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Introduction

It is a well known result in differential geometry that every differentiable
n−manifold M admits a differentiable embedding f into R2n+1. Moreover,
the image of M , f(M) can be realized as a real-analytic submanifold of
R2n+1. This result was proved by Hassler Whitney in 1936. Whitney’s theo-
rem tells us that all differentiable manifolds (compact and non compact) can
be considered as submanifolds of Euclidean space, such submanifolds having
been the motivation for the definition and concept of manifold in general.
However, when we turn to complex manifolds, things are completely differ-
ent. Indeed, it is well known in the literature that not all complex manifolds
admits an embedding into Euclidean space in contrast to the differentiable
and real-analytic situations, and of course, there are many examples of such
complex manifolds. To give an insight, because of the maximum principle,
there are no compact submanifolds embedded into the Euclidean space Cn.
One can characterize the (necessarily non compact) complex manifolds which
admits embedding into Cn, and these are called Stein manifolds, which have
an abstract definition and have been largely studied in the past thirty years.
In this work, we want to develop the material necessary to provide a char-
acterization of the compact complex manifolds which admit an embedding
into projective spaces. This was firstly accomplished by Kodaira in 1954,
and his theorem states that every compact Hodge manifold X is projective
algebraic, i.e. there exist a non negative integer N and a holomorphic em-
bedding of X into PN (C). The material in the next chapters is developed
with this characterization in mind. The entire work is subdivided into four
chapters.
In the first chapter we give some preliminary notions of basic differential
geometry such as complex manifolds, vector bundles, almost complex struc-
tures and at the end we will introduce the ∂̄−operator. In this chapter,
we omit many details, since we assume the reader already familiar with the
mentioned material.
In the second chapter we will explain some construction behind sheaf the-
ory, from the very basic notions to the sheaf cohomology. Sheaf theory will
provide the necessary machinery for the proof of the Kodaira’s embedding
theorem.
In the third chapter, we will discuss Hermitian differential geometry by giv-

1



ing the notions of metrics, connections and curvature in the smooth and
holomorphic case. A very important part of this chapter is dedicated to the
definitions of Chern classes. Indeed, we will give a geometric and a topo-
logical definition, and by exploring their properties we will understand the
importance and the geometric meaning of Chern classes. At the end we will
focus our attention to the geometry of complex line bundles, that will be
useful for the rest of the work.
In the fourth and last chapter we will focus our attention on introducing
Hodge manifolds, namely the class of manifolds that are suitable to state
the Kodaira’s embedding theorem, we will talk about the Hopf’s blow-up
and we will finally state and prove the Kodaira’s theorem.
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Chapter 1

Some preliminary notions

In this chapter we recall in the first section some standard notions of the
topology of manifolds, in the second section we recall some basic results
of vector bundles and in the last section we introduce the basic notions of
complex geometry.

1.1 S-structures, S-manifolds

Let K be a field, that could be R or C. Consider the space Kn endowed with
its standard topology. Let U ⊆ Kn be a open subset. We have the following
class of functions:

for K = R we have

• E(U) := {f : U → R : f is infinite times differentiable}

• A(U) := {f : U → R : f is analytic}, that is f ∈ U if and only if
in the neighbourhood of every point of U , f can be written as Taylor
expansion convergent to f .

For K = C we have

• O := {f : U → C : f is holomorphic} that is f ∈ O if and only if in
the neighbourhood of every point of U , f can be written as a Laurent
series convergent to f .

We observe from analysis that E(U) and A(U) are subcategories of O, since
a holomorphic function is both analytic and differentiable. Therefore, we
have the following chain of inclusions:

E(U) ⊆ A(U) ⊆ O(U)

For every open set U ⊆ Kn.
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We want to see the behavior of the above functions on mafifolds. Recall that
a topological manifold Mn is a Hausdorff topological space for which there
exists a countable basis and it is locally euclidean of dimension n, that is at
every point p ∈ Mn there exists a open neighbourhood U ⊂ Mn of p and
a homeomorphism h : U → h(U) ⊆ Rn. The natural number n is called
topological dimension of the given manifold. Henceforth, denote by S one of
the three class of functions previously mentioned.

Definition 1.1. LetM be a topological manifold, a S-structure onM consist
of a family of function of M K−valued, such that the following axioms hold:

(a) f ∈ S is continuous and defined on open sets of M .

(b) For all x ∈ M there exists a local chart (U, h) around x such that for
every open subset U ′ ⊂ U , f : U ′ → K is an element of S if and only
if f ◦ h−1 ∈ S(h(U)).

(c) If f : U → K, where U =
⋃
i Ui, Ui ⊂M open sets, then f ∈ S if and

only if f|Ui ∈ S.

(M,SM ) is called S−manifold, denote by dimKM = n the topological dimen-
sion of M .

From previous considerations, we deduce that:

1. S = E then M is a smooth manifold.

2. S = A then M is a analytic manifold.

3. S = O then M is a complex manifold.

Therefore, S determines the type of maifolds.

Definition 1.2. Let (M,SM ) and (N,SN ) be S-manifolds.

(a) A S-morphism consist of a continuous mapping F : M → N such that
for all f ∈ SN we have f ◦ F ∈ SM .

(b) A S-isomorphism F : (M,SM )→ (N,SN ) consist of a homeomorphism
F : M → N and a S-morphism given by F−1 : (N,SN )→ (M,SM ).

From previous definition, we have the following characterization:
S-structure S-morphism S-isomorphism
E smooth functions diffeomorphism
A analytic functions bianalytic function
O holomorphic functions biholomorphic function

-
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Remark 1.1.1. Let (M,SM ) be a S-manifold. Let (U1, h1), (U2, h2) be local
charts such that U1 ∩ U2 6= ∅. Then we have

h2 ◦ h−1
1 : h1(U1 ∩ U2) −→ h2(U1 ∩ U2)

defines a S-isomorphism in (Kn,SK). Conversely, let {Uα}α∈A be a open
cover ofM such that ∀α, β ∈ A Uα∩Uβ 6= ∅ and hβ ◦h−1

α ∈ SK(hα(Uα∩Uβ)).
Then, by letting SM := {f : U → K : U ⊆M open},

f ◦ h−1
α ∈ SK(hα(Uα ∩ Uβ))

∀α ∈ A we have a S-structure on M . The family {(Uα, hα}α∈A definines a
S-structure on M and is called S-Atlas.

Definition 1.3. LetM be a S-manifold and N ⊂M be subset. A S-function
on N is a S-morphism on M such that for every open set U ⊂M with N ⊂ U
f|U ∈ SM . The space of S-function on N will be denoted by SN |M .

Definition 1.4. Let N be a closed subset of a S-manifold M of dimension
n. We say that N is a S-submanifold if at every point x0 ∈ N there exists
a open chart (U, h) of M around x0 such that h(U ∩N) = h(U) ∩ Kr, with
Kr ⊂ Kn as subspace. The natural number r is called dimension of N , and
n−r is called codimension. Moreover, on N there is the induced S-structure
SM |N .

Example 1.1.1. (The euclidean space Kn) Kn = Rn is a real analytic
manifold (hence also smooth) whose atlas consist of a unique chart (Rn, idnR).
For Kn = Cn we have a complex manifold.

Example 1.1.2. Let (M,SM ) be S-manifold of dimension n. Let U ⊆ M
be a open set, we have a natural S-structure SU , such that (U,SU ) is a open
S-submanifold that has the same dimension of M .

Example 1.1.3. (The projective space) Let V be a vector space over the
field K of dimension n. Define the projective space as the totality of all lines
passing through the origin of V . Namely,

P(V ) := {W ≤ V : dimW = 1}.

For K = R and V = Rn consider P(Rn) = Pn(R), we want to show that it is
a real-analytic manifold. The following considerations can be easily applied
also to Pn(C), that will be a complex manifold. Observe that we have a
natural surjective map, such that to a point of Rn+1 \ {0} assigns the space
generated by that point:

π : Rn+1 \ {0} −→ Pn(R)

x 7→ π(x) =< x >= {λx : λ ∈ R}
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The space Rn+1 \ {0} can be equipped with the standard euclidean topol-
ogy.Therefore, we can endow Pn(R) with the quotient topology, i.e. U ⊆
Pn(R) is open if and only if π−1(U) ⊆ Rn+1 \ {0} is open. With that
topology π becomes a continuous mapping. Moreover, because of the prop-
erties of quotient topology [13] becomes a second countable Hausdorff space.
The images of the map π become equivalence classes in Pn(R), namely
π(x) = [x0, ..., xn]. A representative of a equivalence class will be called set of
homogeneous coordinates, in particular, two set of homogeneous coordinates
(x0, ..., xn), (x

′
0, ..., x

′
n) define the same equivalence class if and only if their

components differ by a constant t ∈ R∗ = R \ {0}, i.e. x′i = txi 0 ≤ i ≤ n.
Thus, π(x) = π(tx). Now, we can define a family of open sets for Pn(R)
given by:

Uα := {[x0, ..., xα, ..., xn] ∈ Pn(R) : π(x) = [x] e xα 6= 0},

with α = 0, ..., n. On every of these open set, we can define a homeomorphism

hα : Uα −→ Rn

[x0, ..., xn] 7→ (
x0

xα
, ...,

xα−1

xα
,
xα+1

xα
, ...,

xn
xα

)

with inverse

h−1
α : Rn −→ Uα

(w0, ..., wn−1) 7→ [w0, ..., 1, ..., wn].

The open sets Uα cover Pn(R). Furthermore, since hα is bianalytic, we
deduce that {(Uα, hα)} is a A-Atlas of Pn(R). It follows that Pn(R) is a real
analytic manifold.

Example 1.1.4. (The Grassmann spaces) Let V be a K- vector space of
dimension n, the Grassmann space with respect to V is defined as:

Gk(V ) := {W ≤ V : dimKW = k ≤ n}.

Namely, al vector subspaces of V of dimension lower or equal than n (k-
planes). Observe that Gk(V ) generalizes the projective space. Indeed, for
k = 1, it follows from the definition that P (V ) = G1(V ). Fix K = R and
choose some basis of V , namely by that we choose an isomorphism Rn ∼−→ V .
Therefore, we let Gk(Rn) = Gk,n(R). We want to show that Gk,n(R) is a
real analytic manifold. We have a natural projection
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π :Mn×k(R) −→ Gk,n(R)

A 7→ π(A) =<

a1
...
ak

 >

Namely, π(A) is the vector space generated by the columna1
...
ak


of A. The coordinates in that column are elements of π(A) and are called,
homogeneous coordinates. In particular, two set of homogeneous coordinates
for π(A) are said to be equivalent if and only if they differir by a invertible
matrix g ∈ GLk(R), that is π(A) = π(gA). We can equipp Gk,n(R) with the
quotient topology like in the case of the projective space. Then, the map π
becomes continuos and from the properties of quotient topology we deduce
that Gk,n is a topological manifold. The analytic structure is given along
the lines of previous example. We leave further details to the reader.

Example 1.1.5. (Algebraic submanifolds) Consider Pn = Pn(C), and let

H = {[z0, ..., zn] ∈ Pn : a0z0 + ...+ anzn = 0},

where (a0, ..., an) ∈ Cn+1 \ {0}. Then H is called a projective hyperplane.
We shall see that H is a submanifold of Pn of dimension n − 1. Let Uα be
the coordinate system of Pn as defined in the Example 1.1.3. Let us consider
U0 ∩H, and let (ζ1, ..., ζn) be coordinates in Cn. Suppose that [z0, ..., zn] ∈
H ∩ U0; then, since zeta0 6= 0, we have

a1
z1

z0
+ ...+ an

zn
z0

= −a0,

which implies that if ζ = (ζ1, ..., ζn) = h0([z0, ..., zn]), then ζ satisfies

a1ζ1 + ...+ anζn = −a0, (1.1)

which is an affine linear subspace of Cn, provided that at least one of a1, ..., an
is not zero. If, however, a0 6= 0 and a1 = ... = an = 0, then it is clear that
there is no point (ζ1, ..., ζn) ∈ Cn which satisfies (1.1), and hence in this case
U0∩H = ∅. It now follows easily that H is a submanifold of dimension n−1
of Pn. More generally, one can consider

V = {[z0, ..., zn] ∈ Pn(C) : p1(z0, ..., zn) = ... = pr(z0, ..., zn) = 0},
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where p1, ..., pr are homogeneous polynomials of varying degrees. In local
coordinates, one can find equations of the form

p1

(
1,
z1

z0
, ...,

zn
z0

)
= 0

pr

(
(1,

z1

z0
, ...,

zn
z0

)
= 0,

and V will be a submanifold of Pn if the Jacobian matrix of these equations
in the various coordinate systems has maximal rank. More generally, V is
called a projective algebraic variety, and points where the Jacobian has less
than maximal rank are called singular points of the variety

Definition 1.5. Let (M,SM ) and (N,Sn) be two S−manifolds. A S−morphism

F : (M,SM )→ (N,SN )

is called S−embedding if

(a) M ∼−→ F (M) is a homeomorphism,

(b) (M,SM )→ (F (M), SN |f(M)) is a S−isomorphism.

We recall the following important result in differential topology for a full
treatment see [5], [2]

Theorem 1.1.1. (Whitney) Let M be a A−manifold of dimension n. Then
there exist a analytic embedding F : M → R2n+1. In particular, F (M) is a
submanifold of R2n+1.

The Withney’s theorem tells that every real-analytic manifold, hence also
smooth, can be seen as a subanifold of R2n+1. This is not, in general, true
for complex manifolds. Indeed, not every complex manifold admits an em-
bedding in Cn in particular compact complex manifolds, but this latter under
some hypothesis admits an embedding in Pn(C).

Theorem 1.1.2. Let X be a complex manifold compact and connected.
Then, every holomorphic function f ∈ O(X) is a constant function.

Proof. Let f ∈ O(X), then sinceX is compact, for the Weierstrass theorem
|f | has a maximal element in X, say x0 ∈ X, i.e. |f(x0)| ≥ |f(x)|,∀x ∈ X.
Consider the following closed subset of X:

S = {x ∈ X : f(x) = f(x0)}.

We show that S is open. Then, since X is connected, it will follows that
X = S, therefore f is constant. Let x ∈ S, consider a local chart (U, h)
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around x such that h(x) = 0, i.e. h(x) = (z1, ..., zn) = z = 0. Let B(0) be
an open ball centered in 0, such that B(0) ' h(U). We let for w ∈ B(0)

g(λ) = (f ◦ h−1)(λw).

Then g is a complex variable function and it assumes its maximal value
in λ = 0. Thus, for the principle of maximal value g is constant in B(0).
Therefore, we can cover S with such open charts. Hence, S is open. �

It follows from the above theorem that

Corollary 1.1.1. There are no compact submanifold in Cn.

The submanifolds of Cn, necessarily non compact, are called Stein manifolds.

Definition 1.6. A compact complex manifold X is called projective alge-
braic if it admits an embedding into some finite dimensional projective space.

1.2 Vector bundles on S-manifolds

Definition 1.7. A K−vector bundle of rank r on a manifold X consist of

a. A manifold E called total space

b. A continuous surjection π : E → X

c. For every x ∈ X, Ex := π−1(x) has a K−vector space structure of
dimension r. Ex is called fiber of E at the point x.

b. For all x ∈ X there exist a open neighbourhood U ⊂ X and a homeo-
morphism

h : π−1(U)
∼−→ U ×Kr

such that,

hx = h|x : Ex → {x} ×Kr

is a linear isomorphism.

The condition d of the above definition can be expressed by saying that E
is locally trivial. The tuple (U, h) is called local trivialization. The manifold
X is called base space. Directly from the definition we have the following
examples

Example 1.2.1. (Restricted vector bundle). Let πE → X be a K−vector
bundle of rank r. Let EU = π−1(U) with U ⊂ X open. Then, EU → U is a
K−vector bundle of rank r.
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Example 1.2.2. (Trivial vector bundle) Let X be a manifold. Consider Kr

as a K−vector space. Then the product X × Kr is a K−vector bundle of
rank r called the trivial vector bundle. Indeed, X×Kr is a manifold and the
continuous projection is given by the natural projection onto the first factor.
By construction, we see that X ×Kr is globally trivial.

Remark 1.2.1. From the definition of vector bundle and the two previous
examples, we see that every vector bundle, locally, looks like the trivial bundle.

Let π : E → X be a vector bundle of rank r. Let (Uα, hα) and (Uβ, hβ)
be local trivializations such that Uα ∩ Uβ 6= ∅. Then we have the following
composition

hα ◦ h−1
β : (Uα ∩ Uβ)×Kr ∼−→ (Uα ∩ Uβ)×Kr. (1.2)

By definition, the above isomorphism, induces a linear isomorphism:

(hα ◦ h−1
β )x : Kr → Kr, ∀x ∈ Uα ∩ Uβ.

Write gαβ(x) = (hα ◦ h−1
β )x. Therefore, that induces a map

gαβ : Uα ∩ Uβ → GL(r,K)

x 7→ gαβ(x) : Kr ∼−→ Kr.

The functions gαβ are called transition function. Because of the above con-
struction, for a given vector bundle E → X of rank r, to give a trivializing
atlas is equivalent to determine he transition functions. Unravelling the def-
inition of transition function, we see easily that they satisfy the so called
Čech cocycle condition:

1. gαα = Ir in Uα 6= ∅.

2. gαβ = (g−1
βα) in Uα ∩ Uβ.

3. gαβ · gαβ = gαγ in Uα ∩ Uβ ∩ Uγ .

Within the transition functions we are able to completely reconstruct a vector
bundle, as the following result shows [1]

Proposition 1.2.1. Let X be a manifold and {Uα} be a open cover of x.
Suppose that for every index α, β such that Uα ∩ Uβ 6= ∅, gαβ : Uα ∩ Uβ →
GL(r,K) are given and they satisfy the Čech cocycle conditions. Then, there
exist a unique structure of vector bundle of rank r above X that has gαβ as
transition functions.

10



Example 1.2.3. (Universal bundle). Let Ur,n be the disjoint union of
r−planes in Kr. Then, we have a natural projection given by

π : Ur,n → Gr,n(K,

such that to a vector v that belongs to a r−plane S of Ur,n assigns a plane
in Gr,n(K. In order to simplify the notations and the discussion, we study
the case when n = 1, thus the projection becomes

π : Ur,1 → Pn−1

r 7→ π(v) = [x0, ..., xn−1].

The element v is represented as follows v = (tx0, ..., txn−1) = t(x0, ..., xn)
where t ∈ K and (x0, ..., xn−1) ∈ Kn \ {0}. Then

π(v) = π(t(x0, ..., xn−1)) = π(x0, .., xn−1) = [x0, ..., xn−1].

Consider Uα ⊆ Pn−1(K), then

π−1(Uα) := {v = t(x0, ..., xn−1) : t ∈ R, xα 6= 0}

from here, we can define some bijections that preserves the fibers by letting

hα :π−1(Uα)→ Uα ×Kr

v 7→ hα(v) = ([x0, ..., xn−1], tα),

where tα = txα.

In the non empty overlapping Uα∩Uβ, v ∈ π−1(Uα∩Uβ) has local represen-
tations in Uα ×Kr and Uβ ×Kr:

hα(v)([x0, ..., xn−1], tα),

hβ(v) = ([x0, .., xn−1], tβ)

respectively. Therefore, we have

t =
tα
tβ

=
xα
xβ

. We let
gαβ =

xα
xβ

It is easy to verify that the above satisfy the Čech cocycle condition, therefore
by Proposition 1.2.1 we conclude that π : Ur,1 → Pn−1 is a vector bundle.
In the spirit of the previous section, a S−vector bundle of rank r over a
S−manifold X, consist of a

11



• S−manifold E,

• a surjective S−morphism π : E → X,

• the transition functions are S−isomorphism.

Definition 1.8. Let πE : E → X and πF : F → X be two S−vector bundles.
Then
(a) A homomorphism of S−vector bundles f : E → F consist of

a.1 a S−isomorphism f,

a.2 forallx ∈ X fx : Ex → Ef(x) is linear,

a.3 πF ◦ f = πE .

(b) A isomorphism of S−vector bundles is a S−homomorphism f of vector
bundles such that

b.1 f is a S−isomorphism,

b.2 ∀x ∈ X, fx is a linear isomorphism.

(c) Two S−vector bundles over the same manifold X, are called equivalent
if there exists a S−isomorphism between them.

1.2.1 Operations of Vector Bundles

Recall that, given two vector spaces A and B, we have the following construc-
tions: A⊕B, A⊗B, Hom(A,B), A∗ = Hom(A,K). The same constructions
can be extended to vector bundles, the principle is very simple: natural
operations with vector spaces, applied fiberwise, extend to vector bundles.
Consider two vector bundles πE : E → X and πF : F → X, and let {Uα} be
a open cover of X.
Let us start with the direct sum operation. The direct sum E⊕F is another
vector bundle over X, with fibers

(E ⊕ F )x := Ex ⊕ Fx, ∀x ∈ X.

The transition functions with respect to the open cover {Uα} are given by

gE⊕Fαβ (x) = diag(gEαβ, g
F
αβ) (1.3)

It is easy to verify that (1.3) satisfy the Čech cocycle conditions, therefore
by Proposition 1.2.1 E ⊕ F is a vector bundle, called direct sum bundle.
In the same spirit we can build the tensor product vector bundle By pro-
ceeding fiberwise, we have a collection of vector spaces

(E ⊕ F )x := Ex ⊕ Fx, ∀x ∈ X.
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The transition functions, with respect to the open cover {Uα} are given by

gE⊗Fαβ (x) = (gEαβ ⊗ gFαβ)(x) = gEαβ(x) · gFαβ(x). (1.4)

It is easy to verify that (1.4) satisfy the Čech cocycle conditions, therefore
by Proposition 1.2.1 E ⊗ F is a vector bundle.

By applying the same principles we can define the so called Hom−bundle.
By proceding fiberwise

Hom(E,F )x = Hom(Ex, Fx).

Local trivializations of E and F induce a local trivialization of Hom(E,F ),
and we obtain a canonical S−structure. With the same principles all the
natural operations with vector spaces extends to vector bundles, we leave
further details to the reader. ♠

1.2.2 S-sections of S-vector bundles

Definition 1.9. Let π : E → X be a S−vector bundle of rank r. A S−section
of E is a S−morphism s : X → E, such that π ◦ s = idX . A local S−section
sU : U → EU is a S−morphism such that π ◦ sU = idU . Denote the spaces
of sections and local sections respectively by

S(X,E) := {s : X → E : s is a section}

S(U,E) := {s : U → EU : s is a local section}

Example 1.2.4. Let M be a smooth manifold, consider the trivial bundle
M×Rr. Then, the sections E(M,M×Rr) are smooth vector valued functions,
i.e. elements of E(M,Rr). Indeed, if s ∈ E(M,M × Rr), then

s : M →M × Rr proj2−−−→ Rr

and proj2 ◦s ∈ E(M,Rr). Conversely, if s ∈ E(M,Rr), then we have that the
assignment M ∈ p 7→ (p, g(p)) ∈M × Rr, is a S−section of M × Rr.

Observe that, every vector bundle π : E → X has a zero section

O : X → E

given by O(x) = 0x ∈ Ex,∀x ∈ X. That means, at every point of X the
zero section assigns the origin of each fiber. Therefore, that zero could be
formally identified with the base space. Thus, sections are copies of the base
space X on the total space E, such that at every point x ∈ X, s(x) ∈ Ex,
where s is a section.

13



Remark 1.2.2. Let π : E → X, π′E′ → be S-vector bundles. Then

Hom(E,E′) = S(X,Hom(E,E′)).

Such correspondence is given as follows: a section s ∈ S(X,Hom(E,E′)
picks out for each point x ∈ X a linear map s(x) : Ex → E′x, and s is
identified with fs : E → E′ which is defined by

fs|Eπ(e) = s(π(e)), for e ∈ E.

Remark 1.2.3. If E → X is an S−bundle of rank r with transition functions
{gαβ} associated with a trivializing cover {Uα}, then let fα : Uα → Kr be
S−morphisms satisfying the compatibility conditions

fα = gαβfβ in Uα ∩ Uβ 6= ∅.

