω0 = 2Ω1
FS, Eω0 is strictly contained

in Pω0. For A 6= 2, using (4.4), the function epsilon can be calculated explicitly as

εω0(z) =
‖1‖−2

h +A‖z‖−2
h |z|

2 + ‖z2‖−2
h |z|

4

1 +A|z|2 + |z|4
,

where ‖1‖2h, ‖z‖2h and ‖z2‖2h are given by (4.46), (4.47) and (4.48), respectively.

97



Bibliography

[1] Première classe de Chern et courbure de Ricci: preuve de la conjecture de Calabi,
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