Il teorema degli zeri di Hilbert (Hilbert's Nullstellensatz)

Relatore: Andrea Loi Candidato: Michele Gaviano

21 settembre 2018

Obiettivo della presentazione

Teorema (Nullstellensatz)

Sia K un campo algebricamente chiuso e J un ideale di $K[X_1,...,X_n]$ Allora I(V(J)) = Rad(J)

Definizione

Sia J un ideale di un anello commutativo unitario R.

Il radicale di
$$J$$
 è $Rad(J) := \{a \in R \mid \exists n \in \mathbb{N} : a^n \in J\}$

Si dimostra che Rad(J) è un ideale di R contenente J

J si dice radicale se J = Rad(J)

Definizione

Un anello commutativo unitario R si dice Noetheriano se ogni suo ideale è generato da un numero finito di elementi.

Teorema (teorema della base di Hilbert)

Definizione

Sia J un ideale di un anello commutativo unitario R.

Il radicale di J è $Rad(J) := \{a \in R \mid \exists n \in \mathbb{N} : a^n \in J\}$

Si dimostra che Rad(J) è un ideale di R contenente J.

J si dice radicale se $J=\mathit{Rad}(J)$

Definizione

Un anello commutativo unitario R si dice Noetheriano se ogni suo ideale è generato da un numero finito di elementi.

Teorema (teorema della base di Hilbert)

Definizione

Sia J un ideale di un anello commutativo unitario R.

Il radicale di J è $Rad(J) := \{a \in R \mid \exists n \in \mathbb{N} : a^n \in J\}$

Si dimostra che Rad(J) è un ideale di R contenente J.

J si dice radicale se J = Rad(J)

Definizione

Un anello commutativo unitario R si dice Noetheriano se ogni suo ideale è generato da un numero finito di elementi.

Teorema (teorema della base di Hilbert)

Definizione

Sia J un ideale di un anello commutativo unitario R.

Il radicale di J è $Rad(J) := \{a \in R \mid \exists n \in \mathbb{N} : a^n \in J\}$

Si dimostra che Rad(J) è un ideale di R contenente J.

J si dice radicale se J = Rad(J)

Definizione

Un anello commutativo unitario R si dice Noetheriano se ogni suo ideale è generato da un numero finito di elementi.

Teorema (teorema della base di Hilbert)

Definizione

Sia J un ideale di un anello commutativo unitario R.

Il radicale di J è $Rad(J) := \{a \in R \mid \exists n \in \mathbb{N} : a^n \in J\}$

Si dimostra che Rad(J) è un ideale di R contenente J.

J si dice radicale se J = Rad(J)

Definizione

Un anello commutativo unitario R si dice Noetheriano se ogni suo ideale è generato da un numero finito di elementi.

Teorema (teorema della base di Hilbert)

Definizione

Sia K un campo e $n \in \mathbb{N}^+$. $\mathbb{A}^n(K) := K^n$ si dice n-spazio affine su K.

Definizione

Sia $F \in K[X_1, ..., X_n]$.

 $V(F) := \{ P \in \mathbb{A}^n(K) \mid F(P) = 0 \}$ si dice ipersuperficiti

In generale, se $S \subseteq K[X_1, ..., X_n]$

 $V(S) := \{ P \in \mathbb{A}^n(K) : \forall F \in S \mid F(P) = 0 \}$

Definizione

Sia
$$X \subseteq \mathbb{A}^n(K)$$

 $I(X) := \{ F \in K[X_1, ..., X_n] : \forall (a_1, ..., a_n) \in \mathbb{A}^n(K) \mid F(a_1, ..., a_n) = 0 \}$ è un ideale di $K[X_1, ..., X_n]$ e si dice ideale di X

Definizione

Sia K un campo e $n \in \mathbb{N}^+$. $\mathbb{A}^n(K) := K^n$ si dice n-spazio affine su K.

Definizione

Sia
$$F \in K[X_1, ..., X_n]$$
.

$$V(F) := \{ P \in \mathbb{A}^n(K) \mid F(P) = 0 \}$$
 si dice ipersuperficie.