Here we are using matrix multiplication, considering fα and fβ as column
vectors. Then the collection {fα} defines an S−section f of E, since each
fα gives a section of Uα × Kr, and this pulls back by the trivialization to a
section of E|Uα . These sections of E|Uα agree on the overlap Uα ∩ Uβ by the
compatibility conditions imposed on {fα}, and thus define a global section.
Conversely, any S−section of E has this type of representation. We call each
fα a trivializing section of the section f.

Remark 1.2.4. Let π : E → X be a vector bundle, the set of all sections
S(X,E) can be equipped with the structure of K−vector space by defining
∀s, s′ ∈ S(X,E),∀x ∈ X,∀λ ∈ K, the operations

(s+ s′)(x) := s(x) + s′(x),

(λs)(x) := λs(x).

Moreover, S(X,E) can be endowed with the SX−module structure, by defin-
ing ∀f ∈ SX , ∀s ∈ S(X,E)

(f · s) := f(x)s(x), ∀x ∈ X.

♠

1.2.3 Differential forms on vector bundles

A standard result in basic differential geometry is that to a given manifold
M one can associate formally two vector bundles: the tangent bundle TM
and the cotangent bundle T ∗M , for details see [1], [2]. By using these two
vector bundles one can construct the exterior bundles, i.e.

∧
TM =

n⊕
p=0

∧pTM (1.5)
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∧
T ∗M =

n⊕
p=0

∧pT ∗M. (1.6)

With these bundles, it is possible to talk about differential forms, namely
sections of (1.6)

Ep(U) := E(U,∧pT ∗M).

With this construction, we can define as usual the exterior derivative or de
Rham operator

d : Ep(U)→ Ep+1(U)

for the construction of the de Rham operator the reader may see [5] and [15].
♠

1.2.4 The pullback bundle

We begin by generalizing the notions of homomorphism of S-vector bundles.

Definition 1.10. A S−morphism of S−vector bundles πE : E → X, πF :
F → Y consist of

1. a S−morphism,

2. for all x ∈ X, fx : Ex
'−→ Fx is K-linear,

3. The following diagram is commutative

E
f−−−−→ F

πE

y yπF
X

f̃−−−−→ Y

Proposition 1.2.2. Let f : X → Y be a S−morphism and let π : E → Y be
a S−bundles. Then there exist a unique (up to equivalences) vector bundle
π′ : E′ → X such that the following diagram commutes

E′ −−−−→ E

π′
y yπ
X

f̃−−−−→ Y

Such a vector bundle is called pullback bundle, and as it is customary in the
literature we denote E′ by f∗E.
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For a proof of the above proposition see [6].
If π : E → X and π′E′ → Y are two S−bunldes and f : E → E′ is a
S−morphism, then f can be decomposed as the composition of a S−homomorphism
and a S−morphism of vector bundles. Indeed, by Proposition 1.2.2 we have
a pushforward diagram

f∗E E′

X Y

E

f̂

π̂

f

π′
π

f

h

Where the dashed arrow is given by

h(e) = (π(e), f(e).

Thus, it follows that f = f̂ ◦ h as wanted. ♠

1.3 Almost complex manifolds and the ∂̄−operator

1.3.1 Linear intermezzo: complex structures

Definition 1.11. Let V be a real vector space. A complex structure on V
is an element J ∈ Aut(V ) = GL(V ) such that J2 = −I. The tuple (V, J) is
called linear complex structure.

In (V, J) is a linear complex structure then it induces on V a C−vector space
structure, indeed the exterior binary operation is given by

(α+ iβ)v := αv + βJ(v), ∀α, β ∈ R, ∀v ∈ V.

Conversely, let V be a C−vector space, then the multiplication by the imag-
inary unit i induces a linear complex structure for the underlying real vector
space associated to V, i.e. J(v) = iv.

Example 1.3.1. Consider the usual euclidean space Cn of n−tuples of com-
plex numbers {z1, ..., zn}and let zj = xj + iyj , j = 1, ..., n be the real and
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imaginary parts. Then Cn can be identified with R2n. The scalar multipli-
cation by i in Cn induces a mapping

J : R2n → R2n

given by
J(x1, y1, ..., xn, yn) = (−y1, xn, ...,−yn, xn).

Moreover J2 = −1. This is the standard complex structure on R2n.

Example 1.3.2. (The complex tangent space) Let X be a complex manifold.
As is known from analysis, every complex manifold admits a underlying
smooth structure that will be called henceforth X0. Let x ∈ X, denote by
TxX the complex tangent space and by TxX0 the complex space at x in X0.
We want to show that TxX ' TxX0 canonically, and that TxX induces a
linear complex structure

Jx : TxX0 → TxX0.

To do so, let (U, h) be a holomoprhic chart around the chosen point x. Then

h : U
∼−→ U ′ ⊆ Cn

induces

hR : U
∼−→ R2n

x 7→ (<(h(x1)),=(h(x1)), ...,<(h(xn)),=(h(xn))).

The map hR is real analytic, therefore rh is also smooth. It sufficies to prove
the above claim in the origin, i.e. we shall prove that T0Cn ' T 2n

R . Let

b0C = { ∂
∂z1

, ...,
∂

∂zn
}

be a basis for T0Cn, and

b0R = { ∂

∂x1
,
∂

∂y1
, ...,

∂

∂xn
,
∂

∂yn
}

be a basis for T0R2n.
To the choice of a basis correspond a choice of isomorphism, hence we have
the following commutative diagram

Cn ∼−−−−→ T0Cn∥∥∥ '
y

R2n ∼−−−−→ T0R2n
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Because of previous example we see that Jx : T0R2n → R2n is the desired
complex structure. We shall now prove that Jx : T0X0 → T0X0 does not
depend on the chosen holomorphic chart. To do so, let f : N

∼−→ N be a
biholomorphism, N is a open neighbourhood of the origin of Cn and assume
that f(0) = 0. We can write f as follows

f(z) = ζ = <(ζ) + =(ζ) = ξ + iη, ξ = u(x, y), η = v(x, y).

Where ξ and η are diffeomorphisms associated to the change of coordinates
prescribed from the map f. The Jacobian matrix of f represents that change
of coordinates. Hence, to prove the claim, it sufficies to show that the Jaco-
bian matrix of f commutes with the matrix associated to the linear map Jx.
we have

M =

(∂uα

∂xα
∂vα

∂xα
∂uα

∂yα
∂vα

∂yα

)
Using the Cauhy-Riemann equations the entrances of M become(

∂vα

∂xα
∂vα

∂xα

− ∂vα

∂xα
∂vα

∂xα

)
So it is of type (

a b
−b a

)
Now it is easy to see that MJ = JM as wanted.

We have seen that C can be seen as a vector space with basis {1, i}. Then
the tensor product

VC = V ⊗R C

for a real vector space V is called complexification of V. With the following
definition

α · (v ⊗ x) := v ⊗ (αz), ∀α, z ∈ C, ∀v ∈ V

VC becomes a complex vector space. The conjugation in that space is defined
as

v ⊗ α := v ⊗ ᾱ.

Let (V, J) be a complex structure, consider the complexification of V , VC,
by the properties of tensor product there exists a linear map induced from
J in VC

J = J ⊗ idC : VC → VC.
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It is easy to see that J is still a complex structure. Moreover J has eigen-
values {−i, i}. Call V 1,0 the eigenspace relative to the eigenvalue i and V 0,1

the eigenspace relative to the eigenvalue −i. Then, because of the spectral
theorem, we find

VC ' V 1,0 ⊕ V 0,1.

Since complex conjugation is a linear isomorphism, then we deduce that
V 1,0 ' V 0,1. These considerations extend to every real vector space. We
now want to consider the exterior algebra of these complex vector spaces.
Namely, ∧VC, ∧V 1,0 and ∧V 0,1. Then we have natural injections

∧V 1,0 ↪→ ∧VC
∧V 0,1 ↪→ ∧VC

and we let ∧p,qV be the subspace of ∧VC generated by elements of the form
{u ∧ w}, where u ∈ ∧pV 1,0 and w ∈ ∧qV 0,1. Thus we have the direct sum

∧VC =
2n⊕
r=0

⊕
p+q=r

∧p,qV.

In the next subsection we carry out the above algebraic construction on the
tangent bundle to a manifold.

♠

1.3.2 Almost complex structures

Definition 1.12. Let X be a smooth manifold of dimension 2n. Suppose that
J : TX → TX is a vector bundle equivalence, to be called almost complex
structure, such that ∀x ∈ X Jx : TxX → TxX is a linear complex structure
and J2 = −I. If X is equipped of a almost complex structure then the tuple
(X, J) will be christened almost complex manifold

One thinks about almost complex structure as a family J = {Jx}x∈X of lin-
ear complex structures smoothly parametrized by points of X. Furthermore,
having a complex structure on a manifold X it is equivalent to prescribe a
complex vector bundle on the real tangent bundle to the manifold.

Proposition 1.3.1. A complex manifold X induces a almost complex struc-
ture on the underlying smooth manifold X0.

For a proof of the above proposition the reader may see [6]

Remark 1.3.1. Because of the above proposition we see that a complex man-
ifold determines a almost complex structure, the converse is not true in gen-
eral, for counterexamples see [11]

♠
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1.3.3 Complex differential forms

Let X be a smooth manifold of dimension m. Consider the complexifications
of tangent and cotangent bundles of X, i.e. TXC and T ∗XC respectively.
We define the space of differential forms complex valued of total degree r by

Er(X)C = E(X,∧rT ∗XC).

In particular ω ∈ Er(X)C if and only if

ω(x) =
∑
I

ωI(x)dxI

in a local chart (U, h). ωI(x) are complex valued smooth functions. The de
Rham operator is defined as usual, therefore we have the correspondent de
Rham complex

E0
C

d−→ E1
C

d−→ ...
d−→ EmC → 0.

Let (X, J) be a almost complex manifold. Consider TXC,and we apply fiber-
wise the linear algebra acquired in Subsection 1.3.1. Denote by TX1,0 the
vector bundle relative to the {i}-eigenspace and by TX0,1 the vector bundle
relative to the {−i}−eigenspace. We define naturally, always fiberwise, a
conjugation

Q : TXC → TXC

then TX1,0 ' TX0,1. Consider the exterior bundles ∧T ∗XC, ∧T ∗X1,0 and
∧T ∗X0,1. We have that

T ∗XC = T ∗X1,0 ⊕ T ∗X0,1

Therefore we have two natural injections

∧T ∗X1,0 ↪→ ∧T ∗XC

∧T ∗X0,1 ↪→ ∧T ∗XC.

Consider the vector bundle ∧p,qT ∗X, its sections are the differential forms
of type (p,q) on X that will be denoted by

Ep,q(X) = E(X,∧p,qT ∗X),

moreover we have that

Er(X)C =
⊕
p+q=r

E(X,∧p,qT ∗X).

We now look for a local representation for these forms. To do so we will use
particular sections:
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Definition 1.13. Let E → X be a vector bundle of rank r, a family of local
sections sj ∈ S(U,E), 1 ≤ j ≤ r, is called local frame if ∀x ∈ U {sj(x)}rj=1

is a basis of Ex.

Remark 1.3.2. In a vector bundle to give a local trivialization it is equivalent
to prescrive a local frame. For details see [1], [9]

Consider a almost complex manifold (X, J), let {w1, ..., wr} be a local frame
of T ∗X1,0 and {w̄1, ..., w̄r} be a local frame of T ∗X0,1. Then {wI ∧ w̄J} with
|I| = p and |J | = q is a local frame of ∧p,qT ∗X. Therefore, every s ∈ Ep,q(X)C
can be locally represented by

s =
∑
I

∑
J

aIJw
I ∧ w̄J , aIJ ∈ E0(U)C.

Apply the de Rham operator

ds =
∑
IJ

(daIJw
I ∧ w̄J + aIJd(wI ∧ w̄J)),

we see that the second term of the sum in the right hand side can be non
zero, since the local sections wi may not be constant. This will lead to the
next and last Subsection. ♠

1.3.4 The ∂ and ∂̄ operators and integrability

Let (X, J) be a almost complex manifold, we have seen that

Er(X) =
⊕
p+q=r

Ep,q(X)

since the direct sum is a biproduct, then it makes sense to define the following
natural projection:

πp,q : Er(X)→ Ep,q(X).

Consider the de Rham operator

d : Ep,q(X)→ Ep+q+1(X)

we can have a decomposition of the above operator as follows

∂ := πp+1,q ◦ d : Ep,q → Ep+1,q(X) (1.7)

∂̄ := πp,q+1 ◦ d : Ep,q → Ep,q+1(X) (1.8)

These definitions naturally extends to all the complex E•(X).
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Definition 1.14. Let (X, J) be a almost complex manifold. If

d = ∂ + ∂̄

then we say that (X, J) is integrable.

Since every complex manifold determines a almost complex structure in the
underlying smooth manifold, one can ask if the determined almost complex
structure is also integrable as the following result shows

Theorem 1.3.1. Let X be a complex manifold, then (X0, J) is an integrable
almost complex structure

For a proof of this theorem see [6]. The converse of this theorem is a profound
result [6], [11].

Theorem 1.3.2. (Newlander-Nirenberg) Let (X, J) be an integrable almost
complex manifold. Then there exists a unique complex structure OX on X
which induces the almost complex structure J.
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Chapter 2

Sheaf Theory

In this chapter, we will se some useful notion of sheaf theory, that will be
used during this work. The major virtue of sheaves is that they unify and
give a mechanism for dealing with many problems concerned with passage
from local information to global information. For this treatment, the reader
should be familiar with the basic concept of homological algebra and category
theory that can be found in [10]. For a deeper treatment of Sheaf Theory
the reader may see [8].

2.1 Presheaves and Sheaves

In this section we will give the definition of presheaf and sheaf, and we will
give numerous examples. Henceforth we denote by Ob(−) the objects of
some category.

Definition 2.1. Let X be a topological space, i.e. X ∈ Ob(T op), a presheaf
F on X consist of

a. an assignment
X ⊃ U 7→ F(U) ∈ Ob(Set).

b. ∀V ⊂ U open we have a restriction homomorphism

rUV : F(U)→ F(V )

such that

1. rUU = 1F(U).

2. If W ⊂ V ⊂ U
rUW = rVW ◦ rUV .
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Remark 2.1.1. The definition of presheaf naturally adapts to all algebraic
structures. Indeed, it is possible to define presheaves of abelian groups, rings
and modules, where the assignment would be a functor from the category of
the open set of a topological space X, where morphisms are the inclusions,
to the category of abelian groups, or rings, or modules. The restriction ho-
momorphisms will then be a morphism between objects of the considered cat-
egory.

Examples of presheaves are in rich supply. For our targets, we are interested
in a particular kind of presheaves that permit to transform local datas into
global datas.

Definition 2.2. A sheaf on X ∈ Ob(T op), is a presheaf F on X, such that
for every collection of open sets U of X where U is the union of other open
sets, i.e. U = ∩iUi, the following axioms are satisfied:

S1. ∀s, t ∈ F(U) such that rUUi(s) = rUUi(t), then s = t.

S2. given si ∈ F(Ui) such that rUiUi∩Uj (si) = r
Uj
Ui∩Uj (sj), ∀i, j. Then, there

exists a s ∈ F(U) such that s|Ui = si.

Remark 2.1.2. From the above definition, we can see that axiom S1 tells
that elements defined on large open sets that locally coincide are globally
indistinguishable. Axiom S2 tells that local elements can be glued together to
form a global element.

Definition 2.3. Let F and G be (pre)sheaves on X ∈ Ob(X). A morphism
of (pre)sheaves

h : F −→ G

is a collection of maps
hU : F(U) −→ G(U),

where U is an open subset of X, such that for any other open subset V ⊂ U
the following diagram commutes

F(U)
hU−−−−→ G(U)

rUV

y yr̃UV
F(V )

hV−−−−→ G(V )

Moreover, if hU is an inclusion, then we say that F is a sub(pre)sheaf of G.
An isomorphism of (pre)sheaves is defined in obvious way.

Example 2.1.1. Let X,Y ∈ Ob(T op), consider

CX,Y := {f : X → Y : f is continuous} (2.1)
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Let {Ui} be an open cover of X. The assignment

X ⊃ U 7→ CX,Y (U) = CU,Y ,

is clearly a presheaf. Furthermore, if, for all index i we have that f, g ∈ CX,Y
are such that f|Ui = g|Ui , then f = g. Therefore, axiom S1 is satisfied.
Moreover, given fi ∈ CUi,Y , if fi|Ui∩Uj = fj|Ui∩Uj , then by the gluing lemma
for continuous functions [13] there exists f ∈ CX,Y such that f|Ui = fi. Thus,
axiom S2 is satisfied. Hence (2,1) is a sheaf.

Example 2.1.2. In the previous example, if we let Y = K be a field that
can be R or C, then we have a sheaf of commutative algebras CX,K := CX .

Example 2.1.3. Let X be a S-manifold, then SX is a subsheaf of CX called
the structure sheaf of X.

Example 2.1.4. Let X ∈ Ob(T op). If G is an abelian group, then the
assignment

X ⊃ U 7→ G

defines a sheaf, called the constant sheaf. The same construction could be
done with any other algebraic structure.

Definition 2.4. Let R be a sheaf of commutative rings on X ∈ Ob(T op),
and let M be a sheaf of abelian groups on X. We define the sheaf of R-
modules by the assignment:

X ⊃ U 7→ R(U)

and restriction homomorphism

rUV (αf) = ρUV (α)rUV (f).

The above holds for every open subset V ⊂ U , ∀α ∈M(U), ∀f ∈ R(U). The
maps ρUV are the restriction homomorphisms ofM.

Example 2.1.5. Let π : E → X be a vector bundle of rank r. The module
of S-section on E, i.e. S(E) is a sheaf of SX−modules by the assignment

X ⊃ U 7→ S(U) := S(U,E) = {s : U → E : π ◦ s = 1U}.

Directly from the above definition, we see that S(E) is a subsheaf of CX,E .

Example 2.1.6. A special case of previous example is E•X of a smooth mani-
fold. Or Ep,q(X) on a complex manifold X. These are sheaf of EX−modules.

Remark 2.1.3. If F is a sheaf over X ∈ Ob(T op), then there is a natural
restriction of F on the open set U ⊂ X, and it will be denoted by F|U .
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Definition 2.5. Let R be a sheaf of cummutative rings on X ∈ Ob(T op).
We define:

(a) Direct sum sheaf the sheaf of R−modules

X ⊃ U 7→ Rp(U) = R(U)⊕ ...⊕R(U)︸ ︷︷ ︸
p−times

where p is a positive integer.

(b) IfM is a sheaf of R−modules, we say that is free ifM' Rp. We say
thatM is locally free ifM|U ' Rp, for U ⊂ X open.

Theorem 2.1.1. Let X be a connected S−manifold. Then, there is a one
to one correspondence between isomorphism classes of S−vector bundles on
X and isomorphism classes of sheaf of locally free S−modules on X.

Proof. (⇒) Consider the sheaf of sections S(E) of a vector bundle E → X.
We show that S(E) is locally free. Since E → X is a vector bundle, then
for every open trivializing set U ⊂ X we have S(E)|U ' U ×K∇, since
EU ' U × Kr. Then, it sufficies to prove that S(U × Kr) is free. Let
f ∈ S(U×Kr)(V ), then f(x) = (x, g(x)), where g is a vector valued function,
i.e. g(x) = (g1(x), ..., gr(x)) ∈ Kr, and gj ∈ S(V ). Thus, from the definition
of trivializing section we have the following bijection

S(U ×Kr) 3 f 7→ (g1, ..., gr) ∈ SU (V )⊕ ...⊕ SU (V ).

Therefore, S(E) is a locally free sheaf of S−modules.
(⇐) Let L be a locally free sheaf of S−modules on X. Consider a open cover
{Uα} of X. Being L locally free, then we have the following isomorphism

gα : L|Uα
'−→ Sr|Uα .

Since X is connected the above ismorphism does not depend on α. Therefore,
we can define

gαβ : S|Urα∩Uβ → S|Urα∩Uβ ,

that induces a liner map

gαβ : Uα ∩ Uβ → GL(r,K)

that satisfies the Čech cocycle condition. Hence, because of the properties
of vector bundles, there exists a vector bundle E → X that has {gαβ} as
transition functions. �
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2.2 Resolutions

In this section we will learn how local datas of a certain topological space
can give global information. To do so, we require some preparation.

2.2.1 Sheafifications

In the following, we will learn how to turn a presheaf into a sheaf on a given
topological space X.

Definition 2.6. Let X ∈ Ob(T op), a etale space on X consist of

(a) a topological space Y ∈ Ob(T op),

(b) a surjective continuous map

π : Y → X

that is also a local homeomorphism.

A section s : U → Y for a etale space π : Y → X is a continuous function
such that π ◦ s = 1U . Denote by Γ(U, Y ) the space of sections of the etale
space π : Y → X. Cleary Γ(U, Y ) is a subsheaf of CX,Y , therefore it is
a sheaf. By using the notion of etale space we can associate a sheaf to a
topological space X in which a presheaf is prescribed. This process, that we
will describe in the following, is called sheafification. Let X ∈ Ob(T op) and
F be a presheaf of X. On every open set U ⊂ X consider the direct limit:

lim−→
x∈U
F(U) := Fx.

Where the direct limit is considered with respect the restriction homomor-
phisms of F . The induced restriction homomorphism define the representa-
tives of the classes of Fx, namely

rUx (s) := sx

where s ∈ F(U) and sx is called germ of s at x. Consider

F̃ :=
⋃
x∈X
Fx.

Then, we have a natural projection

π : F̃ → X

defined in the natural way, i.e. π(sx) = x. Since π is naturally surjective,
then we have some right inverses s̃ : U → F̃ , defined as s̃(x) = sx. Consider
the family of sets {s̃(U)}U⊂X . Observe that such a family covers F̃ , and
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given s̃(U1) ∩ s̃(U2), being U1, U2 open sets of X, they can be expressed
by unions of other subsets U1 = ∪jU1j and U2 = ∪jU2j . Thus s̃(U1) ∩
s̃(U2) = ∪j s̃(U1j) ∩ s̃(U2j). Then, there exists a unique topology on F̃ that
has {s̃(U)}U⊂X as basis. With respect to this topology it is easy to see
that the map π becomes a continuous map and it is a local homeomorphism.
Therefore, π : F̃ → Y is a etale space. In the above construction we did
not consider any algebraic structure on the prescribed presheaf F . In case
F has some algebraic structure, then the elements of Fx are called stalks
and they inherit the algebraic structure. To give an insight, suppose that F
is a presheaf of abelian groups, then the associated etale space satisfy the
following properties:

• Fx is a abelian group ∀x ∈ X.

• If F̃ ◦ F̃ = {(s, t) ∈ F̃ × F̃ : π(s) = π(t)} then we have an continuous
operation

µ :F̃ ◦ F̃ → F̃
(sx, tx) 7→ sx − tx

• For every open subset U ⊂ X, Γ(U, F̃) is an abelian group, by defining
pointwise the operation on sections, i.e.

(s− t)(x) = s(x)− t(x), ∀x ∈ U.

In the above construction we have seen that in a topological space X where
a presheaf F is prescribed, we can associate a etale space and therefore a
sheaf of continuous function F̃ = Γ(U, F̃). Then, is rather natural to define
a map

τ : F → F̃ ,

defined as follows, for every open subset U of X

τU : F(U)→ F̃(U)

[τU (s)](x) = [τU (s(x))] = s̃(x) = rUx (s) = sx.

Being defined on the presheaves then we have the following commutative
diagram

F(U)
τU−−−−→ F̃(U)

rUV

y yr̃UV
F(V )

τV−−−−→ G̃(V )

28



Proposition 2.2.1. In the above situation, in F is a sheaf then τ is a
bijection.

Proof. (a) We prove that τU is injective. Let s, t ∈ F(U) such that
τU (s) = τu(t). Then by definition [τU (s)](x) = [τU (t)](x) ⇔ rUx (s) = rUx (t)
that is true also in the neighbourhood of x, namely there is a neighbourhood
of x, V ⊂ U , such that rUV (s) = rUV (t). Thus, we can cover U by open sets
Ui that behaves like V. Namely, for every index i we have rUUi(s) = rUUi(t).
Therefore, since F is a sheaf, then by axiom S1, we have that s = t.
(b) We prove that τU is surjective, let σ ∈ Γ(U, F̃), x ∈ U. Then, there exists
an open neighbourhood V of x such that σ|V (x) = [τV (s)](x). If two sections
coincide in a point, then they still coincide in a neighbourhood of that point,
say V ∗.Namely,

σV ∗ = τV (s)|V ∗ = τV ∗(r
V
V ∗(s)). (2.2)

That is true ∀x ∈ U. Therefore, we can cover U with open sets Ui that
behaves like in (2.2). Thus, there exist si ∈ F(Ui) such that τUi(si) = σ|Ui .
Moreover, in the overlap Ui ∩ Uj we have τUi(si) = τUj (sj), then

rUiUi∩Uj (si) = r
Uj
Ui∩Uj (sj).

Since F is a sheaf then by axiom S2 there exists s ∈ F(U) such that rUUi(s) =
si. Thus,

τUi(r
U
Ui(s)) = τU (s)|Ui = τUi(si) = σ|Ui ⇒ σ = τU (s).

�

Using the above construction, we can construct another sheaf. Let F and G
be two sheaf of abelian groups on a topological space X. Let G be a subsheaf
of F . Consider the sheaf of sections generated by

{X ⊃ U 7→ F(U)/G(U)}.
The above generates the quotient sheaf F/G. We have a natural projection
on the quotient ∀U ⊂ X

F(U)→ F(U)/G(U),

by taking the direct limits, and using Proposition 2.2.1 we have a well defined
map of sheaves

F → F/G.
♠
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2.2.2 Short exact sequences of abelian sheaves

Definition 2.7. Let A, B and C be sheaves of abelian groups over a topo-
logical space X. A sequence of abelian groups and homomorphism h, g

A h−→ B g−→ C

is called exact in B if ∀x ∈ X the relative sequence of stalks is exact, i.e.
∀x ∈ X

Ax
hx−→ Bx

gx−→ Cx
we have ker gx = imfx.
Similarly the sequence

0→ A h−→ B g−→ C → 0

is called short exact if ∀x ∈ X, the sequence

0→ Ax
hx−→ Bx

gx−→ Cx → 0

is short exact.

Example 2.2.1. (The exponential sequence) Let X be a complex connected
manifold, consider the following sheaves of abelian groups

O := {f : X → C : f is holomorphic},

O∗ := {f : X → C∗ : f is holomorphic},

Z is the constant sheaf.

Consider the following sequence:

0→ Z i−→ O exp−−→ O∗ → 0, (2.3)

where i is the canonical inclusion and the map exp : O → O∗ is defined on
every open set U ⊂ X as

expU (f)(x) = exp(2πif(z)).

In order to show exactness in O∗, is sufficient to prove that expx is surjective
∀x ∈ X. To do so, we observe that if we invert the exponential mapping,
the complex logarithm is a multivalued function. To avoid that, we should
restrict the range of invertibility by using a fundamental result of covering
space theory [14]

Theorem 2.2.1. Let p : X̃ → X be a covering space, consider x0 ∈ X,
x̃0 ∈ p−1(x0), and let Y be a connected and locally path connected topological
space. Consider y0 and f : Y → X be a continuous function such that
f(y0) = x0. Then, there exists a unique lifting f̃ of f with respect to the map
p if and only if f∗π1(Y, y0) ⊆ p∗π1(X̃, x̃0).
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Therefore, in our case the unique possibility to invert the expx is in a symply
connected open subset U ⊂ X. In that case, we have fx =

(
1

2πi logg
)
x
,

thus expx fx = gx.Hence, expx is surjective ∀x ∈ X. It is easy to see that
ker(expx) = Z = imi, and that i is injective. This shows exactness in O and
Z respectively. Thus, (2.3) is a short exact sequence and is called exponential
sequence.

Example 2.2.2. Let A be a subsheaf of abelian groups of the sheaf of
abelian groups B, then it is easy to see that the following sequence is short
exact:

0→ A→ B → B/A.

Example 2.2.3. From the short exact sequence of previous example, we can
consider a particular case. Let X = C, consider the sheaf O of holomorphic
functions and let I be the subsheaf of O of holomorphic functions that vanish
in zero. Then we have the following exact sequence

0→ I → O → O/I → 0,

where

(O/I)x =

{
C, if x = 0

0, if x 6= 0

Example 2.2.4. Let X be a connected Hausdorff space, let a, b ∈ X such
that a 6= b. Let Z the constant sheaf con X, and let I be the constant
subsheaf of Z that is zero in a and b. Then the following sequence is short
exact:

0→ I → Z→ Z/I → 0,

where

(Z/I)x =

{
Z, if x 6= a and x 6= b

0, if x = a or x = b

♠

2.2.3 Graded sheaves, differential sheaves and resolutions

Definition 2.8. Let X be a topological space.

• A graded sheaf of abelian groups o modules is a indexed family of
sheaves {Fα}α∈Z together with a sequence connected by sheaf mor-
phism:

...→ F0 α0−→ F1 α1−→ F2 α2−→ ... (2.4)
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• A differential sheaf is a graded sheaf whose sequence (2.4) has αi ◦
αi−1 = 0 at every level i.

• A resolution of a sheaf F is an exact sequence of the form

0→ F → F0 → F1 → F2 → ...

that we will indicate as
0→ F → F•

Example 2.2.5. (The resolution of the complex and real constant sheaves).
Let X be a smooth manifold of real dimension n. Let EpX be the sheaf of
differential form of degree p. Then there is a resolution of the constant sheaf
R given by:

0→ R i−→ E0
X

d−→ E1
X

d−→ E2
X

d−→ ...
d−→ EnX → 0. (2.5)

In the above d is the exterior derivative, we know that d2 = 0, therefore (2.5)
is a differential sheaf. For the Poincaré’s Lemma [5], [15], if U ⊆ Rn is a star
shaped open set where for f ∈ E2

X ,df = 0, then there exists a differential
form g ∈ Ep−1

X such that dg = f. We can always restrict the above situation
in a local chart where the Poincaré’s Lemma is satisfied. The exactness in
E0
X follows from the basic theory of ordinary differential equations. Similarly

follows for the constant sheaf C. Hence, we have the two desired resolutions

0→ R→ E•X , (2.6)

0→ C→ E•X . (2.7)

Example 2.2.6. (The reslution of the constant sheaf of abelian groups). Let
X be a topological manifold. We want to find a resolution for the constant
sheaf of abelian groups G on X, where G is a abelian group. On every open
set U ⊂ X, we consider the set of standard p−simplices {f : ∆p → U}, we
take the free abelian group of that linearization and we can construct the
singular p−chain, i.e. the abelian group with coefficient in Z, that will be
denoted by Sp(U,Z). With this in mind, we define the singular cochain by
writing

Sp(U,G) := HomZ(Sp(U,Z), G).

The assignment U 7→ Sp(U,G) = S(G)(U), determines the sheaf of singular
conchains. Together with the coboundary operator

δp : Sp(U,G)→ Sp+1(U,G),

that satisfies δp+1 ◦ δp = 0, we have a differential sheaf
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...→ Sp−1(U,G)
δp−1

−−−→ Sp(U,G)
δp−→ Sp+1(U,G)

δp+1

−−−→ ... (2.8)

The above sequence is used to define the cohomology groups of the singular
cohains

Hp(Sp(U,G)) :=
ker(δp)

im(δp−1)
. (2.9)

If U is an open ball in a euclidean space then the cohomology groups (2.9)
are trivial ∀p > 0, and the sequence (2.8) is exact at every level [10]. Then
for p > 0 we have the resolution of G

0→ G→ S0(G)→ S1(G)→ S2(G)→ ...

where ker(δ : S0(G) → S1(G)) ' G. The same considerations hold also in
case X is a smooth manifold. For notational brevity we denote the resolution
of G, in case X is a smooth manifold, as

0→ G→ S•∞(G) (2.10)

Example 2.2.7. (The resolution of the sheaf of differential forms). Let X
be a complex manifold of complex dimension m. Let Ep,q be the sheaf of
(p, q)−differential forms on X. Consider the following sequence

0→ Ωp i−→ Ωp,0 ∂̄−→ Ωp,1 ∂̄−→ Ωp,2 ∂̄−→ ...
∂̄−→ Ωp,m → 0 (2.11)

Where ωp = ker(∂̄ : Ep,0 → Ep,1), and that is the sheaf of holomorphic forms
of type (p, 0). The sequence (2.11) is also exact. This can be seen using the
”complex version” of the Poincaré Lemma, that is the Dolbeault’s Lemma.
Namely, if ω is a (p,q)-differential form defined in a polydisk of Cn, i.e.
∆ = {z ∈ C : |z| < i}, such that ∂̄ω = 0. Then, there exist a (p,p-1)-form u
defined in ∆′ ⊂ ∆ such that ∂̄u = ω in ∆′. Hence,

0→ Ωp → Ep,• (2.12)

is a resolution for Ωp. Similar considerations hold for

0→ Ωp → E•,p

and for the constant sheaf

0→ C→ Ω•

Consider two differential sheaves L• and M• on a topological space X. A
morphism of differential sheaves f• : L• →M• is a sequence of sheaf morh-
phism fj : Lj → Mj for which the following diagram is commutative at
every level j
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Lj
fj−−−−→ Mj

dLj

y ydMj

Lj+1 fj+1−−−−→ Mj+1

Similarly, given two resolutions for sheaves A, B on X

0→ A→ A•

0→ B → B•.

We define a homomorphism of resolution as a morphism of sheaves f together
with a homomorphism of differential sheaves f•

0 −−−−→ A −−−−→ A•

f

y f•

y
0 −−−−→ B −−−−→ B•

Example 2.2.8. Let X be a smooth manifold, consider the resolutions

0→ R→ E•X ,

and

0→ R→ S•∞(R).

We have a natural morphism of resolutions

0 −−−−→ R −−−−→ E•X∥∥∥ I

y
0 −−−−→ R −−−−→ S•∞

Where I is given by integration of differential forms on the singular cochains,
that is

IU (ϕ)(c) =

∫
c
ϕ.

We shall verify that the following diagram is commutative

EpX
Ip−−−−→ Sp∞(R)

d

y δ

y
Ep+1
X

Ip+1−−−−→ Sp+1
∞ (R)

By using Stoke’s theorem [5], [2]
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we have

(Ip+1 ◦ d)U (ϕ)(c) =

∫
c
dϕ

=

∫
∂c
ϕ = (δ ◦ Ip)(ϕ)(c).

A very usefull result in complex geometry and cohomology is given by the
following

Lemma 2.2.1. ( ∂∂̄−Lemma). Let ϕ ∈ Ep,q(U), U ⊆ Cn open such that
dϕ = 0. Then, for all points p ∈ U there exists a neighbourhood near p N,
and ψ ∈ Ep−1,q−1(U) such that

∂∂̄ψ = ϕ, in N.

Proof. By assumption dϕ = 0, by Dolbeault Lemma there exist u ∈
Er−1
x (U), r = p+ q), such that du = ϕ. Notice that u can be written as

u = ur−1,0 + ...+ u0,r−1.

Then, du = ∂̄up,q−1 + ∂up−1,q. We have ∂up,q−1 = ∂̄up−1,q = 0. By applying
again the Dolbeault Lemma, there exists η1 ∈ Ep−1,q−1

x such that

up,q−1 = ∂η1

. For the same argument, there exists η2 ∈ Ep−1,q−1
x such that

up−1,q = ∂̄η2

. Therefore

du = ∂̄up,q−1 + ∂up−1,q

= ∂̄∂η1 + ∂∂̄η2 = ∂∂̄(η2 − η1).

�

♠

2.3 Sheaf Cohomology

In this last section we will study the sheaf cohomology, in order to do that
we will have to introduce some kind of sheaves in the next subsection. In the
last subsection of this section we will give an outline of Sheaf Cohomology
in algebraic topology, namely we will talk about Čhec cohomology.
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2.3.1 Soft, Fine and Flabby

In this subsection we will introduce the fundamental motivation behind sheaf
cohomology by defining some kind of sheaves and the so called canonical res-
olution. Let A,B, C be abelian sheaves over a topological space X. Suppose
we have a short exact sequence of these sheaves

0→ A→ B → C → 0.

Consider the induced sequence

0→ A(X)→ B(X)→ C(X)→ 0, (2.13)

We can see that this sequence is not in general short exact anymore. We see
that, in general, we have exactness at A(X) and in B(X) but in general we
lose exactness at C(X). Indeed, consider the exponential sequence

0→ Z→ O → O∗ → 0

on X = C∗, then the induced sequence

0→ Z→ O(X)
expX−−−→ O∗(X)→ 0

fails to be exact because expX can’t be inverted. Sheaf cohomology permits
to study the obstruction of (2.13) to be exact. Henceforth we assume that
X is a paracompact Hausdorff topological space. We introduce a class of
sheaves for which there will be no obstruction to exactness.
Let F be a sheaf over a topological space X, and let S ⊂ X be a closed
subset. Consider the direct limit

F(S) := lim−→
S⊂U⊂X

F(U).

Definition 2.9. A sheaf F on X, is said to be soft if for all closed subset
S ⊂ X the map

F(X)→ F(S)

is surjective. Namely, every section of F(S) can be extended to a section of
F(X).

Definition 2.10. A sheaf F on X, is said to be flabby, if for all open subset
U ⊂ X the map

F(X)→ F(U)

is surjective.

Remark 2.3.1. It follows from the definition that a flabby sheaf is also soft,
in general the converse is not true.
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Definition 2.11. A sheaf of abelian groups F on X, is said to be fine if for
every open locally finite cover {Ui} of X there exists a family of morphism
of sheaves

{ηi : F → F}
called partition of unity that satisfies:

a.
∑
ηi = 1.

b. ηi(Fx) = 0, ∀x ∈ N ⊂ X \ Ui.

We will explore now some properties of soft sheaves

Theorem 2.3.1. If A is a soft sheaf and

0→ A g−→ B h−→ C → 0 (2.14)

is a short exact sequence of abelian sheaves. Then the induced sequence

0→ A(X)
gX−−→ B(X)

hX−−→ C(X)→ 0 (2.15)

is also exact.

Proof. For the above discussion, it sufficies to prove that for every c ∈ C(X)
there exists an element b ∈ B(X), such that hX(b) = c. Namely, hX is
surjective. If (2.14) is exact, then by definition of exactness, se induced
sequence on the stalks has to be exact ∀x ∈ X. Therefore, ∀x ∈ X there
exists a open neighbourhood U of x such that hU (b) = c|U . Choose some
open cover {Ui} of X such that hUi(b) = c|Ui holds. Being X paracompact
by assumption, then there exist a locally finite refinement {Si} of closed
subsets ofX. Consider the set of tuples {(b, S)} where S is the union of Si and
h(b) = c|S .On that set we can put a partial order: we say that (b, S) � (b′, S′)
if S ⊆ S′ and b′|S = b. For the axiom S2 of the definition of sheaf, every chain
of {(b, S)} admits a maximal element. Therefore, by the Zorn’s Lemma there
exists a maximal element S, such that h(b) = C|S . We shall now prove that
X = S. Suppose, by contradiction, that X 6= S, then there exists Sj ∈ {Si}
such that Sj 6⊂ S and in S ∩ Sj we have h(b − bj) = c − c = 0, then
b − bj ∈ kerhS∩Sj = imgS∩Sj . Therefore there exists a element a ∈ S ∩ Sj
such that g(a) = b− bj . Since A is soft then we can extend a to all X. Thus,
we can define b̃ ∈ B(S ∪ Sj) such that

b̃ =

{
b, in S
bj + g(a), in S ∩ Sj

But then h(b̃) = C|S∪Sj , that means S is not maximal, so the desired con-
tradiction. �

37



Corollary 2.3.1. Let 0 → A g−→ B h−→ C → 0 be a short exact sequence of
abelian sheaves. If A and B are soft, then also C is soft.

Proof. Being A soft by assumption, then for Theorem 2.3.1 the following
induced sequences are short exact

0→ A(X)
gX−−→ B(X)

hX−−→ C(X)→ 0

0→ A(S)
gS−→ B(S)

hS−→ C(S)→ 0

Then, we have the following commutative diagram

0 −−−−→ A(X)
gX−−−−→ B(X)

hX−−−−→ C(X) −−−−→ 0

α

y β

y γ

y
0 −−−−→ A(S)

gS−−−−→ B(S)
hS−−−−→ C(S) −−−−→ 0

From the above diagram, we shall prove that γ is surjective. Let c ∈ C(S),
since hS is surjective, then there exist a b ∈ B(S) such that hS(b) = c. By
assumption B is soft, therefore β is surjective, then there exists a b′ ∈ B(X)
such that β(b′) = b. Hence,

c = hS(b) = hS(β(b′)) = γ(hX(b)).

Because of the arbitrariness of the choices we conclude that γ is surjective
and hence C is a soft sheaf. �

Corollary 2.3.2. If 0 → S0 → S1 → S2 → ... is a long exact sequence of
soft sheaves, then the induced sequence 0→ S0(X)→ S1(X)→ S2(X)→ ...
is also exact.

Proof. We prove the claim by an inductive argument. We let

Ki = ker(Si → Si+1).

With this choice we have an induced short exact sequence

0→ Ki → Si → Ki+1 → 0.

We shall see that the induced sequence

0→ Ki(X)→ Si(X)→ Ki+1(X)→ 0 (2.16)

is exact. In i = 0 we have K1 = S0, by assumption S0 is soft then by
Theorem 2.3.1

0→ K1(X)→ S1(X)→ K2(X)→ 0
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is short exact. Since K1 and S1 are soft, then by Corollary 2.3.1 K2 is soft.
By inductive hypothesis suppose that

0→ Ki−1(X)→ Si−1(X)→ Ki(X)→ 0

is short exact. Then, immediately from Corollary 2.3.1 it follows that (2.16)
is exact. By splicing together all of these sequences, we obtain the long
induced exact sequence of the claim. �

Proposition 2.3.1. If F is a fine sheaf on X, then F is soft on X.

Proof. Let S ⊂ X be a closed subset and let s ∈ F(S). Thus there exists
a open cover {Ui} of S such that si ∈ F(Ui) has

si|S∩Ui = sj|S∩Uj , ∀i, j.

We can exted such covering to allX by letting U0 = X\S. X is paracompact,
then we can choose {Ui} to be locally finite. Let {ηi} be a partition of unity
subordinated to {Ui}, define

s̃ =
∑
i

ηi(s) =

{
s, in N ⊂ Ui
bj + g(a), in X \ Ui

Then s̃ ∈ F(X) is the desired extension. �

Example 2.3.1. The following sheaves are all fine, since it is always possible
to define a partition of unity

1. CX ,

2. EX

3. Ep,qX and X is an almost complex manifold.

4. Locally free sheaves of EX− modules.

Example 2.3.2. Let X = C, consider the sheaf of holomorphic function O
on X. Then X is not soft. Indeed, consider the holomorphic function

f(z) =
∑
n

zn!.

f is holomorphic in the open unit disc, hence it is holomorphic in the closed
disc with radius 1/2, but it can’t be extended outside the open unit disk.
Indeed, take some root of unity w, then for sufficiently large n and all m > n
we have wm! = 1, so the series is not convergent in w. Roots of unity are
dense in the boundary of unit disc, so f cannot be extended to the unit disc
as well as to the complex plane.
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Let S be a sheaf on X. Consider the associated etale space π : S̃ → X. We
define the sheaf of discountinuous function by the assignment

X ⊃ U 7→ C0(S)(U) := {f : U → S̃ : π ◦ f = 1U}

By construction C0(S) is flabby, hence is soft. Moreover there is a natural
inclusion

S ↪→ C0(S).

Therefore, it makes sense to take the quotient:

F1 = C0(S)/S,

from which we obtain the short exact sequence

0→ S → C0(S)→ F1(S)→ 0.

We iterate this reasoning by defining C0(F1(S)) := C1(S), from which we
obtain the short exact sequence

0→ F1(S)→ C1(S)→ F2(S)→ 0.

Therefore, by an inductive reasoning we have F i+1(S) = Ci(S)/F i and

0→ F i(S)→ Ci(S)→ F i+1(S)→ 0.

Splicing together, we obtain the long exact sequence

0→ S → C0(S)→ C1(S)→ ...

The above is called canonical soft resolution of S that, henceforth, will be
denoted by

0→ S → C•(S). (2.17)

By taking global sections we obtain a cochain complex

0→ Γ(X,S)→ Γ(X, C0(S))→ Γ(X, C1(S))→ ...

If S is soft then by Corollary 2.3.2 is a everywhere exact complex. We let
C•(X,S) := Γ(X, C•(S)) and we rewrite (2.17) as

0→ Γ(X,S)→ C•(X,S). (2.18)

Now we are ready to introduce sheaf cohomology. ♠
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2.3.2 The definition of Sheaf Cohomology and properties

For the rest of the discussion, assume that X is a paracompact Hausdorff
topological space. Let S be a sheaf on X and consider the canonical soft
resolution of that sheaf like in (2.18). We define the q−th derived cohomology
group with coefficient in S as

Hq(C•(X,S)) := Hq(X,S) =
ker(Cq → Cq+1)

im(Cq−1 → Cq)

and C−1 = 0.
We will now see the basic properties of sheaf cohomology

• H0(X,S) = Γ(X,S). If S is soft, then ∀q ≥ 0, Hq(X,S) = 0. Indeed,
being C−1 = 0 and (2.18) is exact in Γ(X,S), therefore

ker(C0 → C1) = Γ(X,S).

If S is soft, then for Corollary 2.3.2 it followis that (2.18) is everywhere
exact. Hence, Hq(X,S) = 0, ∀q ≥ 0.

• Sheaf Cohomology is functorial. Indeed, let A and B two abelian
sheaves on X and h : A → B a morphism of sheaves. Then ∀q ≥ 0
there is a induced morphism in cohomology

hq : Hq(X,A)→ Hq(X,B)

such that

1. h0 = hX : A(X)→ B(X),

2. hq is the identity if h is the identity
3. for every other morphism of sheaves g : B → C we have

(g ◦ h)q = gq ◦ hq.

To see the functoriality property, let C•(X,A) = C•(A). Define

h0 : C0(A)→ C0(B)

sx 7→ (h ◦ s)x

Observe that, we have the following commutative diagram

C0(A)
h0−−−−→ C0(B)y y

F1(A)
h̃0−−−−→ F1(B)
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Then the map h̃0 induces

h1 : C1(A)→ C1(B).

By iterating the same reasoning we induce

h• : C•(A)→ C•(B).

With this in mind we immediately understand the functorial character
of the construction.

• Given a short exact sequence of abelian sheaves

0→ A→ B → C → 0,

according to the previous point, we induce another short exact se-
quence,

0→ C•(A)→ C•(B)→ C•(C)→ 0.

Using the Snake Lemma we induce the so called long exact sequence in
cohomology

0→ Γ(X,A)→ Γ(X,B)→ Γ(X, C) δ−→ H1(X,A)→ H1(X,B)→ H1(X, C)→ ...

Where δ is called Bockstein operator, that is the usual connecting ho-
momorphism defined in any cohomology theory. With this in mind,
given a commutative diagram of sheaves

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0y y y
0 −−−−→ A′ −−−−→ B′ −−−−→ C′ −−−−→ 0

we have an induced commutative diagram in cohomology

0 −−−−→ Γ(X,A) −−−−→ Γ(X,B) −−−−→ Γ(X, C) δ−−−−→ H1(X,A) −−−−→ ...y y y y
0 −−−−→ Γ(X,A′) −−−−→ Γ(X,B′) −−−−→ Γ(X, C′) δ−−−−→ H1(X,A′) −−−−→ ...
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Definition 2.12. A resolution of a sheaf S on X

0→ S → A•

is called acyclic if Hq(X,Ap) = 0, ∀q > 0, and ∀p ≥ 0.

Theorem 2.3.2. Let S be a sheaf on x and let 0→ S → A• be a resolution.
Then there is a natural isomorphism

γp : Hp(Γ(X,A•))→ Hp(X,S),

moreover if 0→ S → A• is acyclic, then γp is an isomorphism.