In generale, se
$$S \subseteq K[X_1, ..., X_n]$$

$$V(S) := \{ P \in \mathbb{A}^n(K) : \forall F \in S \quad F(P) = 0 \}$$

Se J è l'ideale generato da S, allora V(S) = V(J)

Definizione

Sia
$$X \subseteq \mathbb{A}^n(K)$$

$$I(X) := \{ F \in K[X_1, ..., X_n] : \forall (a_1, ..., a_n) \in \mathbb{A}^n(K) \mid F(a_1, ..., a_n) = 0 \}$$

è un ideale di $K[X_1, ..., X_n]$ e si dice ideale di X

Definizione

Sia K un campo e $n \in \mathbb{N}^+$. $\mathbb{A}^n(K) := K^n$ si dice n-spazio affine su K.

Definizione

Sia
$$F \in K[X_1, ..., X_n]$$
.

$$V(F) := \{ P \in \mathbb{A}^n(K) \mid F(P) = 0 \}$$
 si dice ipersuperficie.

In generale, se
$$S \subseteq K[X_1, ..., X_n]$$

$$V(S) := \{ P \in \mathbb{A}^n(K) : \forall F \in S \mid F(P) = 0 \}$$

Se J è l'ideale generato da S, allora V(S) = V(J)

Definizione

Sia
$$X \subseteq \mathbb{A}^n(K)$$

$$I(X) := \{ F \in K[X_1, ..., X_n] : \forall (a_1, ..., a_n) \in \mathbb{A}^n(K) \mid F(a_1, ..., a_n) = 0 \}$$
 è un ideale di $K[X_1, ..., X_n]$ e si dice ideale di X

Definizione

Sia K un campo e $n \in \mathbb{N}^+$. $\mathbb{A}^n(K) := K^n$ si dice n-spazio affine su K.

Definizione

Sia
$$F \in K[X_1, ..., X_n]$$

$$V(F) := \{ P \in \mathbb{A}^n(K) \mid F(P) = 0 \}$$
 si dice ipersuperficie.

In generale, se
$$S \subseteq K[X_1, ..., X_n]$$

$$V(S) := \{ P \in \mathbb{A}^n(K) : \forall F \in S \mid F(P) = 0 \}$$

Se J è l'ideale generato da S, allora V(S) = V(J)

Definizione

Sia
$$X \subseteq \mathbb{A}^n(K)$$

$$I(X) := \{ F \in K[X_1, ..., X_n] : \forall (a_1, ..., a_n) \in \mathbb{A}^n(K) \mid F(a_1, ..., a_n) = 0 \}$$

è un ideale di $K[X_1, ..., X_n]$ e si dice ideale di X

Definizione

Sia K un campo e $n \in \mathbb{N}^+$. $\mathbb{A}^n(K) := K^n$ si dice n-spazio affine su K.

Definizione

Sia
$$F \in K[X_1, ..., X_n]$$
.

$$V(F) := \{ P \in \mathbb{A}^n(K) \mid F(P) = 0 \}$$
 si dice ipersuperficie.

In generale, se
$$S \subseteq K[X_1,...,X_n]$$

$$V(S) := \{ P \in \mathbb{A}^n(K) : \forall F \in S \mid F(P) = 0 \}$$

Se J è l'ideale generato da S, allora V(S) = V(J)

Definizione

Sia
$$X \subseteq \mathbb{A}^n(K)$$
.

$$I(X) := \{ F \in K[X_1, ..., X_n] : \forall (a_1, ..., a_n) \in \mathbb{A}^n(K) \quad F(a_1, ..., a_n) = 0 \}$$

è un ideale di $K[X_1,...,X_n]$ e si dice ideale di X

Il teorema degli zeri di Hilbert

Teorema (Nullstellensatz)

Sia K un campo algebricamente chiuso e J un ideale di $K[X_1,...,X_n]$ Allora I(V(J)) = Rad(J)

Se K è un campo algebricamente chiuso e J è un ideale proprio di $K[X_1,...,X_n]$, allora $V(J) \neq \emptyset$

Dimostrazione.

 $J\subseteq M$ per qualche ideale massimale M. Quindi $V(J)\supseteq V(M)$

Ci basta verificare la tesi per gli ideali massimali

 $f = K I X_1 - X_1 I M$ è un estensione finita di campo

identificando ogni $a \in K$ con la classe a + M

Se K è un campo algebricamente chiuso e J è un ideale proprio di $K[X_1,...,X_n]$, allora $V(J) \neq \emptyset$

Dimostrazione.