Proof. Let Kp = ker(Ap → Ap+1) = im(Ap−1 → Ap). Then K0 = S.
With this definition we have the following short exact sequence of sheaves:

0→ Kp−1 → Ap−1 → Kp → 0.

Using the long exact sequence in cohomology we see that

ker(Γ(X,Ap)→ Γ(X,Ap+1) ' Γ(X,Kp)

.
Thus,

Hp(Γ(X,A•) = Γ(X,Kp)/im(Γ(X,Ap−1 → Γ(X,Ap)).

The long exact sequence in cohomology induces the following map

γp1 : Hp(Γ(X,A•)→ H1(X,Kp−1)

Therefore, if the resolution is acyclic γp1 becomes an isomorphism. For 2 ≤
r ≤ p consider the short exact sequence

0→ Kp−r → Ap−r → Kp−r+1 → 0.

From the long exact sequence in cohomology there is an induced morphism

γpr : Hr−1(X,Kp−r+1)→ Hr(X,Kp−r)

such that, when the resolution is acyclic, then γpr is an isomorphism.
Define,

γp = γpp ◦ γ
p
p−1 ◦ ... ◦ γ

p
2 ◦ γ

p
1

and the claim follows. �
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Remark 2.3.2. The word ”natural” from Theorem 2.3.2 means that, if we
have a morphism of resolutions

0 −−−−→ S −−−−→ A•

f

y g

y
0 −−−−→ I −−−−→ B•

then, we have the following commutative diagram in cohomology

Hp(Γ(X,A•)) γp−−−−→ Hp(X,S)

gp

y fp

y
Hp(Γ(X,B•)) γp−−−−→ Hp(X, I)

(2.19)

Thus, if f is a isomorphism of sheaves and the resolutions are acyclic, then
the map gp in the above diagram is an isomorphism ∀p.

Theorem 2.3.3. (de Rham) Let X be a smooth manifold. Then the natural
map induced from the integration of singular cohains is an isomorphism, i.e.

I : Hp(Ep) '−→ Hp(S•∞(X,R)).

In order to prove the above theorem we need the following

Lemma 2.3.1. In M is a sheaf of modules over a soft sheaf of rings R,
thenM is soft.

Proof. Let K ⊂ X be a closed subset. If s ∈ Γ(K,M), we define the
function ρ ∈ Γ(K ∪ (X \ U),R) as

ρ =

{
1, in K
0, in X \ U

Then, ρ · s is the desired extension of s. Because of the arbitrariness of the
choices, it follows thatM is soft. �

Proof. (of Theorem 2.3.3.) Consider the morphism of resolution of sheaves
of example 2.2.8. By using naturality (Remark 2.3.2) we find the map

Ip = gP : Hp(E•(X))→ Hp(S•∞(X,R)).

It remains to show that E•(X) and S•∞(X,R) are soft. But, we know that
E•(X) is fine, hence by Proposition 2.3.1, is soft. Sp∞(X,R) is a S0

∞−module,
where S0

∞ = C0(X,R) is a flabby sheaf of rings (hence is soft), then by
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Lemma 2.3.1 we deduce that Sp∞(X,R) is soft. Hence, Ip is an isomorphism.
�

The de Rham Theorem generalizes in the following

Theorem 2.3.4. (Dolbeault) Let X be a complex manifold. Then

Hq(X,Ωp) ' ker(Ep,q(X)
∂̄−→ Ep,q+1(X)

im(Ep,q−1(X)
∂̄−→ Ep,q)

.

We want generalize the Dolbeault cohomology. To do that, we need the
following

Definition 2.13. LetM and N be sheaves of modules over a sheaf of com-
mutative rings R. ThenM⊗R N would be the sheaf generated by

U 7→ M(U)⊗R N (U).

Lemma 2.3.2. If I is a locally free sheaf of R−modules and

0→ A→ A′ → A′′ → 0

is a short exact sequence of R−modules, then the following sequence

0→ A⊗R I → A′ ⊗R I → A′′ ⊗R I → 0

is short exact.

Using this latter result, we want to generalize the Dolbeault cohomology.
Consider a complex manifold X of complex dimension n, and the resolution

0→ Ωp → Ep,•.

Let E → X be a holomorphic vector bunlde, then the sheaf of holomorphic
sections O(E) is a locally free sheaf of O−modules. Therefore, using Lemma
2.3.2 we have the following resolution

0→ Ωp ⊗O O(E)→ Ep,0 ⊗O O(E)
∂̄⊗1−−→ ...

∂̄⊗1−−→ Ep,n ⊗O O(E)→ 0.

Directly from the properties of tensor product, we deduce that

Ωp ⊗O O(E) ' O(∧pT ∗X ⊗C E)

Ep,q ⊗O O(E) ' O(∧p,qT ∗X ⊗C E)
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Moreover, Ωp ⊗O O(E) = E(E) is a E−module and is the sheaf of differen-
tiable section on E. Sections of O(∧pT ∗X⊗CE) are holomorphic forms with
coefficients in E. We denote this latter by

Ωp(X,E) := O(∧pT ∗X ⊗C E)

and by ∂̄E = ∂̄ ⊗ 1, then we have the following resolution

0→ Ωp(X,E)→ Ep,•(E).

The above resolution is fine, hence soft. Therefore we have the following
generalization of Dolbeault cohomology

Hq(X,Ωp(E)) =
ker(Ep,q(X,E)

∂̄E−−→ Ep,q+1(X,E))

im(Ep,q−1(X,E)
∂̄E−−→ Ep,q(X,E))

.

♠

2.4 Čech Cohomology

In this section we will give an outline of Čheck cohomology, for a deeper
treatment the reader may see [8]. Consider a topological space X and sup-
pose that S is a sheaf on X. Let U = {Uα} be a covering of X. A q-simplex
σ, is a ordered collection of q+ 1 elements of the covering U with non empty
intersection, i.e.

σ = (U0, ..., Uq), and

q⋂
i=0

Ui 6= ∅.

The set
⋂q
i=0 Ui is called support of the simplex σ and it will be denoted by

|σ|. A q-cochain of U with coefficients in S is a map f that assigned to every
q−simplex σ,i.e.

f(σ) ∈ S(|σ|).

The set of all q−cochains will be denoted by Cq(U ,S) and is an abelian
group. We define the coboundary operator by:

δ : Cq(U ,S)→ Cq+1(U ,S)

such that, if f ∈ Cq(U ,S), σ = (U0, ..., Uq+1) then

δf(σ) =

q+1∑
i=0

(−1)ir
|σi|
|σ| f(σi).

Where σi = (U0, ..., Ui−1, Ui+1, ..., Uq+1). Moreover, δ is a group homomor-
phism and δ2 = 0. Therefore, we have a cochain complex
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C•(U ,S) = C0(U ,S)
δ−→ C1(U .S)

δ−→ C2(U ,S)
δ−→ ...

The cohomology of that cochain complex defines the Čech cohomology with
coefficients in S, i.e.

Ȟq(U ,S) := Hq(C•(U ,S)) =
ker(δ : Cq(U ,S)→ Cq+1(U ,S))

im(δ : Cq−1(U ,S)→ Cq(U ,S))

Here we present some general properties of Čech cohomology:

• if M is a refinement of U , then there is a natural homomorphism

µUMȞ
q(U ,S)→ Ȟ(M,S),

and

lim−→
U
Ȟq(U ,S) = Ȟ(X,S).

• If U is a covering such that Hq(|σ|,S) = 0 for q ≥ 1, then

Ȟq(X,S) ' Ȟq(U ,S),∀q ≥ 0.

In this case U is called Leray covering.

• If X is paracompact and U is locally finite cover for X, then

Ȟq(U ,S) = 0

for q > 0 and S is a fine sheaf on X.
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Chapter 3

Hermitian Differential
Geometry

In this Chapter, we will see the basic notions of hermitian differential geom-
etry, such as connections, curvature and Chern classes. Henceforth, for the
rest of this discussion, we consider vector bundles with complex fibers over
a smooth manifold X.

3.1 Local representations, Hermitian metrics

Let E → X be a vector bundle of rank r and let f = (e1, ..., er) be a local
frame over the open set U ⊂ X. Consider the smooth map

g : U → GL(r,C),

that acts on the set of local frames above U , by

f 7−→ f · g.

Where that action is defined ∀x ∈ U by

(f · g)(x) := f(x)g(x) =

 r∑
ρ=1

gρ1(x)eρ(x), ...,

r∑
ρ=1

gρ(x)eρ(x)

 .

We can immediately see that, with the above, we obtain another frame above
U. The map g will be called henceforth change of frame. Local frames are
important because give the possibility to locally represent sections of vector
bundles. Namely, let E → X a vector bundle of rank r, consider a section
ξ ∈ E(U,E) and a local frame f = (e1, ..., er) above U. Then, the local
representation of ξ in the frame f is given by
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ξ(f) =

r∑
ρ=1

ξρ(f)eρ, (3.1)

where ξ(f) denotes the section ξ with respect to the frame f , and ξρ(f) are
smooth functions on the open set U. By fixing a frame f above U , we can
think about the local representation of ξ as a map

lf : E(U,E) −→ E(U)r = E(U,U × Cr)

ξ 7−→ lf (ξ) := ξ(f) =


ξ1

ξ2
...
ξr

 .

Consider a change of frame g, then f · g is another frame for EU . Therefore,
the transformation law for (3.1) is given by

ξρ(f · g) =

r∑
σ=1

g−1
ρσ ξ

σ(f),

hence,

ξ(f · g) = g−1ξ(f) ⇔ ξ(f) = gξ(f · g).

Similar consideration can be made also for holomorphic vector bundle. Namely,
given a local frame f over U ⊂ X, where X is a complex manifold, then the
holomorphic representation of a section ξ ∈ O(U,E) with respect to the
local frame f is like in (3.1) where ξρ(f) are holomorphic functions for all
ρ = 1, ..., r.

Definition 3.1. Let E → X be a vector bundle of rank r. A hermitian metric
cosist of

1. an entailment of a hermitian inner product

X 3 x 7→< ·, · >x: Ex × Ex → C, ∀x ∈ X.

2. For every open neighbourhood U ⊂ X and ∀ξ, η ∈ E(U,E) the function

< ξ, η >: U −→ C
x 7−→< ξ(x), η(x) >x

is smooth ∀x ∈ U.
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Moreover, a vector bundle E → X endowed with a hermitian metric is called
hermitian vector bundle and it is denoted by (E, h).

One can think about a hermitian metric as a family of hermitian inner
products smoothly parametrized by points of X. To a given a local frame
f = (e1, ..., er) above an open neighbourhood U ⊂ X for a hermitian vector
bundle (E, h), we can associate a r×r matrix with smooth components with
respect the local frame f:

h(f) = h(f)ρσ =< eρ, eσ > .

The above matrix is positive definite, hermitian and symmetric. In particular
∀ξ, η ∈ E(U,E) we can write

< ξ, η > =<
∑
ρ

ξρ(f)eρ,
∑
σ

ξρ(f)eσ >

=
∑
ρσ

ξρ(f)η̄σ(f) < eρ, eσ >=
∑
ρσ

ξρ(f)η̄σ(f)hρσ(f)

=
∑
ρσ

η̄σ(f)hρσ(f)ξρ(f) = η̄σ(f)hρσ(f)ξρ(f)

=t η̄(f)h(f)ξ(f).

Moreover, if g is a change of frame, then

h(f · g) =t ḡh(f)g. (3.2)

Theorem 3.1.1. Every vector bundle admits a hermitian metric

Proof. Let E → X be a vector bundle of rank r. Choose a open cover
{Uα} for X. Being X paracompact, then we can assume that the chosen
open cover is locally finite. Let {fα} be a family of local frames defined
above Uα,∀α, and define the hermitian inner product hα|Uα as follows: given
ξ, η ∈ Ex, x ∈ Uα

< ξ, η >αx=t η̄(fα)(x)ξ(fα)(x).

Choose some partition of unity {ρ} subordinated to the open cover {Uα},
define

< ξ, η >x=
∑
α

ρα(x) < ξ, η >αx=
∑
α

ρα(x)η̄(fα)(x)ξ(fα)(x).

It is clear that the entailment ∀ξ, η ∈ E(U,E)

x 7→< ξ(x), η(x) >x=
∑
α

ρα(x) < ξ(x), η(x) >αx
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is smooth, since it depents only on smooth quantities. Therefore, h is a
hermitian metric on E → X �

Consider a p-differential form with coefficients in a vector bundle. Consider
a verctor bundle E → X and let

Ep(X,E) = E(X,∧pT ∗X ⊗C E).

We want to find a local representation for a p-form on E.

Lemma 3.1.1. Let E,E′ be vector bundles above X. Then, the following
isomorphism holds

τ : E(E)⊗E E(E
′
)
∼−→ E(E ⊗ E′)

Proof. We define τU on presheaves:

τU : E(U,E)⊗E(U) E(U,E
′
)→ E(U,E ⊗ E′)

by letting

τU (ϕ⊗ ξ)(x) := ϕ(x)⊗ ξ(x) ∈ Ex ⊗ Ex.

Notice that if f = (e1, ..., er) and f ′ = (e
′
1, ..., e

′
r) are two local frames of E

and E′ over U respectively, then ∀γ ∈ E(U,E ⊗ E′) we can write

γ(x) =
∑

αβγαβ(x)eα(x)⊗ e′β(x),

with γαβ ∈ E(U). Therefore, γ ∈ E(U,E) ⊗E(U) E(U,E
′
). Hence, using the

S2 axiom of the definition of sheaf we see that τ is an isomorphism. �

A immediate consequence of the above Lemma is

Corollary 3.1.1. Ep ⊗E E(E) ' Ep(E).

By this corollary we can understand how locally p-forms on E look like.
Henceforth we adopt the following notation τ(ϕ ⊗ ξ) = ϕcdotξ, where ϕ ∈
Ep(X) and ξ is a smooth section of E. Consider an element γ ∈ Ep(U,E), that
means by definition an element of E(U,∧pT ∗X⊗CE). Then, for representing
γ locally, we need a coframe of T ∗X ⊗CE, (ω1, ..., ωs). Therefore ∀x ∈ U we
have

γ(x) =
∑

αβγαβ(x)ωα(x)⊗ eβ(x),

where γαβ ∈ E(U). Clearly we have that γ ∈ Ep(U)⊗E(U)E(U,E). Therefore,
using the notation we have fixed before we have
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γβ =
∑
α

γαβωα

then,

γ =
∑
β

γβ(f) · eβ,

so for a fixed frame f we can define a map like before

lf : Ep(U,E) −→ Ep(U)r

γ 7−→ lf (γ) := γ(f) =


γ1

γ2
...
γr

 .

It can be easily observed that the coefficients γβ does not depend on the
choice of the coframe.

3.2 Connections and Curvature

We begin with the following

Definition 3.2. Let E → X be a vector bundle, then a connection D on E
is a C−linear map

D : E(X,E) −→ E1(X,E),

that satisfies the Leibniz rule: ∀ϕ ∈ E(X), ∀ξ ∈ E(X,E)

D(ϕξ) = dϕ · ξ + ϕDξ.

Remark 3.2.1. In the above definition, if E is the trivial bundle, e.g. E =
X × C then a connection D becomes the exterior derivative. Indeed

E(X,X × C) −−−−→ E(X,T ∗X ⊗C (X × C)

'
x '

x
E(X)

d−−−−→ E(X,T ∗X ⊗ C) ' E1(X)

Hence, we can think about connections as the generalization of the exterior
derivative.
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We give now a local representation of a connection D. Let E → X a vector
bundle and D a connection on E. Consider a local frame f = (e1, ..., er)
above an open neighbourhood U ⊂ X. We define the connection matrix
with respect to the chosen frame

θ(D, f) = (θρσ(D, f)), θρσ ∈ E1(U).

This matrix can be defined by the action of the connection D on an element
of the frame. Namely,

Deσ =
r∑

ρ=1

θρσ(D, f)eρ.

For notational brevity, in order to indicate the connection matrix with re-
spect to the frame f we simply write

θ(D, f) = θ(f).

Let ξ ∈ E(U,E), then with respect to a local frame f above U we get

ξ(f) =
r∑

ρ=1

ξρ(f)eρ,

we can now apply the connection D and have

Dξ = D(
∑
ρ

ξρ(f)eρ) =
∑
ρ

Dξρ(f)eρ

=
∑
ρ

(dξρ(f)eρ + ξρ(f)Deρ)

=
∑
ρ

(
dξρ(f)eρ + ξρ(f)

∑
σ

θρσ(f)eσ

)

=
∑
σ

(
dξσ(f) +

∑
ρ

ξρ(f)θρσ(f)eσ

)
· eσ

=
∑
σ

(dξ(f) + ξ(f)θ(f)) · eσ.

We see that if we perform the sum in σ we have

Dξ = dξ(f) + θ(f)ξ(f) = (d+ θ(f))ξ(f).

Therefore, we can think about (d + θ(f)) as an operator that acts on the
smooth vector valued functions.
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3.2.1 Intermezzo: the local representation of a p-form with
values in End(E).

Let E → X be a vector bundle of rank r, consider the End-bundle and
the sheaf of differential p-forms on that bundle Ep(X,End(E)). Let χ ∈
E(X,End(E)). We want to find a local representation of χ. To do so, let
f = (e1, ..., er) be a local frame above a open neighbourhood U ⊂ X, then
we have a basis for the free E(U)-module:

Ep(U,End(E)) ' Ep(U)⊗E(U) E(U,End(E).

We know that given a local trivialization, is equivalent to give a local frame.
Then, we have the following isomorphism

E(U,E) 'Mr(U) =Mr ⊗C E(U),

whereMr(U) are r × r matrices with coefficients in E(U). Therefore,

Ep(U,E(E)) ' Ep(U)⊗E(U)Mr(U).

That means, given a trivialization, to the chosen element χ we have a matrix
with respect to the frame f , i.e.

χ(f) := (χ(f)ρσ, where χ(f)ρσ ∈ Ep(U).

Hence, we have a globally defined homomorphism of vector bundles:

χ : E(X,E)→ Ep(X,E),

and locally we have the following commutative diagram

E(U,E)
χ−−−−→ Ep(U,E)

'
y '

y
E(U,E)r

χ(f)−−−−→ Ep(U,E)r

Where, the map χ(f) is defined as

E(U,E)r 3 ξ(f) 7→ χ(f)ξ(f) = η(f)

with coefficients

ηρ(f) =
∑
σ

χ(f)ρσξ
σ(f).

If we perform a change of frame g, then χ(f) follows the following transfor-
mation rule
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η(f · g) = g−1η(f) = g−1χ(f)ξ(f)

= χ(gf)ξ(gf) = χ(gf)g−1ξ(f)

⇒ g−1χ(f)ξ(f))χ(gf)g−1ξ(f)

⇒ χ(gf) = g−1χ(f)g.

Conversely, at every matrix of a p-form χ(f) is defined for all frame f , this
determines completely the element χ ∈ Ep(X,End(E)). ♠
The aim of the previous subsection is to consistently introduce the curvature
operator of a connection D defined on a vector bundle. Consider a vector
bundle E → X of rank r and let D be a connection on E. We want to show
that D induces naturally an element

ΘE(D) ∈ E2(X,End(E))

to be called curvature tensor. Let f be a local frame above U , like before.
Define

Θ(f) = Θ(D, f) := dθ(f) + θ(f) ∧ θ(f)

This is the curvature matrix associated to the connection D with respect to
the local frame f. This is a 2-form matrix r × r :

Θρσ = dθρσ +
∑
k

θρk ∧ θkσ

Lemma 3.2.1. Let g be a change of frame and Θ(f) like above. Then the
following facts hold

(a.) dg + θ(f)g = gθ(fg)

(b.) Θ(fg) = g−1Θ(f)g

Proof. (a.) By a change of frame we get another frame, i.e.

fg =
(∑

gρ1eρ, ...,
∑

gρrer

)
= (e

′
1, ..., e

r
r).

Then, we get

De
′
r =

∑
ν

θνσ(fg)e
′
ν =

∑
νρ

θνσ(fg)gρσeρ = gθ(fg).

On the other hand we have that
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De
′
r = D(

∑
ρ

gρσeρ) =
∑
ρ

(dgρσeρ + gρσDeρ)

=
∑
ρ

(
dgρσeρ +

∑
τ

gρσθρτeτ

)
=
∑
τ

(
dgρτ +

∑
ρ

gρσθρτ

)
eτ

= dg + θ(f)g.

Therefore, putting all together we get

dg + θ(f)g = gθ(fg) = gθ(fg),

so (a.) holds. Now we prove (b.) by applying the exterior differential to (a.)

dg ∧ θ(fg) + gdθ(fg) = dθ(f)g − θ(f) ∧ dg.

Introduce in the above

θ(fg) = g−1dg + g−1θ(f)g.

We then get an algebraic expression for gdθ(fg), in terms of the quantities
dθ(f), θ(f), dg, g and g−1. Then we write

g(dθ(fg) + θ(fg) ∧ θ(fg).

With the same previous quantities and simplifying we have

(dθ(fg) + θ(fg) ∧ θ(fg))g,

so by combining these two results we obtain (b.). �

Lemma 3.2.2. (d+ θ(f))(d+ θ(f))ξ(f) = Θ(f)ξ(f).

Proof.

(d+ θ) · (d+ θ)ξ = (d2 + θd+ d · θ + θ ∧ θ)ξ
= d2ξ + θ ∧ dξ + d(θ · ξ) + θ ∧ θ · ξ
= θ ∧ dξ + dθ · ξ − θ ∧ dξ + θ ∧ θ · ξ
= (dθ + θ ∧ θ)ξ
= Θ · ξ.

�
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Definition 3.3. Let D be a connection on a vector bundle E → X. Then
the curvature ΘE(D) is defined as the element Θ ∈ E2(X,End(E)) such that
the C−linear map

Θ : E(X,E) −→ E(X,E)

has the following local representation with respect to a frame f of E

Θ(f) = Θ(D, f) = dθ(f) + θ(f) ∧ θ(f).

Remark 3.2.2. Because of assertion (b.) of Lemma 3.2.1 we see that ΘE(D)
is well defined, and because of the previous intermezzo we immediately see
that it is an element of E2(X,End(E))

We can extend the action of a connection D, defined on a vector bundle
E → X, to differential form of arbitrary degree by letting

Dξ(f) = dξ(f) + θ(f) ∧ ξ(f), where ξ ∈ Ep(X,E).

Then, the map

D : Ep(X,E) −→ Ep+1(X,E)

is well defined. We should check that by a change of frame we still get a
(p+ 1)−form E-valued.

g(dξ(fg) + θ(fg)ξ(fg)) = d(gξ(fg))− dg · ξ(fg) + g−1(dg + θ(f)g) ∧ ξ(f)

= d(gg−1ξ(f))− dg · ξ(fg) + g−1dgξ(f) + θ(f) ∧ ξ(f)

= dξ(f)− g−1dgξ(f) + g−1dgξ(f) + θ(f) ∧ ξ(f)

= dξ(f) + θ(f) ∧ ξ(f).

The operator D : Ep(X,E) −→ Ep+1(X,E) such that Dξ(f) = dξ(f) +
θ(f) ∧ ξ(f), is called covariant derivative.

Proposition 3.2.1. In the above situation D2 = Θ as an operator that maps
Ep(X,E) to Ep+2(X,E).

Proof. This is a direct computation, indeed

D2ξ(f) = D(Dξ(f)) = D(dξ(f) + θ(f) ∧ ξ(f))

= d(dξ(f) + θ(f) ∧ ξ(f)) + θ(f) ∧ (dξ(f) + θ(f) ∧ ξ(f))

= d2ξ(f) + dθ(f) ∧ ξ(f)− θ(f) ∧ dξ(f) + θ(f) ∧ dξ(f) + θ(f) ∧ θ(f) ∧ ξ(f)

= (dθ(f) + θ(f) ∧ θ(f)) ∧ θ(f) = Θ(f)ξ(f).

⇒ D2 = Θ.
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By previous proposition we see that the curvature represent the obstruction
to the sequence

E(X,E)
D−→ E1(X,E)

D−→ E2(X,E)
D−→ ...

to be a chain complex.
The differential forms Ep(X,End(E)) are locally matrices of p-forms, we
want to use this fact to define a Lie bracket. To do so, we proceed as follows:
consider χ ∈ Ep(X,End(E)), and a frame f above the open neighbourhood
U ⊂ X. As we have already seen, χ(f) is an element ofMr ⊗C Ep(U), and
then if ψ ∈ Eq(X,End(E)) we define

[χ(f), ψ(f)] = χ(f) ∧ ψ(f)− (−1)p·qψ(f) ∧ χ(f).

If g is a change of frame then it is easy to verify that

[χ(fg), ψ(fg)] = g−1[χ(f), ψ(f)]g

That brackets satisfy the Lie algebra axioms, see [insert biblio], and then
E•(X,End(E) becomes a differential graded Lie algebra.

Proposition 3.2.2. (Bianchi’s identity) dθ(f) = [Θ(f), θ(f)]

Proof. We know that Θ = dθ + θ ∧ θ, we can then compute

dΘ = d2θ + dθ ∧ θ − θ ∧ dθ,

and

[Θ, θ] = [dθ + θ ∧ θ, θ] = [dθ, θ] + [θ ∧ θ, θ]
= dθ ∧ θ − θ ∧ dθ + θ ∧ θ ∧ θ − θ ∧ θ ∧ θ.
⇒ dΘ = [Θ, θ].

�

Definition 3.4. Let E → X be a hermitian vector bundle with hermitian
metric h, endowed with a connection D. We say that the connection D is
h−compatible if ∀ξ, η ∈ E(X,E) we have

d < ξ, η >=< Dξ, η > + < ξ,Dη > .
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Consider a hermitian vector bundle E → X with hermitian metric h and
connection D. Let f = (e1, ..., er) be a frame above U , denote by h(f) = h
and θ(f) = θ the metric and the connection matrices respectively. Then we
have the following

Proposition 3.2.3. D is h−compatible ⇔ dh = hθ +t θ̄h

Proof. (⇒)

dhρσ = d < eσ, eρ >=< Deσ, eρ > + < eσ, Deρ >

=< eσ,
∑
µ

θµρeµ >=
∑
τ

θτσ < eτ , eρ > +
∑
µ

θ̄τσ < eτ , eρ >

=
∑
τ

θτσhρτ +
∑
µ

θ̄τσhτρ = (hθ)ρσ + (tθ̄h)ρσ

⇒ dh = hθ +t θ̄h.

(⇐) Assume that dh = hθ +t θ̄h, then the claim holds by the following
computation

d < ξ, η > = d(tη̄hξ) =t (dη̄)hξ +t η̄dhξ +t ξ̄hdξ

=t (dη̄)hξ +t η̄(hθ +t θ̄h)ξ +t η̄hdξ

=t (dη̄)hξ +t η̄hθξ +t η̄tθ̄hξ +t η̄hdξ

=t (dη̄)hξ +t η̄hθξ +t (θ̄η)hξ +t η̄hdξ

=t (dη̄ + θ̄η)hξ +t η̄h(θξ + dξ)

=< ξ,Dη > + < Dξ, η >

That means, D is h-compatible. �

Theorem 3.2.1. Let E → X be a hermitian vector bundle. Then there exist
a connection D which is h-compatible.

Proof. Having a hermitian metric, is always possible to construct a unitary
local frame f , by using the Gram-Schmidt process. Let f be a local unitary
frame above U , let {Uα} be a locally finite open cover of X and {fα} a
family of unitary frames defined on every Uα. If we could locally define a
h-compatible connection, then by previous proposition then we would have
h = I, dh = 0 and θ = −tθ̄, i.e. θ is skew-hermitian. Then, above every Uα
we can take θα = 0, i.e. θ(fα) = 0. If g is a change of frame above fα, then
by Lemma 3.2.1 we have

g−1dg = θ(fαg).
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And, notice that

h(fαg) =t ḡh(fα)g =t ḡg.

So we have

dh(fαg) = d(tḡg) = d(tḡ)g +t ḡdg

=t θ̄(fαg)h(fαg) + h(fαg)θ(fαg).

Then, by previous proposition, we have a natural h-compatible connection
on every Uα

(Dαξ)(fα) = dξ(fα).

Let {ϕ} be a partition of unity subordinated to {Uα}. Define

D =
∑
α

ϕαDα,

this is a connection on E → X. Is left to show that D is h-compatible:

< Dξ, η > + < ξ,Dη > =
∑
α

ϕα(< Dαξ, η > + < ξ,Dαη >)

=
∑
α

ϕαd < ξ, η >= d < ξ, η > .

�

3.3 Canonical Connection and Curvature for Holo-
morphic Verctor Bundles

Let E → X be a holomorphic vector bundle on the complex manifold X. If E
as a smooth vector bundle has a hermitian metric, then this latter together
with the hermitian metric is called hermitian holomorphic vector bundle.
Recall that

E•(E) =
⊕
r

Er(E) =
⊕
p,q

Ep,q(E),

where Ep,q(E) = E(X,∧p,qT ∗X ⊗C E). Because of Corollary 3.1.1 we have
that Ep,q(E) ' Ep,qX ⊗EX E(E). Then, a connection on the given holomorphic
hermitian vector bundle will be
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D : E(X,E)→ E1(X,E) = E1,0(X,E)⊕ E0,1(X,E).

That means D = D
′
+D

′′
, where D′ : E(X,E)→ E1,0(X,E), and

D
′′

: E(X,E)→ E0,1(X,E).

Theorem 3.3.1. Let E → X be a holomorphic hermitian vector bundle, with
hermitian metric h. Then h induces a connection D(h) on E, that satisfies,
in all open neighbourhood W ⊂ X, the following conditions

(a) ξ, η ∈ E(W,E), d < ξ, η >=< Dξ, η > + < ξ,Dη > .

(b) ξ ∈ O(W,E) ⇒ D
′′
ξ = 0.

Proof. The condition (b) can be equivalently formulated by saying that
the connection matrix, with respect to a holomorphic frame f , is of type
(1, 0). Indeed, for a section ξ ∈ O(W,E) we have:

Dξ(f) = (d+ θ(f))ξ(f) = (∂ + θ1,0(f))ξ(f) + (∂̄ + θ0,1(f))ξ(f).

By assumption, the section ξ is holomorphic. Therefore, ∂̄ξ(f) = 0. Hence,

D
′′
ξ(f) = θ0,1(f)ξ(f).

Suppose to have a connection that satisfies (a) and (b). Let f be a holo-
morphic frame above the open neighbourhood U ⊂ X. Because of condition
(a), D is h−compatible, therefore by Proposition 3.2.3 dh = hθ +t θ̄h. For
condition (b), we have ∂h = hθ, and ∂̄h =t θ̄h. Therefore,

θ = h−1∂h. (3.3)

We define θ like in (3.3) and we show that by a change of frame g the
condition (a.) of Lemma 3.2.1 holds, it will follow that θ is the desired
connection. Firstly, we observe that

h(fg) =t ḡh(f)g ⇒ h−1(fg) = g−1h(f)−1(tḡ)−1.

Then, by writing g† =t ḡ

θ(fg) = h−1(fg)∂h(fg) = g−1h(f)−1(g†)−1∂(g†h(f)g)

= g−1h(f)−1(g†)−1(∂g†h(f)g + g†∂h(f)g + g†h(f)∂g)

= g−1h(f)−1∂h(f)g + dg = θ(f)g + dg.

Hence, θ has the desired properties. �
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In the proof of previous theorem, we see that the local expression for the
canonical connection, in a holomorphic hermitian vector bundle, is the fol-
lowing

θ(f) = h(f)−1∂h(f)

with respect to a holomorphic frame f. Moreover

D
′

= ∂ + θ(f) and D
′′

= ∂̄.

Furthermore, it is clear from the construction that the canonical connection
is uniquely determined.

Proposition 3.3.1. Let D be a canonical connection in a holomorphic vector
bundle E → X. Let θ(f) and Θ(f) be the connection and curvature matrices
respectively, with respect to a holomorphic frame f. Then, it follows that

1. θ(f) is of type (1,0) and ∂θ(f) = −θ(f) ∧ θ(f).

2. Θ(f) = ∂̄θ(f) and Θ(f) is of type (1,1).

3. ∂̄Θ(f) = 0 and ∂Θ(f) = [Θ(f), θ(f)].

Proof. For notational brevity let h(f) = f and θ(f) = θ. By previous
discussions we see that θ = h−1∂h is of type (1,0). Then we have

∂θ = ∂h−1∂h = ∂h−1 ∧ ∂h+ h−1∂2h

= (−h−1∂hh−1) ∧ ∂h = −h−1∂h ∧ h−1∂h

= −θ ∧ θ.

That proves the first assertion. For the second assertion, we have directly
from 1.

Θ(f) = Θ = dθ + θ ∧ θ
= dθ − ∂θ = (∂ + ∂̄)θ − ∂θ = ∂̄θ.

It is now clear that Θ is of type (1,1). The third assertion follows easily from
2. and from the Bianchi’s identity. �

Consider a holomorphic vector bundle E → X of rank r. Let p ∈ X and
f = (e1, ..., er) a holomorphic local frame near p. Choose some coordinates
of point p such that (z1, ..., zn) = z = 0 at p. In order to indicate the
dependence on z we write
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f(z) = (e1(z), ..., er(z)).

So, if h is a hermitian metric for the considered vector bundle we have, in
the above notation, that

h(z) = h(f(z))

near z = 0.

Lemma 3.3.1. In the above situation, there exists a holomorphic frame such
that

a. h(z) = I +O(|z|2),

b. Θ(0) = ∂̄∂h(0).

Proof. Notice that if a. holds then b. follows. Indeed, observe that
h−1(z) = I +O(|z|2). By Proposition 3.3.1 whe have

Θ(z) = ∂̄θ(z) = ∂̄h−1(z)∂h(z)

= ∂̄(I +O(|z|2))∂h(z) = ∂̄∂h(z)

⇒ Θ(0) = ∂̄∂h(0).

Now, we prove the first assertion. Observe that h(0) is a hermitian positive
matrix, then there exists a g ∈ GLr(C) such that tḡh(o)g = I. Furthermore,
g induces a change of frame, i.e. f 7→ f ·g := f̃ . Therefore, ĥ(z) = h(f̃(z)) =
h(fg) =t ḡhg. implies

ĥ(z) = I +O(|z|2) (3.4)

Suppose that h(z) satisfies (3.4). Consider a change of frame of the following
type

g = I +A(z),

where A(z) =
(∑

j A
j
ρσzj ,

)
and A(0) = 0. Then, this change of frame

preserves (3.4) if we choose A(z) such that

h̃(z) =t ḡ(z)h(z)g(z) = I +O(|z|2). (3.5)

Because of Taylor expansion, dh̃(0) = 0. Then we have

dh̃(z) = dh(z) + dtĀ(z) · h(z) + h(z)dA(z) +O(|z|2)

dh̃(0) = ∂h(0) + dtĀ(0) + dA(0) + ∂̄h(0).
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Then, we choose A(z) as follows

dA(0) = −∂h(0), d ¯tA(0) = −∂̄h(0).

Hence, (3.5) holds. �

The previous Lemma asserts that we can easily calculate the curvature Θ
in a particular point by choosing the right frame. In the following example
we show how we can calculate connection and curvature for a holomorphic
vector bundle.

Example 3.3.1. Consider the Universal Bundle Ur,n → Gr,n. A frame for
this bundle consist of a open neighbourhood U ⊂ Gr,n and smooth functions

ej : Uj → Cn, such that e1 ∧ ... ∧ er 6= 0.

Then, a frame f = (e1, ..., er) could be interpreted as a n×r that has smooth
functions as coefficients, namely ej , j = 1, ..., r are its column. f has maximal
rank ∀z ∈ U. A holomorphic frame would simply have holomorphic function
as coefficients. We defina a metric h(f) =t f̄f , for all frames f of Ur,n. That
metric comes from the fact that Ur,n sits in the trivial bundle Gr,n × Cn,
therefore we obtain a hermitian metric on Ur,n simply by restricting the
canonical hermitian metric on Cn to the fibers of Ur,n → Gr,n. Since f has
maximal rank, then h(f) has maximal rank. Indeed,

tz̄h(f)z =t z̄tf̄fz =t (f̄ z)(fz) = |fz|2 > 0, for z 6= 0.

Moreover, if g is a change of frame, we have

h(fg) =t (f̄g)(fg) =t ḡtf̄fg =t ḡh(f)g.

Hence, h is a well defined hermitian metric on the considered vector bundle.
Now we can calculate the connection and the curvature with respect to the
metric h. Computations shows that the canonical connection is given by

θ(f) = θ = h−1(f)∂h(f).

Therefore, by Proposition 3.3.1 we have

Θ = Θ(f) = ∂̄θ = h−1 ·t d̄f ∧ df − h−1 ·t d̄f · f · h−1 ∧t f̄ · df.

For r = 1 we can obtain a more explicit formula for the curvature. Indeed,
if ϕ ∈ [Ep(W )]n, ψ ∈ [Eq(W )]n, for W ⊂ Cn, we let

< ϕ,ψ >= (−1)pq ·t ψ̄ ∧ ϕ.

Then, the curvature form becomes
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Θ(f) = −< f, f >< df, df > − < df, f > ∧ < f, df >

< f, f >2
(3.6)

where f is a holomorphic frame for U1,n. If f = (ξ1, ..., ξn), where ξj ∈ O(U),
td̄f = (dξ̄1, ..., dξ̄n), we obtain

Θ(f) = −
|f |2

∑n
i=1 dξi ∧ dξ̄i −

∑n
ij=1 ξ̄iξjdξi ∧ dξ̄j

|f |4
(3.7)

ξ1, ..., ξn are the functions with respect the local coordinates of G1,n = Pn−1.

3.4 Chern Classes

The Chern Classes of a smooth vector bundle E → X, over a complex man-
ifold X are a very important invariant that in some peculiar cases permits
to classify the class of vector bundles above X. In order to introduce sistem-
atically this argument, we need a brief digression.

3.4.1 Linear Intermezzo

Consider the space of matricesMr. A k-linear form is a mapping

ϕ̃ :Mr × ...×Mr︸ ︷︷ ︸
k -times

−→ C,

linear in each argument. We say that ϕ̃ is invariant if ∀g ∈ GLr(C) we have
that

ϕ̃(gA1g
−1, ..., gAkg

−1) = ϕ̃(A1, ..., Ak).

Denote by Ĩk(Mr) the space of k-invariant forms ofMr.

Example 3.4.1. Let k = 1, consider the determinant function

det : Mr → C.

It is clear that det ∈ Ĩ1(Mr). Indeed, for the Binet’s rule, for every g ∈
GLr(C), and forall A ∈Mr, we have

det(g−1Ag) = det(gg−1) det(A) = det(A).

Given any ϕ̃ ∈ Ĩr(Mr), we can induce a map ϕ : Mr → C, by taking the
diagonal, i.e.

ϕ̃(A, ..., A) := ϕ(A).

We see that ϕ(A) is a complex number and ϕ is a homogeneous polynomial
of degree k. In particular, ϕ is also invariant. Indeed, ∀g ∈ GLr(C)
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ϕ(gAg−1) = ϕ̃(gAg−1, ..., gAg−1) = ϕ̃(A, ..., A) = ϕ(A).

Denote by Ik(Mr) the space of invariant homogeneous polynomial of degree
k.

Example 3.4.2. The determinant function on previous example is clearly
an element of Ir(Mr). Now, let A ∈M2 and observe that

det(I +A) = det

(
x+ 1 y
z t+ 1

)
= 1 + t+ x+ tx− zy.

Denote by Φ0(A) = 1, Φ1(A) = t+ x, Φ2(A) = tx− zy. Then

det(I +A) =
2∑

k=0

Φk(A),

where Φk(A) are homogeneous polynomial of degree k. Moreover, arguing
by induction, it can be shown that for every A ∈ Mr we have the so called
determinant formula:

det(I +A) =
r∑

k=0

Φk(A).

♠

3.4.2 Invariant Polynomial on E•(End(E))

Let E → X be a vector bundle of rank r.We now want to extend an element
ϕ ∈ Ik(Mr) to an element of E•(End(E)). Recall that, we have the following
isomorphism:

Ep(End(E)) 'Mr ⊗E Ep.

Let U ⊂ X be an open set, we define the extension of ϕ on Mr(U) ⊗E(U)

Ep(U) by

ϕU (A1w1, ..., Akwk) = w1 ∧ ... ∧ wkϕU (A1, ..., Ak),

where Aiwi ∈Mr(U)⊗E(U) Ep(U), i = 1, ..., k. This is a k-form onMr⊗Ep.
Let ξj ∈ Ep(End(E)), j = 1, ..., k and write

ϕU (ξ1, ..., ξk) := ϕU (ξ1(f), ..., ξk(f)),

where f is a frame above U.We can easily see that the above does not depend
on the choice of the frame f. Indeed, for any change of frame g ∈ GL(r,C)
we find
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ϕU (ξ1(fg), ..., ξk(fg)) = ϕU (g−1ξ1(f)g, ..., g−1ξk(f)g)

= ϕU (ξ1(f), ..., ξk(f)).

Therefore, because of this invariance, we obtain the invariance of ϕ on all
X:

ϕx : Ep(End(E))× ...× Ep(End(E))→ Epk(X)

so, the invariant polynomial is defined: ϕx(ξ, ..., ξ) = ϕX(ξ), as a map we
have

ϕX : Ep(X,End(E))→ Epk(X).

Consider a connection D on the given vector bundle. As we have previ-
ously seen, to a connection D we can associate a curvature, i.e. a element
ΘE(D) ∈ E2(End(E)). Therefore, because of previous discussion we see that
ϕX(ΘE(D)) is a global 2k-form on X. ♠
In order to introduce the Chern classes for a vector bundle E → X of rank
r, we need the following result

Theorem 3.4.1. (Weil) Let E → X be a vector bundle and D be a connec-
tion on E. Consider a invariant polynomial ϕ ∈ Ik(Mr) like before. Then

(a) ϕX(ΘE(D)) is closed

(b) The image of ϕX(ΘE(D)) in H2k(X,C) does not depend on D.

In order to prove the above theorem we require two Lemmas

Lemma 3.4.1. Every ϕ ∈ Ik(Mr) satisfies the following equality∑
j

ϕ(A1, ..., [Aj , B], ..., Ak) = 0, ∀Aj , B ∈Mr.

Proof. We restrict the proof when k = 2, since the generalization will be
rather immediate. Recall that from the Baker-Campbell-Hausdorff formula
[isert biblio] we have that

e−tBAetB −A = t[A,B] +O(|t|2).

Here A,B are r × r matrices. Consider ϕ ∈ I2(Mr). Directly from the
invariance of ϕ we have that

ϕ(e−tBA1e
tB, e−tBA2e

tB)− ϕ(A1, A2) = 0.

We now add and subtract the term ϕ(e−tBA1e
tB, A2) to the previous relation

and we get
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ϕ(e−tBA1e
tB, e−tBA2e

tB −A2) + ϕ(e−tBA1e
tB −A1, A2) = 0.

That means,

ϕ(e−tBA1e
tB, t[A2, B] +O(|t|2)) + ϕ(t[A,B] +O(|t|2), A2) = 0.

Using the invariance of ϕ we have

ϕ(A1, t[A2, B]) + ϕ(t[A1, B], A2) +O(|t|2) = 0,

t(ϕ(A1, [A2, B]) + ϕ([A1, B], A2)) +O(|t|2) = 0, t 6= 0

Hence,

ϕ(A1, [A2, B]) + ϕ([A1, B], A2) =
2∑
j=1

ϕ(A1, [Aj , B]) = 0.

The general case can be obtained like the case when k = 2 adding and
subtracting some k − 1 terms from the difference

ϕ(e−tBA1e
tB, ..., e−tBAke

tB)− ϕ(A1, ..., Ak).

�

Lemma 3.4.2. Let Dt be a one parameter family of connections on E. ∀t ∈
R consider the one parameter family of induced curvatures Θt. Then ∀ϕ ∈
Ik(Mr) we have that

ϕX(Θb)− ϕX(Θa) = d(

∫ b

a
ϕ′(Θt, Ḋt)dt),

where ϕ′(ξ, η) =
∑

α ϕ(ξ, ξ, ..., ξ, η, ξ, ..., ξ), for ξ, η ∈ E•(X,End(E)).

Proof. Sufficies to prove that for a frame f above an open set U ⊂ X we
have

ϕ̇U (Θ) = dϕ′(Θ, θ̇),

where Θ = Θt(Dt, f), θ = θ(Dt, f).

dϕ′U (Θ, θ̇) = d

(∑
α

ϕU (Θ, ..., θ̇, ...,Θ)

)

=
∑
α

(∑
i<α

ϕU (Θ, ..., dΘ, ..., θ̇, ...,Θ) + ϕU (Θ, ..., dθ̇, ...,Θ)−
∑
i>α

ϕU (Θ, ..., θ̇, ..., dΘ, ...,Θ)

)
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By adding and subtracting
∑

α ϕU (Θ, ..., [θ̇, θ], ..., θ), to the previous relation,
and by observing that Θ̇ = dθ̇+ [θ̇, θ], and dΘ = [Θ, θ], we easily obtain the
claim. �

Proof. (of Theorem 3.4.1.) Using Lemma 3.4.1 we can easily obtain (a).
Indeed,

dϕU (Θ) = dϕU (Θ, ...,Θ) =
∑

ϕU (Θ, ..., dΘ, ...,Θ)

=
∑

ϕU (Θ, ..., [Θ, θ], ...,Θ) = 0.

For part (b) we use Lemma 3.4.2. Indeed, let D1 and D2 be connections for
E → X. Then set

Dt = tD1 + (1− t)D2.

That is clearly a one parameter family of connections, then from Lemma
3.4.2 the claim holds immediately. �

3.4.3 The definition of Chern Classes and their properties

Consider invariant polynomials defined by the equation

det(I +A) =

r∑
k=0

Φk(A).

Definition 3.5. Let E → X be a vector bundle of rank r endowed with a
connection D. The k-th Chern form of E with respect to the connection D
is defined as

ck(E,D) = (Φk)X

(
i

2π
ΘE(D)

)
∈ E2k(X). (3.8)

The total Chern form of E with respect to the connection D is defined as

c(E,D) =

r∑
k=0

ck(E,D). (3.9)

The k-th Chern Class of E is denoted by ck(E), is the cohomology class of
(3.8) in H2k(X,C. The total Chern Class is denoted by c(E) and is the
cohomology class of (3.9) in H•(X,C, i.e. c(E) =

∑r
k=0 ck(E).
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Remark 3.4.1. For the Weil’s theorem (Theorem 3.4.1) we see that Chern
classes are well defined and are independent on the choice of the connection
D. Therefore, the Chern classes are cohomology classes associated to the
base manifold of a vector bundle. Roughly speaking, Chern classes tells how
a vector bundle fails to be the trivial bundle.

In the following we will explore the basic properties of Chern classes.

Proposition 3.4.1. Let D be a h−compatible connection for the hermitian
vector bundle E → X, with hermitian metric h. Then the Chern form is a
differential real form, and it follows that c(E) ∈ H•(X,R) under the canon-
ical inclusion of cohomology rings

H•(X,C) ↪→ H•(X,C).

Proof. It sufficies to prove the assertion on a local frame f using the matrix
representations. Denote by h(f) = h, θ(f) = θ and Θ(f) = Θ the hermitian
metric matrix, the connection matrix and the curvature matrix respectively.
Being D h−compatible by assumprion, then dh = hθ +t θ̄h. Applying the
exterior differential to this latther we find that

0 = dh ∧ θ + hdθ + dtθ̄h−t θ̄ ∧ dh
= (hθ +t θ̄h) ∧ θ + hdθ + dtθ̄h−t θ̄ ∧ (hθ +t θ̄h)

= h(dθ + θ ∧ θ) + (dθ̄ +t θ̄ ∧t θ̄)h
= hΘ +t Θ̄h.

Therefore, if f is a unitary frame then, by the previous computations, we
see that Θ is skew-hermitian. Let c = c(E, f,D) = det

(
I + i

2πΘ
)
, we have

that

det

(
h+

i

2π
Θh

)
= det

(
I +

i

2π
Θ

)
deth = c · deth

det

(
h− i

2π
Θh

)
= det

(
I − i

2π
Θ

)
deth = c̄ · deth.

But, det
(
h+ i

2πΘh
)

= det
(
h− i

2πΘh
)
, then c = c̄, that is c is real. �

In the following, we explore the functorial properties of Chern classes.

Theorem 3.4.2. Let E,E′ be vector bundles above a smooth manifold X.

1. if ϕ : Y → X is a smooth map, then

c(ϕ∗E) = ϕ∗c(E).
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2. c(E ⊕ E′) = c(E) · c(E′).

3. c(E) depends only on the isomorphism classes of E.

4. If E∗ is the dual bundle, then

cj(E
∗) = (−1)jcj(E).

Proof. (1) Let D be any connection on E → X. To prove the first assertion
it will be sufficient to prove that ϕ∗Θ(D) = Θ(D∗), where D∗ denotes the
connection on ϕ∗E. Firstly, we define the connection D∗. To do so, let
f = (e1, ..., er) be a frame above U, then f∗ = (e∗1, ..., e

∗
r , with e∗i = ei ◦ ϕ is

a frame above ϕ−1(U). If g is a change of frame on U , then g∗ = g ◦ ϕ is a
change of frame on ϕ−1(U). Define

θ∗(f∗) = ϕ∗θ(f).

This is the desired connection since it verifies the condition (a) of Lemma
3.2.1. Therefore the curvature is given by

Θ(D∗, f∗) = dθ∗(f∗) + θ(f∗) ∧ θ(f∗) = dϕ∗θ(f) + ϕ∗θ(f) ∧ ϕ∗θ(f)

= ϕ∗(dθ(f) + θ(f) ∧ θ(f)) = ϕ∗Θ(D, f).

(2) Let D and D′ connections on E and E′ respectively. Define on a frame
f above U the matrix connection for E ⊕ E′

θ⊕(f) =

(
θ(f) 0

0 θ′(f)

)
.

We now prove that the above is a connection. Let g be a change of frame,
then we have

gθ⊕(fg) = g

(
θ(fg) 0

0 θ′(fg)

)
=

(
gθ(f) 0

0 gθ′(f)

)
=

(
dg + θ(f)g 0

0 dg + θ′(f)g

)
=

(
dg 0
0 dg

)
+

(
θ(f) 0

0 θ′(f)

)
g = dgI2r + θ⊕(f)g.

We see that condition (a) of Lemma 3.2.1 is satisfied so the above defines
globally a connection. Therefore, the connection will be defined as

Θ⊕ =

(
Θ(f) 0

0 Θ′(f)

)
.
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C(E ⊕ E′, D⊕)U = det

(
I +

i

2π
Θ⊕
)

= det

(
I + i

2πΘ 0
0 I + i

2πΘ′(f)

)
= det

(
I +

i

2π
Θ

)
· det

(
I +

i

2π
Θ′
)

= c(E,D)U · c(E′, D′)U .

For Weil’s theorem Chern classes do not depend on D, hence the second
assertion follows.
The third assertion is rather obvious, so we prove directly the last assertion.
Let f be a frame and f∗ be its dual frame. We define the dual connection as

θ∗ = θ∗(D∗, f∗) = −tθ(D, f).

We shall verify that for g∗ =t (g−1) change of frame, the condition (a) of
Lemma 3.2.1 holds.

θ∗(f∗g∗) = (g∗)−1dg∗ + (g∗)−1θ∗(f∗)g∗

is true if and only if

−tθ(fg) =t gdtg−1 −t g ·t θ(f)tg−1

By taking the transpose of the obove we have

−θ(fg) = gdg−1 − gθ(f)g−1.

Observe that dg−1 = −g−1dgg−1. Therefore,

−θ(fg) = −gg−1dgg−1 − gθ(f)g−1

Hence,

θ(fg) = g−1dg + gθ(f)g−1

which is true. We calculate the curvature

Θ∗ = dθ∗ + θ∗ ∧ θ∗ = −dtθ +t θ ∧t θ
= −dtθ −t (θ ∧ θ) = −t(dθ + θ ∧ θ) =t Θ.

Hence, the Chern class s given by
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ck(E
∗, D∗)|U = Φk

(
− i

2π

t

Θ

)
= Φk

(
− i

2π
Θ

)
= (−1)kΦk

(
i

2π

t

Θ

)
= (−1)kck(E,D)|U .

�

The next result will tell about the geometrical intuition behind Chern classes.

Theorem 3.4.3. Let E → X be a vector bundle of rank r. Then,

a. c0(E) = 1.

b. If E ' X × Cr, then cj(E) = 0 for j = 1, ..., r.

c. If E ' E′⊕Ts, where Ts is the trivial bundle of rank s, then cj(E) = 0
for j = r − s+ 1, ..., r.

Proof. The first assertion follows immediately from the definition of Chern
class. For assertion b if E is the trivial bundle, then E(E) ' E(X,X×Cr) '
E(X)r. The connection is given by the exterior derivative, therefore θ = Θ =
0. Hence,
c(E,D) = det(I + 0) = 1 ⇒ cj(E,D) = 0, for j > 0.
For assertion c. we use the functoriality of Chern classes explained in the
previous theorem, and the just proven point b.

c(E′ ⊕ Ts) = c(E′) · c(Ts) = c(E′) · 1

E′ ha rank r − s, hence cj(E) = 0 for j = r − s+ 1, ..., r. �

Example 3.4.3. Consider the tangent bundle to the complex projective
line, i.e. T (P1(C)). This is a holomorphic vector bundle of rank 1. We want
to show that it is not isomorphic to the trivial bundle. A natural metric on
T (P1(C)) is the so called chordal metric, that is

h(z) = h

(
∂

∂z
,
∂

∂z̄

)
=

1

(1 + |z|2)2
.

With respect to this metric the canonical conncection is given by

θ(z) = h−1(z)∂h(z) =
−2z̄dz

(1 + |z|2)2
.

Hence, the curvature is given by
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Θ(z) = ∂̄θ(z) =
2dz ∧ dz̄

(1 + |z|2)2
.

The first Chern form is therefore

c1(E, h) =
i

2π
Θ =

dz ∧ dz̄
π(1 + |z|2)2

.

In order to see that T (P1(C)) is non trivial, sufficies to prove that c1(E, h)
is not exact. This latter could be done by showing that the integral along
any closed chain is non zero. Indeed, computations show that∫

P1

c1(E, h) = 2

Hence T (P1(C)) is not trivial.

3.5 Complex Line Bundles

In this section we will explain some basic fact of complex line bundles, that
will be very important for the last Chapter of this work. We begin this
section by giving two important results for the topology of vector bundles of
finite rank.

Lemma 3.5.1. Let E → X be a smooth vector bundle of rank r. Then, there
exists a open finite covering {Uα} of open sets of X, such that EUα is trivial.

Proof. If X is compact, then the claim follows immediately. Suppose
X is not compact, let {Vβ} be a open covering that trivializes E, that is
∀β,EVβ ' Vβ×Cr. Since X is paracompact, then there exists a locally finite
refinement {Uα} with the property that the intersection of (n+ 2) elements
of {Uα} is the empty set. Let {ϕα} be a partition of unity subordinated to
{Uα}. Let Ai be the non ordered set of indices of different elements of {ϕα}.
An element a ∈ Ai means a = {α0, ..., αi}. Define

Wia = {x ∈ X : ϕα(x) < min(ϕα0(x), ..., ϕαi(x)), α 6= α0, ..., αi}.

Wia is open. By construction for a 6= b, Wia ∩Wib = ∅, and

Wia ⊂ suppϕα ⊂ suppϕα0 ∩ ... ∩ suppϕαi ⊂ Uα

We let

Xi =
⋃
i

Wia, i = 0, ..., n

We can immediately say that EXi is trivial by construction. We claim that
X =

⋃
iXi. Let x ∈ X, then x is contained at most in n + 1 subset of
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{Uα}, then {ϕα} has n+1 positive functions in x. Let a = {α0, ..., αi} where
ϕα0 , ..., ϕαi are the only positive function of {ϕα} in x, 0 ≤ i ≤ n. Then, it
follows that

0 = ϕα(x) < min(ϕα0(x), ..., ϕαi(x))

for every choice of α 6= α0, ..., αi. So, x ∈ Wia ⊂ Xi. Hence {Xi} is a open
finite cover of X. �

Lemma 3.5.2. Let E → X be a complex vector bundle of rank r. Then
there exists an integer N > 0 and a smooth map Φ : X → Gr,N such that
Φ∗(Ur,N ) ' E.

Proof. Consider the dual vector bundle E∗ → X of E → X. Because of
Lemma 3.5.1 we can choose a finite open cover {Uα} of X and correspond-
ingly a finite family of local frames {fα} for E∗. Arguing by a partition of
unity, we can find a finite number of global sections ξ1, ..., ξN ∈ E(X,E∗),
such that at every x ∈ X there are r-sections {ξα1 , ..., ξαr} that are linearly
independent in x and thus also in their neighbourhood. We use the global
sections ξ1, ..., ξN to define the map

Φ : X −→ Gr,N .

If f∗ is a frame for E∗ near x0. Then

M(f∗) = (ξ1(f∗)(x), ..., ξN (f∗)(x))

is a frame for Gr,N , that is, the rows generate a subspace of CN , that we
denote by Φ(x). If g is a change of frame, then

M(f∗g) = (ξ1(f∗g), .., ξN (f∗g)) = (g−1ξ1(f∗), ..., g−1ξN (f∗)) = g−1M(f∗).

Thus, M(f∗g) and M(f∗) generate the same Φ(x). Therefore, Φ is well
defined and is smooth by construction. It is left to show that there exists a
morphism of vector bundles

Φ̃ : E −→ Ur,N

that makes the following diagram commute

E
Φ̃−−−−→ Ur,Ny yπ

X
Φ−−−−→ Gr,N
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It will follows, from the universality of the pullback bundle that Φ∗(Ur,N ) '
E. Firstly we see that Φ̃|Ex is injective. Indeed, let x ∈ X and f be a frame
above x and f∗ the dual frame. Thus, Φ̃ can be represented by

Φ̃(x, v) =t v(f) ·M(f∗). (3.10)

SinceM(f∗) has maximal rank then the injectivity follows. Moreover Φ̃(EX) =
π−1(Φ(x)), indeed, because of (3.10) Φ̃(EX) is generated by the rows of
M(f∗). �

Remark 3.5.1. Directly from Lemma 3.5.2 and the functiorial properties of
Chern classes, explained in Theorem 3.4.2, we see that the Chern class of a
vector bundle E → X can be topologically defined as

c(E) = Φ∗(c(Ur,N ))

Proposition 3.5.1. Let E → be a complex line bundle. Then c1(E) ∈
H̃2(X,Z), i.e. c1(E) is integral. (Here H̃2(X,Z) denotes the image of
H2(X,Z) in H2(X,R), under the natural isomorphism induced by the in-
clusion Z ↪→ R).

Proof. For Lemma 3.5.2, we know that c1(E) = Φ∗(c1(U1,N )). Therefore,
it sufficies to prove that c1(U1,N ) ∈ H2(PN−1,Z). We know that

c1(U1,N , D(h)) =
1

2πi
· |f |

2
∑
dξj ∧ dξ̄j −

∑
ξ̄jξkdξj ∧ dξk

|f |4
(3.11)

The cohomology of the complex projective space is

Hq(PN ,Z) =

{
Z, for q even
0, for q odd

Moreover, PN is a CW-complex [10], thus Pj ⊂ PN−1 is a generator for
H2q(PN ,Z). A differential form ϕ of degree 2j will a representative class of
H2q(PN−1,Z) if and only if

∫
Pj
ϕ ∈ Z.

Thus, in order to prove the claim we will show that∫
P1

c1(U1,N , D(h)) ∈ Z.

We can think about P1 ⊂ PN−1 can be thought as the subspace generated
by
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{(z1, ..., zN ) : zj = 0, j = 3, ..., N}.

Let f be a frame for Ur,N → PN−1 on {z : z1 6= 0} = W. Then

f([1, ξ2, 0, ..., 0]) = (1, ξ2, 0, ..., 0)

by letting z = ξ2 we have

α = c1(U1,N , D(h))|W∩P1
=

1

2πi

dz ∧ dz̄
(1 + |z|2)2

.

Thus, computations shows that∫
P1

α =
1

2πi

∫
W∩P1

dz ∧ dz̄
(1 + |z|2)2

= −1.

�

3.5.1 Chern Classes for complex line bundles

Lemma 3.5.3. There is a one to one correspondence between isomorphism
classes of holomorphic complex line bundles above X, that will be christened
together with the tensor product Picard’s group [18], and elements of the
group H1(X,O∗).

Proof. Let E → X be a complex holomorphic line bundle, then there
exist a covering {Uα} and transition functions {gαβ} that satisfies the Čech
cocycle conditions. By using the Bockstein operator of Čech cohomology we
have
δg(Uα, Uβ, Uγ) = g(Uβ, Uγ)− g(Uα, Uγ) + g(Uα, Uβ) = gβγg

−1
γαgαβ = 1.

Therefore, the transition functions {gαβ} define a cocycle, thus an element of
H1(X,O∗).Moreover, if E′ → X is another holomorphic complex line bundle
isomorphic to E → X, then we can combine both through the equivalence
L : E

E−→
'

′
and the transition functions for the two bundle defined in two

open covering of X in a suitable refinement of the coverings. We find that
E′ → X defines the same class in H1(X,O∗). Thus the mapping is well
defined. Conversely, let ξ ∈ H1(X,O∗) any cohomology class, represented
by a cocycle {gαβ in some open cover {Uα}. Through the chosen cocycle we
can build a holomorphic complex line bundle that has {gαβ} as transition
functions by letting

Ẽ = tαUα × C

and considering, as always, the equivalence relation

(x, z) ∈ Uα × C, (y, z) ∈ Uβ × C

77



are equivalent, i.e.

(x, z) ∼ (y, w)⇔ y = x and w = gαβ(x)z ∈ Uα ∩ Uβ.

Thus, E = Ẽ/ ∼ is a holomorphic complex line bundle with the desired
property. �

As we have already previously observed, Chern classes depend only on the
equivalence classes in cohomology. Thus, consider the exponential sequence
for a connected manifold X

0→ Z→ O → O∗ → 0

And consider the induced sequence in cohomology.

H1(X,O) H1(X,O∗) H2(X,Z) H2(X,O) H2(X,R)δ

The first Chern class for a complex line bundle is defined as the group ho-
momorphism

c1 : H1(X,O∗) −→ H2(X,R).

Lemma 3.5.4. The following diagram is commutative

H1(X,O∗) H2(X,Z)

H2(X,R)

δ

c1
j

Where j is the canonical inclusion of cohomology groups, and δ is the Bock-
stein operator.

Proof. We represent the de Rham cohomology through the Čech co-
homology and then we will calculate explicitly the Bockstein operator in
this context. Suppose that U ,is a locally finite cover of X, and consider
ξ = {ξαβγ ∈ Z2(U ,R). We want to associate to ξ a closed 2-form ϕ on
X. Note that ξ ∈ Z2(U , E), and E is a fine sheaf, therefore we can choose
τ ∈ C1(U , E) such that δτ = ξ. This could be done by choosing some parti-
tion of unity {ϕα} subordinated to U and by letting

τβγ =
∑
α

ξαβγ .

The de Rham operator is well defined on the cochain groups Cq(U , E) and
commutes with δ. Thus,
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δdτ = dδτ = dξ = 0 ⇒ dτ ∈ Z1(U , E1).

But, also E1 is a fine sheaf, therefore we can repeat the same argument by
choosing µ ∈ C0(U , E1) such that δµ = dτ, by letting µβ =

∑
α ϕαdταβ.

Therefore,

δdµ = dδµ = d2τ = 0 ⇒ ϕ = −dµ ∈ Z0(U , E2) = E2(X).

That is a global closed 2-form on X. Hence, to a element ξ ∈ Z2(U ,R) we
associated a differential form ϕ(ξ). This procedure induces a cohomology
map

Ȟ2(X,R) −→ H2(X,R)

which is an isomorphism. Suppose that U is a open cover of X with the
propriety that every intersection of the covering is simply connected, such
cover is called Leray covering. We use U to describe the Bockstein operator

δ : H1(X,O∗) −→ H2(X,Z)

Let g = {gαβ} ∈ Z1(U ,O∗) represented by σ = σαβ defined by

σαβ =
1

2πi
log gαβ = exp−1(gαβ).

The above defines a element of C1(U ,O), therefore δσ ∈ C2(U ,O), and since
δ2 = 0 we have that δσ ∈ Z2(U ,O), but on the other hand

(δσ)αβγ =
1

2πi
(log gαβ − log gαγ + log gαβ)

is integer valued since gαβ is a cocycle. Therefore, δσ ∈ Z2(U ,Z) is a repre-
sentative for δg in H2(X,Z).
Let g = {gαβ} be transition functions for the holomorphic complex line
bundle E → X endowed with a hermitian metric h. Being {Uα} a trivializing
cover for E, we have, for every index α, frames fα of E above every Uα. We
let h(f) = hα and hα is positive definite in every Uα. Thus,

c1(E, h) =
i

2π
∂(hα∂hα) =

1

2πi
∂∂̄ log hα.

The function hα satisfies hα = |gαβ|2hβ ∈ Uα ∩Uβ. Consider δσ ∈ Z2(U ,Z),
like before, i.e.

σαβ =
1

2πi
log gαβ.

We want to associate to δσ a closed 2-form through the isomorphism

Ȟ2(X,R) −→ H2(X,R),
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which will be the Chern form on E. This will conclude the proof. We use τ
and µ from the construction of the isomorphism letting τ = µ, and µ = {µα}
where

µα =
1

2πi
∂ log hα.

Note that

(δµ)αβ = µβ − µα =
1

2πi
∂ log gαβ ḡαβ

=
1

2πi
(∂ log gαβ + ∂ log ḡαβ) =

1

2πi
∂ log gαβ

=
1

2πi
d log gαβ = d

(
1

2πi
log gαβ

)
= dσαβ = dταβ.

Thus, the closed 2-form associated to δσ is given by

ϕ = −dµ = d

(
i

2πi
log gαβ

)
=

1

2πi
∂∂̄ log hα = c1(E, h).

�

Remark 3.5.2. The above sequence, and the above Lemma holds also in the
C∞ category. Indeed, from the exponential sequence on a smooth manifold
X, namely

0→ Z→ E → E∗ → 0

we can consider the induced sequence in cohomology

...→ H1(X, E)→ H1(X, E∗) δ−→ H2(X,Z)→ H2(X, E)→ ...

Since E is a fine sheaf, hence is also soft, we have that the above sequence
restricts to the isomorphism

H1(X, E∗) '−→ H2(X,Z),

that means, every complex smooth line bundle is completely determined by
the first Chern class.

The above remark does not apply in general to complex holomorphic line
bundles. Indeed, consider a complex manifold X and the sequence

H1(X,O)→ H1(X,O∗) δ−→ H2(X,Z)→ H2(X,O). (3.12)

It may happen that H1(X,O) and H2(X,O) are non trivial, consequently
the holomorphi complex line bundles are not completely determined by their
Chern class. Consider the commutative diagram

80



H1(X,O∗) H2(X,Z)

H̃2(X,Z)

δ

c1
j

Denote by H̃1,1(X,Z) the cohomology classes in H̃2(X,Z) that admit d-
closed forms of type (1, 1).

Proposition 3.5.2. In the above situation

c1(H1(X,O∗)) = H̃1,1(X,Z)

Proof. It is sufficient to prove that δ(H1(X,O∗)) = H1,1(X,Z). To see
that, we shall show that the image of H1,1(X,Z) in H2(X,O) is zero. Con-
sider the commutative diagram of sheaves

Z C

O

Take the induced cohomology diagram

H2(X,Z) H2(X,C)

H2(X,O)

Now we see that H̃1,1(X,Z) ⊂ H2(X,C) and it is the image of H1,1(X,Z) in
the above diagram. Therefore, we shall show that the image of H1,1(X,Z)
in H2(X,O) is zero. Consider the homomorphism of resolution of sheaves

0 −−−−→ C −−−−→ E0 d−−−−→ E1 −−−−→ E2

i

y i

y π0,1

y π0,2

y
0 −−−−→ O −−−−→ E0,0 ∂̄−−−−→ E0,1 ∂̄−−−−→ E0,2

The map π0,q : Eq → E0,q is a projection. Therefore, the cohomology
mapping H2(X,C) → H2(X,O) maps a d−closed differential form ϕ onto
a ∂̄−closed form π0,2ϕ. Thus, it is clear that the image of H1,1(X,C) in
H2(X,O) is zero, since a class in H1,1(X,C) is represented by a d− closed
form of type (1,1) ϕ, we must have that π0,2ϕ = 0. �
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Chapter 4

The Kodaira Embedding
Problem

4.1 Divisors

Let X be a complex manifold and consider the short exact sequence of mul-
tiplicative abelian sheaves

0→ O∗ →M∗ → M∗
/
O∗ → 0

Where we denoted by O∗ the sheaf of non vanishing holomorphic function on
X and byM∗ the sheaf of non vanishing meromorphic function on X. The
quotient sheaf M∗

/
O∗ defines the so called sheaf of divisors of X and we

denote this latter by D, a section D ∈ D is called a divisor. In particular if
D ∈ H0(X,D) then there exists an open cover {Uα} of X and meromorphic
non vanishing functions fα ∈M∗(Uα) such that

gαβ =
fβ
fα
∈ O∗(Uα ∩ Uβ).

It is rather immediate to verify that the above functions gαβ satisfy the Čech
cocycle condition, consequently there exists a class of holomorphic complex
line bundles aboveX. That means: a divisorD ∈ H0(X,D) determines [D] ∈
H1(X,O∗), where we have previously seen that H1(X,O∗) is isomorphic to
the Picard’s group of complex line bundles above X. Therefore, we say that
two holomorphic line bundles determine the same class, i.e. are equivalent,
if and only if they differ by a global non vanishing holomorphic function.
We shall see that often divisors occur in the following way: given a complex
manifold X, let V ⊂ X be an algebraic submanifold of X, i.e. given an
open covering {Uα} of X and holomorphic functions fα ∈ O∗(Uα) such that
fβ
fα
∈ O∗(Uα∩Uβ), then V is determined by the zero locus of those functions.

In this latter case V is called a divisor of X.
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Example 4.1.1. Consider the complex projective space Pn. Let V ⊂ Pn be
an algebraic submanifold of Pn, e.g. V can be seen as a projective hyperplane
determined by the equation V = [z0 = 0]. Notice that in the open chart
Uα ⊂ Pn the equations of V are determined by [z0/zα = 0]. We see that the
coordinate functions are clearly holomorphic functions on every coordinate
chart Uα ⊂ Pn, and V is determined by the zero locus of these functions,
that means V is a divisor of Pn. Moreover, in the overlap Uα ∩ Uβ we have

gαβ =
z0

fα
·
(
z0

zβ

)−1

=
zβ
zα
,

and clearly we see that gαβ · gβγ · gγα = 1. Therefore, there exists an holo-
morphic complex line bundle L(V ) above V .

4.2 Kähler Manifolds

A very important class of complex manifolds is surely determined by the
Kähler manifolds. We give a very short and brief introduction to this topic,
tailored directly for the purpouse of our discussion. The literature about
Kähler manifolds is in rich supply, the reader may look at [6], [7]. In order
to introduce what a Kähler manifold is, consider a complex manifold X and
let h be an hermitian metric on X. Notice that we can see h as a smoothly
parametrized family of 2-forms, h = {hx}x∈X , with

hx : TxX × TxX → C.

Therefore, that determines a form Ω that will be christened fundamental
form, that is the holomorphic form of type (1, 1) with respect to the hermitian
metric h.

Definition 4.1. Let X be a complex manifold. An hermitian metric h on
X whose fundamental form Ω is d-closed, i.e. dΩ = 0, is called a Kähler
metric and in this case Ω is called Kähler form . If there exists on X at least
a Kähler metric, then X is said to be of Kähler type. A complex manifold
endowed with a Kähler metric is called a Kähler manifold.

The following result ensures that the class of Kähler manifolds is closed under
the inclusion.

Proposition 4.2.1. Let X be a Kähler manifold and C ⊂ X be a complex
submanifold of X. Then C is also a Kähler manifold.

Proof. Consider the canonical inclusion of the submanifold C in X:

j : C ↪→ X
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Then if h is the Kähler metric on X, we see that the pullback of h through
j determines a metric on C, i.e. hC = j∗h, therefore since the pullback
preserves types we see that the fundamental Kähler form Ω with respect to
the metric h induces a fundamental form ΩC = j∗Ω on C with respect to the
metric hC . We can easily see that this form is also a Kähler form, indeed

dΩC = dj∗Ω = j∗dΩ = 0.

�

On a complex manifold X a hermitian metric can be expressed in local
coordinates by a hermitian symmetric tensor

h =
∑
µν

hµν(z)dzµ ⊗ dz̄ν ,

where h = (hµν) is a positively definite hermitian symmetric matrix, that is
h =t h̄ and ∀u ∈ Cn, tūhu > 0. The fundamental form Ω with respect to
the hermitian metric h in local coordinates is given by

Ω =
i

2

∑
µν

hµν(z)dz ∧ dz̄,

where in this notation we see that the coefficients hµν as a function of the
variable z are given by

hµν(z) = h(
∂

∂z
,
∂

∂z̄
)(z).

Thus, if X is a Kähler manifold then

dhµν = 0⇔ ∂hµν = −∂̄hµν .

Example 4.2.1. Let X = Cn and let h =
∑n

µ=1 dzµ ⊗ dz̄µ. Then the fun-
damental form is given by

Ω =
i

2

n∑
µ=1

dzµ ∧ dz̄µ.

Since hµν are in this case constant we see that Ω is a d-closed differential
form, so it is a Kähler form, hence h is a Kähler metric.

Example 4.2.2. One of the most important manifold of Kähler type is the
complex projective space Pn. We have already observed in Chapter 3 that
Pn is a hermitian complex manifold. Denote by (ξ0, ..., ξn) the homogeneous
coordinates for Pn. Consider the following differential form
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Ω̃ =
i

2

|ξ|2
∑n

µ=0 dξµ ∧ dξ̄µ −
∑n

µν=0 ξ̄µξνdξµ ∧ dξν
|ξ|4

.

We have seen in Chapter 3 that the curvature form Θ associated to the uni-
versal bundle U1,n+1 → Pn is a d-closed (1, 1)-form, then Ω̃ up to negative
sign and to the factor i/2 coincide with the mentioned curvature form, there-
fore this latter is a Kähler form on Pn. We can rewrite Ω̃ in a particular set
of coordinates by letting wj = ξj/ξ0, j = 1, ..., n.

Ω(w) =
i

2

(1 + |w|2)2
∑n

µ=0 dwµ ∧ dw̄µ −
∑n

µν=0 w̄µwνdwµ ∧ dwν
(1 + |w|2)2

.

According to this notation, the metric tensor with respect the above form is
given by

h =

(∑
µν

hµν(z)dwµ ⊗ dw̄ν

)
(1 + |w|2)−2,

where the coefficients of the matrix associated to the metric tensor, forgetting
the positive denominator above, is given by

hµν(w) = (1 + |w|2)δµν − w̄µwν .

We can see that h̃ = (hµν) is hermitian symmetric and positively definited.
Indeed, ∀u ∈ Cn we can find that

tūh̃u =
∑
µν

hµνuµūν =
∑
µν

(1 + |w|2)δµνuµūν −

(∑
µ

w̄µuµ

)(∑
ν

wµūν

)
= |u|2 + |u|2|w|2− < w̄, ū >< w, u > .

Then, by the Cauchy-Schwarz inequality we have

tūh̃u ≥ |u|2 > 0

Then h̃ is positively defined. Therefore, h̃ defines a hermitian metric called
the Fubini-Study metric and by previous discussions we see that it is a Käh-
ler metric. Hence, Pn together with the Fubini-Study metric is a Kähler
manifold.

4.3 Hodge Manifolds

A particular class of Kähler manifolds is called Hodge manifolds. In order to
introduce the topic we shall firstly introduce the following class of differential
forms.

85



Definition 4.2. Let X be a complex manifold. A differential form ϕ of X
is called integral if is d-closed and its cohomology class is in the image of
the canonical inclusion of cohomology rings

H•(X,Z) −→ H•(X,C)

Remark 4.3.1. Given a complex manifold X, if we want to verify that a
certain differential form ϕ is integral then we could use the two following
criteria, [5], [15]:

1. for every closed submanifold S ⊂ X the integral of ϕ is integer valued,
i.e. ∫

S
ϕ ∈ Z.

2. For every open cover U = {Ui} write ϕ = dθi in Ui ∩Uj, then we have
that θi − θj = ddϕ = 0, then θi − θj = dfij. In Ui ∩ Uj ∩ Uk we then
must have d(fij + fjk + fki) = θi− θj + θj − θk + θk− θi = 0, therefore,
(fij + fjk + fki) = cijk then ϕ is integral if and only if cijk ∈ Z

Definition 4.3. Let X be a complex manifold with hermitian metric h and
let Ω be the associated fundamental form. If Ω is integral then it is called a
Hodge form and h is called Hodge metric. If X is a manifold of Kähler type
then it is called Hodge manifold if it admits an Hodge metric.

We shall now give few basic examples of Hodge manifolds that are useful for
our discussion.

Example 4.3.1. In the last section we proved that Pn is a manifold of
Kähler type, the fundamental form associated to the Fubini-Study metric
is indeed the Chern form associated to the universal bundle U1,n+1 up to a
sign, and in the previous Chapter we have seen that its integral is integer
valued in any cell Pi, therefore by point 1 of the above Remark we see that
the fundamental form Ω is an Hodge form, hence Pn is a Hodge manifold.
Moreover, let X be a compact complex projective algebraic manifold, then
there exists a sufficiently large integerN > 0 and an embedding j : X ↪→ PN .
If Ω is the fundamental form with respect to the Fubini-Study metric, then
j∗Ω is a Hodge form on X. Indeed, it is d-closed

dj∗Ω = j∗dΩ = 0

and it is integral ∫
X
j∗Ω =

∫
j(X)⊆PN

Ω ∈ Z,
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where the last equality holds by the diffeomorphism invariance of the integral
sign [insert biblio]. In general, by the same principle, a complex submanifold
of a Hodge manifold is again a Hodge manifold.

Example 4.3.2. Let X be a complex compact manifold and let Y be an
Hodge manifold. Then

• If X is an unramified covering for Y , that is ah holomorphic surjection
π : X → Y such that π−1(y) is discrete ∀y ∈ Y and π is a local
biholomorphism, then if Ω is the Hodge form on Y we see that π∗Ω is
an Hodge form on X.

• If f : X → Y is an immersion then f∗Ω is an Hodge form on X.
This can be seen in two steps. Firstly suppose that dim(X) = dim(Y )
then the tangential map is an isomorphism, therefore there exist an
open neighbourhood U ⊂ X of any x ∈ X and a local diffeomorphism
g : U → f(U), therefore by the diffeomorphism invariance of integrals
the claim follows. Now suppose that dim(X) < dim(Y ), then consider
the following commutative diagram

H2(Y,C)
f∗−−−−→ H2(X,C)

j1

x xj2
H2(Y,Z)

f∗Z−−−−→ H2(X,Z)

Choose some closed integral representative ω of the cohomology class
[ω] ∈ H2(Y,C), then it sufficies to prove that f∗ω is integral, i.e. there
exists an α ∈ H2(X,C) such that f∗ω = j2α. Since ω is integral, then
there exist some β ∈ H2(Y,Z) such that ω = j1β, now apply f∗ both
sides and use the commutativity of the above diagram to find

j2(f∗Zβ) = f∗(j1β) = f∗ω,

write α = f∗Zβ and the claim follows as wanted.

Example 4.3.3. LetX be a Riemann surface compact and connected. Then
X is a Hodge manifold. Indeed, since dimRX = 2 and by the fact that X is
connected we know that H0(X,C) ' C. Using Poincaré duality [5], [15] and
the fact that X is also compact we have the following chain of isomorphisms

C ' H0(X,C) ' H2
c (X,C) ' H2(X,C).

Let Ω̃ be a (1, 1)-form that is a basis element for the cohomology space
H2(X,C), write c =

∫
X Ω̃, c 6= 0 (necessarily). Then Ω = c−1Ω̃ is an Hodge

form. Indeed
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∫
X

Ω =

∫
X
c−1Ω̃ = c−1

∫
X

Ω̃ = c−1c = 1 ∈ Z.

This example, can be generalized as follows, every Kähler manifold such
that dimH1,1(X,C) = 1 is necessarily a Hodge manifold. Indeed, if Ω is the
fundamental Kähler form, by letting k =

∫
X Ω we get an Hodge form simply

by writing Ω̃ = k−1Ω.

4.4 The Kodaira-Nakano Vanishing Theorem

In this section we want to introduce the Kodaira-Nakano Vanishing Theorem,
which will be crucial for the proof of our main task, that is to prove the
Kodaira embedding theorem. We shall firstly enfatize a particular class of
holomorphic complex line bundles which are called positive line bundles. To
do so, we shall firstly introduce the following notion

Definition 4.4. Let X be a complex manifold. A holomorphic (1, 1) form ϕ
is called positive if ∀p ∈ X and for every coordinate system z = (z1, ..., zn)
near p we find that

ϕ(z) = i
∑
µν

ϕµν(z)dzµ ∧ dz̄ν ,

where (ϕµν(z)) must be hermitian symmetric and positively defined. For
brevity, we shall indicate a positive differential form ϕ by ϕ > 0.

Definition 4.5. Let E → X a holomorphic complex line bundle over a
complex manifold X. Let c1(E) ∈ H2(X,R) its first Chern class. We say
that E → X is a positive complex line bundle if there exists a positive (1, 1)-
form ψ, with ψ > 0 which is a representative of the first Chern class, i.e.
ψ ∈ c1(E). We say that E → X is negative if its dual bundle E∗ → X is
positive.

In order to establish wether a holomorphic complex line bundle is positive
we have the following criterium, for a proof of the following see [6]:

Proposition 4.4.1. Let E → X be a holomorphic complex line bundle.
Then E → X is positive if and only if there exists an hermitian metric h
such that the curvature ΘE induced by the hermitian metric h has i ΘE > 0.

Example 4.4.1. Let X = Pn and consider the following three complex line
bundles over Pn:

1. The Hyperplane section bundle H −→ Pn.

2. The Universal bundle U = U1,n+1 −→ Pn.
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3. The Canonical bundle K = ∧nT ∗Pn −→ Pn.

We observe that the first complex line bundle it is defined by a divisor of Pn,
e.g. [t0 = 0] in homogeneous coordinates for Pn. Then such a divisor will be
defined by equations [t0/tα] in the coordinate neighbourhood

Uα = {[t0, ..., tα, ..., tn] ∈ Pn : tα 6= 0}.

Then, as we have seen on the first section of this Chapter, we see that the
complex line bundle determined by this divisor has transition function

hαβ =

(
t0
tα

)
·
(
t0
tβ

)−1

=
tβ
tα
,

in the overlapping Uα∩Uβ . As we know the transition functions in the same
overlapping for the second complex line bundle are given by

uαβ =
tα
tβ
.

Thus, we deduce that H∗ = U.
We will explicitly calculate the transition functions for the third complex
line bundle. Consider the coordinates ζβj = tj/tβ, j 6= β. Then a basis for
the restriction K|Uβ is given by the n-form:

Φβ = (−1)βdζβ0 ∧ ... ∧ dζ
β
β−1 ∧ dζ

β
β+1 ∧ ... ∧ dζ

β
n .

Since
ζβj =

tj
tβ

=
tj
tα
· tα
tβ
,

we have that
ζβj = ζαj · (ζβα)−1

in the overlapping Uα ∩ Uβ. We can plug this latter in the Φβ and we find
the formula for the switch of coordinates

Φα = (ζαβ )n+1(−1)βdζβ0 ∧ ... ∧ dζ
β
β−1 ∧ dζ

β
β+1 ∧ ... ∧ dζ

β
n = (ζαβ )n+1Φβ.

Because of the arbitrariness of the above choices we see that this latter
change of coordinates induces the desired transition function for the third
line bundle:

kαβ = (ζαβ )n+1.

Therefore, because of the definition of the ζαβ , we deduce that the first and
the second and the third bundle are (n+ 1)-tensor powers, that is
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K = Un+1 = (H∗)n+1.

We know that the universal bundle U → Pn has as a curvature form the
Kähler form, up to a sign, induced by the Fubini-Study metric. Therefore,
by Proposition 4.4.1 we see that iΘ < 0 therefore K,U,H∗ are negative line
bundles and then, by Definition 4.4, we deduce that H is positive.

In order to make an important remark about the previous example we shall
give for granted the following result (for a proof see [6])

Theorem 4.4.1. (The Hodge decomposition theorem) Let X be a compact
complex manifold of Kähler type. Then, there is the following decomposition

Hr(X,C) =
⊕
p+q=r

Hp,q(X)

and moreover,

H̄p,q(X,C) = Hq,p(X,C).

Immediately from the Hodge decomposition theorem follows that

H1(Pn,O) = H2(Pn,O) = 0.

Indeed, H1(Pn,C) = H1,0(Pn)⊕H0,1(Pn).
By the de Rham cohomology of Pn, we get H1(Pn,C) = 0. Moreover,

C ' H2(Pn,C) = H2,0(Pn)⊕H1,1(Pn)⊕H0,2(Pn)

and since C[Ω] = H1,1(Pn), where Ω is the fundamental form of Pn it follows
that

H2(Pn,O ' H0,2(Pn)) = 0.

Now consider the exponential sequence on Pn

0→ Z→ O → O∗ → 0

And consider the induced cohomology sequence

H1(Pn,O)→ H1(Pn,O∗)
c1−→ H2(Pn,Z)→ H2(Pn,O)

by previous discussion we see that the above sequence restricts to the iso-
morphism

0→ H1(Pn,O)
c1−→
∼

H2(Pn,Z)→ 0.

Let P1 ⊂ Pn be a generator for H2(Pn,Z). If we consider exterior powers of
the Hyperplane section bundle H, e.g. Hm then we obtain
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c1(Hm)(Pn) = m.

Indeed, for the properties of the Chern classes we have

c1(H) = c1(U∗) = −c1(U), and c1(U)(P1) =

∫
P1

c1(U) = −1,

then, c1(H)(P1) = 1, therefore

c1(Hm)(Pn) = c1(H ⊗ ...⊗H)(Pn) = (c1(H) + ...+ c1(H))(Pn) = m.

Since, in this case, c1 is an isomorphism of abelian groups it follows that
every complex line bundle L→ Pn and in particular U andK of the previous
example are tensor powers of H, that is L = Hm and c1(L)(Pn) = m. Hence,

c1(K)(Pn) = c1((H∗)n+1)(Pn) = −c1(Hn+1)(Pn) = −(n+ 1).

This means that we have a classification of all complex holomorphic line
bundles of Pn, namely we classified all holomorphic complex line bundles on
Pn.
We shall stress the fact that all these consideration could be done in the
behalf of the vanishing of the cohomology spaces H1(Pn,O) and H2(Pn,O).
Now, given a compact complex manifold X we wonder if we could find a
sheaf such that the cohomology spaces are trivial. The following result was
stated by Kodaira and proven by Nakano, for a proof the reader may have a
look at [6].

Theorem 4.4.2. (The Kodaira-Nakano vanishing theorem) Suppose that X
is a compact complex manidold.

1. Let E → X be a holomorphic line bundle with the property that E⊗K∗
is a positive line bundle. Then

Hq(X,O(E)) = 0, q > 0

2. Let E → X be a negative line bundle. Then

Hq(X,Ωp(E)) = 0, p+ q < n

4.5 Quadratic Transformations

Let X be a complex manifold and let p ∈ X be any point. Let U ⊂ X be an
open coordinate neighbourhood of the choosen point p with coordinates z =
(z1, ..., zn) such that z(p) = z = 0. Consider the product U ×Pn−1 endowed
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with the product topology, denote by [t0, ..., tn] the homegeneous coordinate
for Pn−1. Define the closed submanifold W of the product U × Pn−1 as

W := {(z, t) ∈ U × Pn−1 : zαtβ − zβtα = 0}. (4.1)

From (1) there is a natural projection onto the first factor π : W → U such
that (z, t) 7→ z. This map has the following properties:

• π−1(0) = S = {0} × Pn−1 ' Pn−1.

• π|W/S : W/S
∼−→ U/{0} is biholomorphic.

We define the quadratic transformation or the Hopf blow up X̃ = Qp(X) of
the complex manifold X at the chosen point p ∈ X as

X̃ :=

{
W if x ∈ U
X \W if x ∈ X \ U

Clearly, a quadratic transformation depends on the chosen point p. In order
to enfatize that dependence we will sometimes denote the projection πp. The
submanifoldW is called local representation of the quadratic transformation.
Consider a quadratic transformation at the point p of the manifold X, and
let π : X̃ → X the projection onto the second factor like above. Notice that
π−1(p) = S is a closed submanifold of X̃, so S is a divisor of X̃. Therefore,
since S is a divisor, there exists a class of holomorphic complex line bundles,
we denote by L = L(S)→ S a representative of that class. Since S ' Pn−1,
then there is a canonical line bundle, the hyperplane section bundle H → S
which is the line bundle determined by the divisor corresponding to a fixed
linear hyperplane, e.g. [t1 = 0]. Let σ : W → Pn−1 denote the projection
onto the second factor and let L|W denote the restriction of the line bundle
L → X̃ to the local representation W ⊂ X̃. Then we have the following
result:

Proposition 4.5.1. L|W = σ∗H∗

Proof. Let U be a coordinate neighbourhood of p, denote by (z1, ..., zn) the
coordinates near p. Represent the quadratic transformation X̃ near π−1(U)
byW ⊂ U×Pn−1 like in (1). Since π−1(p) = S ' Pn−1 then S is represented
in U × Pn−1 by z1 = ... = zn = 0. The hyperplane [t1 = 0] is defined in the
coordinate chart Vα = {[t1, ..., tn] ∈ Pn−1 : tα 6= 0} by the equation [t1/
tα = 0]. Therefore, the hyperplane section bundle H → S has transition
functions

hαβ =

(
t1
tα

)
·
(
t1
tβ

)−1

=
tβ
tα
. in Vα ∩ Vβ.
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These are the same transition functions for the pullback bundle in σ∗H in
U×(Vα∩Vβ)∩W. Notice that S∩(U×Vα)∩W is determined by the equation
[zα = 0]. Therefore, the line bundle L → S associated to the divisor S has
transition functions

gαβ =
zα
zβ

in (U × (Vα ∩ Vβ) ∩W,

now by using the definition of W we see that zα
zβ

= tα
tβ
. Thus, gαβ = h−1

αβ ,
that means L|W = σ∗H∗. �

For the rest of this section fix a compact complex manifold X, a quadratic
transformation at p X̃ = Qp(X) and Lp → Qp(X) is the line bundle given
in proposition 0.5.1.

Lemma 4.5.1. KQp(X) = π∗pKX ⊗ Ln−1
p

Proof. Begin by noticing that a frame f1 for the canonical line bundle KX̃
above (U ×V1)∩W with respect to the local coordinates (z1, t2/t1, ..., tn/t1)
is given by

f1 = dz1 ∧ d
(
t2
t1

)
∧ ... ∧ d

(
tn
t1

)
.

By using the definition of W we rewrite the above as follows

f1 = (z1)1−ndz1 ∧ dz2 ∧ ... ∧ dzn.

Thus, more generally a frame fα above (U × Vα) ∩W is given by

fα = (zα)1−ndz1 ∧ dz2 ∧ ... ∧ dzn.

A frame determines a system of trivializing section, therefore the relation
fβ = gαβfα holds. Hence, the transition function forKX̃ in U×(Vα∩Vβ)∩W
are given by

gαβ =

(
zα
zβ

)n−1

.

Consequently KX̃|W = Ln−1
p|W and since KX̃ is trivial on U we have

KX̃|W = Ln−1
p ⊗ π∗pKX|W

.
Also L|X̃\W is trivial and πp is biholomorphic on X̃\W . Hence KX̃|X\W =

KX ⊗ Ln−1
p|X̃\W , thus the claim holds. �
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Let p ∈ X and let Lp → Qp(X) be the line bundle corresponding to the
divisor π−1

p (p). If q 6= p is another point on X, then it is clear that QqQpX '
QpQqX, since blowing up at the points p and q are local and independent
operations. Let πp,q : QpQqX → X be the composite projection and let Lp,q
be the line bundle corresponding to the divisor π−1({p}∪{q}). Choose some
positive integer µ, consider a complex line bundle E → X then we let

Eµ = E ⊗ ...⊗ E︸ ︷︷ ︸
µ times

and

E−µ = (E∗)µ.

We let E0 = X × C, the trivial line bundle over X, which is isomorphic
to Eµ ⊗ E−µ for all positive µ. As we have already used before, if {gαβ}
is a set of transition function for E with respect to some locally finite set
of trivializations, then {gαβ}µ is a set of transition functions for Eµ for all
integers µ.

Proposition 4.5.2. Let E → X be a positive holomorphic line bundle.
There exists an integer µ0 > 0 such that if µ ≥ µ0, then for any points
p, q ∈ X, p 6= q,

(a) π∗pEµ ⊗ L∗p ⊗K∗Qp(X),

(b) π∗pEµ ⊗ (L∗p)
2 ⊗K∗Qp(X),

(c) π∗pEµ ⊗ L∗p,q ⊗K∗QpQq(X),

are positive holomorphic line bundles.

Proof. In order to prove all the assertion we make use of the criterium
expressed in Proposition 0.4.1 to establish wether if a certain holomorphic
complex line bundle is positive. So, we shall find a hermitian metric such that
the curvature form associated to (a) is a positive differential form. Firstly
we prove the following result: Let F,G be two holomorphic complex line
bundles on X, then

ΘF⊗G = ΘF + ΘG.

To do so, let {ρα} and {rα} be hermitian metrics of F and G respectively,
then the changes of coordinates are given respectively by ρβ = |hαβ|2ρα and
rβ = |gαβ|2rα, where {hαβ} are the transition functions for F and {gαβ} are
the transition functions for G. Then, the transition functions for the tensor
bundle are given by {hαβ ·gαβ}, thus a hermitian metric for the same bundle
is given by {ρα · rα}. The curvature form of F and G with respect to the
chosen metrics are given by
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ΘF = ∂̄∂ log ρα,

ΘG = ∂̄∂ log rα.

Since the change of coordinates for the hermitian metric of the tensor bundle
is given by

ρβrβ = |hαβ|2|gαβ|2ραrα,

Then,

ΘF⊗G = ∂̄∂ log(ραrα)

= ∂̄∂ log ρα + ∂̄∂ log rα

= ΘF + ΘG.

According to this last result, suppose we have found a hermitian metric for
the tensor bundle π∗pEµ ⊗ L∗p ⊗K∗Qp(X), then

Θπ∗pE
µ⊗L∗p⊗K∗Qp(X)

= µΘπ∗pE + ΘL∗p + ΘK∗
X̃
. (4.2)

Now, using Lemma 4.5.1 and the above result we see that

ΘK∗
X̃

= Θπ∗pKX⊗L
n−1
p

= Θπ∗pE + (n− 1)ΘLp (4.3)

Hence, substituting (3) into (2) we have the following

Θπ∗pE
µ⊗L∗p⊗K∗Qp(X)

= µΘπ∗pE + nΘL∗p + Θπ∗KX . (4.4)

Now we shall find an hermitian metric such that (4) holds. We start by
looking at L∗p Consider a coordinate neighbourhood U of the point p, let
W ⊂ U ×Pn−1 be the local representation of X̃ and choose some ρ ∈ D(U)
such that ρ ≥ 0 in U and ρ|U ′ = 1 where U ′ ⊂ U is a neighbourhood
around the origin 0. By Proposition 0.5.1 we know that Lp|W = σ∗H∗, then
L∗p|W = σ∗H. Therefore, if h̃1 is the natural hermitian metric for H → Pn−1

then h1 = σ∗h̃1 will be a hermitian metric for L∗p|W . The curvature form on
H with respect the natural metric h̃1 is given by

ΘH = ∂̄∂ log
|tα|2

|t1|2 + ...+ |tn|2
.

Moreover, (i/2)ΘH is the fundamental form associated with the standard
Kähler metric on Pn−1. Since L∗p|X̃\W is trivial we can equipp this latter
with a constant hermitian metric h2. Then we define a hermitian metric on
L∗p by interpolating through the chosen section ρ the two above mentioned
metrics, that is
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h = ρh1 + (1− ρ)h2.

Observe that in W ∗ = U
′ × Pn−1 ∩W h = h1. Thus

ΘL∗ = Θσ∗H in W
′
,

ΘL∗ = 0 in X̃ \W.

We can endow KX with an arbitrary hermitian metric so that (4) holds.
Now we shall prove the positivity of (4). Firstly, consider the sum

µΘπ∗E + Θσ∗H

as differential forms on U ′×Pn−1, with the coordinates (z, t) as before. Then
Θπ∗E depends only on the variable z and Θσ∗H depends only on the variable
t, and the coefficient matrix is positive definite in each of the respective
directions, so their sum is a positive differential form in U ′ × Pn−1 and the
restriction to W is likewise positive. Moreover in U \ U ′ Θπ∗E is positive
definite, then there exists a µ1(p) such that µ > µ1(p) implies that

[µΘπ∗E ] + ΘL∗ > 0. (4.5)

Let µ2 be chosen such that µ2ΘE + ΘK∗X
> 0, which is possible since by

assumption E is positive and X is compact. Then there is a µ0(p) > 0 such
that (4) holds. Namely, let µ0(p) = µ2 + nµ1(p) and consider the sum

µ2Θπ∗E + Θπ∗K∗X

that is positive definite everywhere besides at points of S = π−1(p) where is
positive semidefinite. Suppose that q ∈ U ′ . Then we claim that if µ ≥ µ1(p),
then the estimate (5) will hold for points q near p. This can be done by a
continuity argument, namely we express the local representation in q centered
at p by

Wq = {(z, t) ∈ U × Pn−1 : (zi − qi)tj = (zj − qj)ti}

where q = (q1, ..., qn) and p = (0, ..., 0). By covering X with a finite number
of such neighbourhoods we find that there is a µ0 such that (4) holds for all
p ∈ X if µ ≥ µ0. Hence, (a) holds. Along the line of the proof of part (a) by
using the same arguments the assertions (b) and (c) follows. �
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4.6 The Kodaira’s Embedding Theorem

In this section we will prove the main result of this chapter, that is the
Kodaira’s Embedding theorem, which is a milestone in the field of complex
algebraic and differential geometry. In the following we have the statement
of the problem

Theorem 4.6.1. (Kodaira’s Embedding Theorem) Let X be a compact
Hodge manifold. Then X is a projective algebraic manifold.

In order to be able to prove the Kodaira’s embedding theorem we require
a sequence of lemmas. Consider the subsheaf of O = OX consisting of
holomorphic sections that vanishes at points p and q of X, and denote it by
mpq. If p = q then mpp = m2

p consist of holomorphic sections that vanish
at p to second order. From the assertion of the theorem if X is an Hodge
manifold, then it admits an integral Kähler form Ω. Since for holomorphic
complex line bundles hold c1(H1(X,O∗)), then there is a complex line bundle
E → X where Ω is a representative of c1(E), hence E → is a positive line
bundle. Let µ ≥ µ0 from Proposition 4.5.2 and write Eµ = F. Consider the
short exact sequence of abelian sheaves:

0→ mpq → O → O/mpq → 0 (4.6)

Since O(F ) is a locally free sheaf, then we can tensor (6) with O(F ) and get
the following short exact sequence

0→ O(F )⊗O mpq → O(F )→ O(F )⊗O O/mpq (4.7)

In (7) the quotient sheaf becomes

Fp ⊗C Op/m2
p if x = p = q,

0 if x 6= p.

If p = q note that mp is a maximal ideal for the ring Op, therefore the
quotient ring is a field, i.e. Op/mp = C, and because of the properties of the
tensor product Fp⊗CC ' Fp, hence we have Fp when x = p, Fq when x = q,
and 0 when x 6= p or q.

Lemma 4.6.1. Op/m2
p ' C⊕ T ∗pX and the quotient map is represented by

Op 3 f 7→ [f(p), df(p)]

Proof. If f ∈ Op then we can write it as power series near p, that is

f(z) =
∑
|α|≥0

1

α!
Dαf(p)(z − p)α.

Its class in the quotient is given by
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[f ]p =

f(p) +
∑
|α|≥1

Dαf(p)(z − p)α
 .

Therefore we have an induced mapping

ψ : Op −→ C⊕ T ∗pX
f 7−→ [f(p), df(p)]

that factors through the quotient map, making the following diagram com-
mute

Op C⊕ T ∗pX

Op/mp

ψ

ψ̃

and ψ̃, because of the properties of composition of functions, is clearly an
isomorphism. �

From the exact sequence (7) we have an induced map

r : O(X,F ) −→ Op/m2
p ⊗ Fp ' (C⊕ T ∗pX)⊗ Fp

that can be specified as follows: let f be a local frame near the point p, if
ξ ∈ O(X,F ) then

r(ξ(f)) = (ξ(f)(p), dξ(f)(p)) ∈ C⊕ T ∗pX.

If r is surjective, then we can find some coordinates for X. Namely, we can
have sections ξj ∈ O(X,F ), j = 1, ...,m such that

ξ0(p) = 1, ξj(p) = 0 for j = 1, ...,m, and dξj(p) = dzj . (4.8)

In particular dξ1(p) ∧ ... ∧ dξm(p) 6= 0, and ξ0(p) 6= 0. Similarly, we can find
from the sequence (7) the induced map:

s : O(X,F ) −→ Fp ⊕ Fq
if s is surjective, then we can find sections ξ1, ξ2 ∈ O(X,F ) such that

ξ1(p) 6= 0, ξ1(q) = 0, ξ2(p) = 0, ξ2(q) 6= 0. (4.9)
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Lemma 4.6.2. If the maps r and s are surjective for all p, q ∈ X, then there
exists an holomorphic embedding of X into Pm, where dimCO(X,F ) = m+1.

Proof. Consider the map r : O(X,F )→ Op/m2
p ⊗ Fp, choose some basis

ϕ = {ϕ0, ..., ϕm} of O(X,F ). Then, if f is a holomorphic frame near the
point p we have, for x near p

(ϕ0(f)(x), ..., ϕ(f)(x)) ∈ Cm+1.

We want to send the above vector onto Pm, to do so we use surjectivity
of r, namely we can find at least a ϕj , j = 0, ...,m that is non zero at p.
Therefore, we can have a mapping

Φϕ : X −→ Pm
x 7−→ Φϕ(x) := [ϕ0(f)(x), ..., ϕm(f)(x)]

The above map is by construction holomorphic, because the mapping

x 7→ ϕj(f)(x)

is clearly holomorphic as a function of x. Furthermore, if f̃ is another frame
near p, then ∀j = 0, ...,m we get

ϕj(f̃)(x) = c(x)ϕj(f)(x), (4.10)

where c is a holomorphic function that does not vanish at p. Thus, (10) tells
us that the basis represent the same class of homogeneous coordinates in Pm.
That means, the mapping Φϕ is well defined. Suppose ϕ̃ is another basis of
O(X,F ) then there exists an invertible matrix with constant coefficients
C = (cij), cij ∈ C such that ∀j = 0, ...,m we get

ϕ̃j =
∑
ij

cijφj .

Therefore, this induces a commutative diagram

X Pm

Pm

Φϕ

Φ̃ϕ̃
C̃

where C̃ is a biholomorphic mapping given by multiplication for the constant
invertible matrix C. With this in mind, we see that Φϕ is an embedding if
and only if Φϕ̃ is an embedding, this means that Φϕ would be an embedding
independently of the choice of the basis ϕ. It remains to show that Φϕ is an
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embedding. We will prove that by using a basic fact of differential geometry,
i.e. an injective immersion is an embedding. Thus we will prove firstly
that Φϕ is an immersion, namely Φϕ ha maximal rank and then that Φϕ is
injective.
By assumption the map r is surjective, then it follows that we can find
sections ξ0, ..., ξn ∈ O(X,F ) satisfying (8). It is clear that these sections are
linearly independent in O(X,F ), thus they extend to a basis ϕ̃, therefore if
f is a frame near p like before we get

Φϕ̃ = [ξ0(f)(x), ..., ξn(f)(x), ...]

and using the local coordinates (1, ζ1, ..., ζn) we see that the Jacobian deter-
minant

det

(
∂(ζ1, ..., ζn)

∂(z1, ..., zn)

)
,

is given by

d

(
ξ1(f)

ξ0(f)

)
∧ ... ∧ d

(
ξn(f)

ξ0(f)

)
= (ξ0(f)(p))−1dz1 ∧ ... ∧ dzn 6= 0.

Hence, Φϕ is an immersion, so Φϕ̃ is an immersion. The map s is surjective
then we can find sections ξ1, ξ2 that satisfies (9), it is straighforward to
see that are linearly independent, thus they can be extended to a basis
ϕ̃ = {ξ1, ξ2, ...}. Now, it is clear that Φϕ̃ is injective, and thus putting all
together Φϕ is an embedding. �

Lemma 4.6.3. The maps r and s are surjective.

Proof. We begin by proving surjectivity of r : O(X,F ) −→ Op/m2
p ⊗ Fp.

Let X̃ = Qp(X) be the quadratic transformation of X at p with projection
π : X̃ → X and divisor S = π−1(p) and let L → S be the line bundle
associated to that divisor. cal F̃ = π∗(F ) the pullback bundle of F through
the projection π, O = OX the structure sheaf of X and Õ = OX̃ . Consider
I2
S the subsheaf of Õ consisting of holomorphic sections vanishing to second

order along S. Like before, we have a short exact sequence of abelian sheaves:

0→ Õ(F̃ )⊗ I2
S → Õ(F̃ )→ Õ(F̃ )⊗ Õ/I2

S → 0

The pullback of π induces the following commutative diagram

0 −−−−→ Õ(F̃ )⊗ I2
S −−−−→ Õ(F̃ ) −−−−→ Õ(F̃ )⊗ Õ/I2

S → 0 −−−−→ 0

π∗1

x π∗
x π∗2

x
0 −−−−→ O(F )⊗m2

p −−−−→ O(F ) −−−−→ O(F )⊗O/m2
p −−−−→ 0
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where the map π∗ is the restriction of π∗ into the subsheaf O ×m2
p and the

map π∗2 is induced from the quotient map. Observe that if f ∈ Γ(U,F ) then
vanishes to second order at p if and only if π∗f ∈ Γ(π−1(U), F̃ ) vanishes
along S. We rewrite the above diagram in the following way:

0 −−−−→ Γ(X̃, Õ(F̃ )⊗ I2
S) −−−−→ Γ(Õ(F̃ )) −−−−→ Γ(X̃, Õ(F̃ )⊗ Õ/I2

S) −−−−→ 0

π∗1

x π∗
x π∗2

x
0 −−−−→ Γ(X,O(F )⊗m2

p) −−−−→ Γ(X,O(F ))
r−−−−→ Γ(X,O(F )⊗O/m2

p) −−−−→ 0

We claim that there exist isomorphisms

β : Γ(Õ(F̃ )) −→ Γ(X,O(F )),

α : Γ(X̃, Õ(F̃ )⊗ I2
S) −→ Γ(X,O(F )⊗m2

p),

that makes the above diagram commute. If this is true then to prove surjec-
tivity of r it sufficies to prove that H1(X̃, Õ(F̃ )⊗I2

S) = 0. Indeed, consider-
ing the induced commutative diagram in cohomology and the below induced
diagram in cohomolowy

0 −−−−→ H0(X̃, Õ(F̃ )⊗ I2
S)) −−−−→ H0(X̃, (Õ(F̃ ))) −−−−→ H0(X̃, Õ(F̃ )⊗ Õ/I2

S) −−−−→ 0

π∗1

x x π∗2

x
0 −−−−→ H0(X,O(F )⊗m2

p) −−−−→ H0(X,O(F ))
r∗−−−−→ H0(X,O(F )⊗O/m2

p) −−−−→ 0

Both sequences are short exact, so r∗ must be surjective. Therefore, by
functoriality of cohomology the map r must be surjective. To explicitly
construct the isomorphism β and α we would need to use Hartog’s theorem,
which asserts that a holomorphic function f defined on U \ 0 where U is a
neighbourhood of the origin in Cn, n > 1, can be analytically continued to
all of U. Then, we shall define β and see that its restriction to the subspace
Γ(X̃, Õ(F̃ ) ⊗ I2

S) (which we shall call α) has the desired image. Suppose
that ξ ∈ Γ(X̃, Õ(F̃ ), we know that π is biholomorphic on X̃ \ S, then let

β̃(ξ) = (π−1)∗(ξ)

which is a well defined element of Γ(X \ {p},O(F )). Then by Hartog’s the-
orem, there is a unique extension of β̃(ξ) to a section O(F ) of X which we
call β. Clearly, we have β−1 = π∗ and hence β is an isomorphism. As we
observed before β−1(η) will vanish to second order along S if and only if
η ∈ Γ(X,O(F )⊗m2

p). Thus, it remains to show that H1(X̃, Õ(F̃ )⊗IS) = 0.

Notice that IS ' Õ(L∗) since they have the same transition functions, then
it follows that I2

S ' Õ((L∗)2). Therefore one has the following isomorphism
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H1(X̃, Õ(F̃ )⊗ I2
S) = H1(X̃, Õ(F̃ ⊗ (L∗)2).

By assertion (b) of Proposition 4.5.2

F̃ ⊗ (L∗)2 ⊗K∗X > 0,

therefore for assertion (1) of the Kodaira-Nakano vanishing theorem we see
that H1(X̃, Õ(F̃ ) ⊗ I2

S) = 0. To prove that s : O(X,F ) −→ Fp ⊕ Fq is
surjective, we let X̃ = QpQq(X), S = π−1({p} ∪ {q}), IS the ideal sheaf of
this divisor, let Õ be the structure sheaf for X̃, and let F̃ = π∗F. We have
the exact sequence

0→ Õ(F̃ )⊗ I → Õ(F̃ )→ Õ(F̃ )⊗ Õ/I → 0,

and there exists isomorphism α and β constructed, using Hartog’s theorem,
like before that they make the following diagram commute

0 −−−−→ Γ(X̃, Õ(F̃ )⊗ I) −−−−→ Γ(Õ(F̃ )) −−−−→ Γ(X̃, Õ(F̃ )⊗ Õ/I) −−−−→ 0

π∗p,q

x π∗p,q

x π∗p,q

x
0 −−−−→ Γ(X,O(F )⊗mpq) −−−−→ Γ(X,O(F ))

s−−−−→ Γ(X,O(F )⊗O/mpq) −−−−→ 0

and thus we see that the vanishing of H1(X̃, Õ(F̃ ) ⊗ I) will ensure the
surjectivity of s. But IS ' Õ(L∗pq), and it follows from Proposition 0.5.2
that

F̃ ⊗ L∗pq ⊗K∗X > 0.

By applying assertion (1) of the Kodaira-Nakano vanishing theorem we see
that H1(X̃, Õ(F̃ )⊗ IS) = 0. �

We can immediately observe that along the line of previous Lemmas, we
obtain the proof of the Kodaira’s Embedding Theorem.
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Conclusions

We have seen in chapters 1,2 and 3 the basic concepts of complex geom-
etry, sheaf theory and hermitian differential geometry in order to prepare
the reader to the last chapter, that is the main target of this work. The
Kodaira’s embedding theorem plays a very important role into complex al-
gebraic and differential geometry. In order to appreciate this, notice that
as a consequence of the Kodaira’s theorem, each of the examples of Hodge
manifolds, seen in the last chapter, admits a projective algebraic embedding.
In particular, any compact Riemann surface is projective algebraic. It fol-
lows immediately from the Kodaira’s embedding theorem that any compact
complex manifold X which admits a positive line bundle L → X is projec-
tive algebraic. Namely, in this case, the first Chern class c1(E) will have a
Hodge form as a representative, and thus X will be projective algebraic. In
the next and last section, we will give further motivations for the importance
of the Kodaira’s embedding theorem.

Beyond the Kodaira’s Embedding Theorem

The essential tool for the proof of the Kodaira’s embedding theorem is the
Kodaira-Nakano vanishing theorem, that holds for compact complex mani-
folds. In case we consider a non compact complex manifold the vanishing
theorem is not anymore valid. Andreotti and Vesentini in 1961 [20] proved,
under some peculiar assumptions, an extension of the vanishing theorem in
the case when the complex manifold is non compact. In the following we
will give a very brief explanation of their work.

The non compact case of the Kodaira’s embedding theorem

Let E → X be a complex line bundle and denote by Cp,q(X,E) the space of
the differential smooth forms of type (p, q) E-valued. Consider the space

Lp,q(X,E) := {ϕ ∈ Cp,q(X,E) :

∫
X
A(ϕ,ϕ)dX <∞}

modulo the equivalence relation on the (p, q)- integrable function. In the
above, A is a sesquilinear form on X and dX is the volume element of the
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metric. Lp,q(X,E) is a Hilbert space. We say that a holomorphic complex
line bundle E → X is complete and positive if the form

ω = iΘε− 2πc1(E)

where Ω is the fundamental form and ε > 0 a real number, is the exterior
form of a complete Kähler metric (in the sense of Hilbert) on X. We say
that E → X is negative and complete if the dual bundle E∗ is positive and
complete. Then we have the following result

Theorem 4.6.2. (Vanishing) If E → X is a negative complete holomorphic
line bundle, then the natural morphism

Hq
c (X,Ωp(E)) −→ Hq(X,Ωp(E))

vanish for p+ q < n, where n = dimCX.

The above theorem permits to prove the Kodaira’s theorem in case when X
is non compact. However, we shall stress the fact that not every non compact
maifold admits an embedding into a finite dimensional complex projective
space. In order to introduce the class of such non compact manifolds that
admits such embedding, we some preliminary definitions.

Definition 4.6. We call upper bound form a (1, 1) differential form ϕ on the
complex manifold X (not necessarily closed) a differential form that satisfies
the following conditions:

• for all points p ∈ X we can choose a form σp such that ϕ−σp is positive
definite on the complement of p.

• There exists a hermitian metric on the canonical bundle K such that,
if Θ(K) is the curvature form of K, then ϕ−Θ(K) is positive definite.

• the hermitian metric defined on X from ϕ−Θ(K) is complete.

We shall quote the following important result:

Lemma 4.6.4. Every connected complex manifold (with numerable basis)
admits at least one upper bound form.

Definition 4.7. We say that a holomorphic complex line bundle E → X
over a complex manifold X is uniformly positive if we can choose an upper
bound form ϕ on X, an integer µ > 0 and a metric of the fibers of E → X
such that, µΘ(E)− ϕ is positive definite at every point of X.

We shall underline that not every complex manifold admits a holomorphic
complex line bundle uniformly positive. We shall call the class of manifold
that admits such line bundles as reasonable manifolds.
Hereby we can state the non compact version of the Kodaira’s theorem:

Theorem 4.6.3. Every connected reasonable manifold X can be embedded
in a finite dimensional complex projective space Pn.
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Isometric Embeddings and Symplectic Geometry

Let X be a compact Kähler manifold with fundamental Kähler form Ω and
denote it by (X,Ω). Denote by ΩFS the Fubini-Study form on Pn, then for
the Kodaira embedding theorem there exists an holomorphic embedding

k : (X,Ω) ↪→ (Pn,ΩFS).

Observe that the form Ω is cohomologues to k∗ΩFS ,i.e. Ω ∼ k∗ΩFS . Then,
we can ask ourself when that embedding is also isometric, i.e. k∗ΩFS = Ω.
The answer to that question was provided in 1952 by Calabi in his Ph.D.
dissertation Isometric complex analytic imbedding of Kähler manifolds. Fur-
ther generalizations of the Kodaira’s theorem can be found in the field of
symplectic geometry. We briefly recall what a symplectic manifold is

Definition 4.8. A symplectic manifold is a pair (M,ω) whereM is a smooth
manifold, and ω is a 2-form on M that satisfies:

• ∀x ∈M , (TxM,ωx) is a symplectic vector space;

• ω is a closed form, i.e. dω = 0.

The 2-form ω together with the above conditions is called symplectic struc-
ture.

One can think of a symplectic manifold as a family of symplectic vector
spaces {(TxM,ωx}x∈M ”smoothly parametrized” by points of M. It follows
that every Kähler manifold are symplectic manifolds. We can ask ourself
under which condition there exists a smooth isometric embedding of a sym-
plectic manifold into a complex projective space. A partial answer to that
question can be found in a work of Tischler and Gromov in 1982 and the
main result was

Theorem 4.6.4. (Tischler-Gromov) Let (M,ω) be a compact symplectic
manifold such that ω is integral. Then there exists a positive integer N and
a symplectic embedding ψ : (M,ω)→ (Pn,ΩFS).

The non compact case is in general false. By weaker hypothesis, it is licit to
demand under which restrictive conditions a non compact symplectic man-
ifold whose form is integral admits a symplectic embedding. A possible
hypothesis is to consider reasonable manifolds, therefore the problem could
be tackled as follows: consider a non compact symplectic manifold (M,ω)
where M is also a reasonable manifold and ω is a integral form, then by the
result of Andreotti and Vesentini, mentioned in the previous section, there
exists a holomorphic embedding

φ : M −→ Pn.
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Now, we shall prove that there exists a diffeomorphism F : M → M such
that

F ∗(φ∗ΩFS) = ω.

Observe that, in case M is compact and ω is also Kähler, such a diffeomor-
phism always exists, this can be shown using the Moser’s trick tipically used
in the literature to prove the Darboux-Weinstein theorem, which is one of
the main results of symplectic geometry [11], [12]. In caseM is non compact,
then the Moser’s trick is not anymore applicable. An approach to solve the
problem can be found in [21].

The case of Geometric Quantization

All these frameworks have been so important to theoretical and modern
mathematical physics. To give an insight we can see that all of these results
have been useful in formulations of physical theories such as string theory,
quantum gravity and supersymmetric field theories. In this section we want
to briefly point out the case of geometric quantization. This latter theory,
has been very important in mathematical physics as well as in some aspects
of quantum theory [17], [18]. In order to appreciate this, geometric quanti-
zation is a very important procedure that permits to generalize the so called
canonical quantization that can be performed only in flat symplectic mani-
folds, e.g. the canonical phase space R2N , into non flat symplectic manifolds
by letting some peculiar conditions on the curvature 2-form. To have a geo-
metric quantization one needs to consider a particular hermitian line bundle,
called quantum line bundle on the underline symplectic manifold. Namely
a quantum line bundle L → X is a hermitian complex line bundle above a
symplectic manifold (X,ω) whose curvature 2-form Θ is a multiple of ~/2πi
of the symplectic form, i.e.

Θ = −i~ω

Where ~ is the reduced Planck’s constant.
A very important case for the geometric quantization is the Kähler case [19].
A geometric quantization of a Kähler manifold (M,ω) is a pair (L, h) where
L is a holomorphic line bundle over M and h is a hermitian structure on L
such that its curvature satisfies

Θ = −2πiω.

Not all manifolds admits such a pair, e.g. a 2-sphere of radius r > 0 is
quantizable if and only if the radius r = n~/2 (this is a coherent results
with quantum physics electrons). In terms of cohomology classes, a Kähler
manifold X admits a geometric quantization if and only if the fundamental
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form Ω is integral, i.e. X must be a Hodge manifold. Because of the Ko-
daira’s embedding theorem X is embeddable in a finite dimensional complex
projective space Pn. For further details the reader may read [19]. The Käh-
ler case has been of crucial importance in particle physics in order to study
supersymmetry (SUSY). Loosely speaking SUSY is a proposed type of space-
time symmetry that relates two basic classes of elementary particles: bosons,
which have integer valued spin, and fermions, which have half-integer spin.
Each particle from one group is associated with a particle from the other,
known as its superpartner, the spin of which differs by half-integer. In a
theory with perfectly unbroken supersymmetry, each pair of superpartners
would share the same mass and internal quantum numbers besides spin.
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