 $J\subseteq M$ per qualche ideale massimale M. Quindi $V(J)\supseteq V(M)$

Ci basta verificare la tesi per gli ideali massimali

 $L=K[X_1,...,X_n]/M$ è un estensione finita di campi di K ,

identificando ogni $a \in K$ con la classe a + M

Un campo algebricamente chiuso ha, come estensione finita, solo se stesso

Se K è un campo algebricamente chiuso e J è un ideale proprio di $K[X_1,...,X_n]$, allora $V(J) \neq \emptyset$

Dimostrazione.

 $J\subseteq M$ per qualche ideale massimale M. Quindi $V(J)\supseteq V(M)$

Ci basta verificare la tesi per gli ideali massimali

 $L=K[X_1,...,X_n]/M$ è un estensione finita di campi di K

identificando ogni $a \in K$ con la classe a + M

Un campo algebricamente chiuso ha, come estensione finita, solo se stesso

Se K è un campo algebricamente chiuso e J è un ideale proprio di $K[X_1,...,X_n]$, allora $V(J) \neq \emptyset$

Dimostrazione.

 $J\subseteq M$ per qualche ideale massimale M. Quindi $V(J)\supseteq V(M)$

Ci basta verificare la tesi per gli ideali massimali

 $L = K[X_1, ..., X_n]/M$ è un estensione finita di campi di K, identificando ogni $a \in K$ con la classe a + M

Un campo algebricamente chiuso ha, come estensione finita, solo se stesso. Allora K-I

Se K è un campo algebricamente chiuso e J è un ideale proprio di $K[X_1,...,X_n]$, allora $V(J) \neq \emptyset$

Dimostrazione.

 $J\subseteq M$ per qualche ideale massimale M. Quindi $V(J)\supseteq V(M)$

Ci basta verificare la tesi per gli ideali massimali

 $L = K[X_1, ..., X_n]/M$ è un estensione finita di campi di K, identificando ogni $a \in K$ con la classe a + M

Un campo algebricamente chiuso ha, come estensione finita, solo se stesso.

Se K è un campo algebricamente chiuso e J è un ideale proprio di $K[X_1,...,X_n]$, allora $V(J) \neq \emptyset$

Allora
$$K = L$$

$$\forall i = 1, ..., n \quad \exists a_i \in K : \quad X_i + M = a_i = a_i + M$$

$$\forall i \quad X_i - a_i \in M \quad \text{e quindi } M \supseteq (X_1 - a_1, ..., X_n - a_n)$$

Si dimostra che
$$(X_1-a_1,...,X_n-a_n)$$
 è massimale

$$M = (X_1 - a_1, ..., X_n - a_n)$$

$$V(M) = \{(a_1, ..., a_n)\} \neq \emptyset$$

Se K è un campo algebricamente chiuso e J è un ideale proprio di $K[X_1,...,X_n]$, allora $V(J) \neq \emptyset$

Allora
$$K = L$$

$$\forall i = 1, ..., n \quad \exists a_i \in K : \quad X_i + M = a_i = a_i + M$$

$$\forall i \quad X_i - a_i \in M$$
 e quindi $M \supseteq (X_1 - a_1, ..., X_n - a_n)$

Si dimostra che
$$(X_1 - a_1, ..., X_n - a_n)$$
 è massimale

$$M = (X_1 - a_1, ..., X_n - a_n)$$

$$V(M) = \{(a_1, ..., a_n)\} \neq \emptyset$$

Se K è un campo algebricamente chiuso e J è un ideale proprio di $K[X_1,...,X_n]$, allora $V(J) \neq \emptyset$

Allora
$$K = L$$

$$\forall i = 1, ..., n \quad \exists a_i \in K : \quad X_i + M = a_i = a_i + M$$

$$\forall i \quad X_i - a_i \in M \quad \text{e quindi } M \supseteq (X_1 - a_1, ..., X_n - a_n)$$

Si dimostra che
$$(X_1-a_1,...,X_n-a_n)$$
 è massimale

$$M = (X_1 - a_1, ..., X_n - a_n)$$

$$V(M) = \{(a_1, ..., a_n)\} \neq \emptyset$$

Se K è un campo algebricamente chiuso e J è un ideale proprio di $K[X_1,...,X_n]$, allora $V(J) \neq \emptyset$

Allora
$$K = L$$

$$\forall i = 1, ..., n \quad \exists a_i \in K : \quad X_i + M = a_i = a_i + M$$

$$\forall i \quad X_i - a_i \in M \quad \text{e quindi } M \supseteq (X_1 - a_1, ..., X_n - a_n)$$

Si dimostra che
$$(X_1 - a_1, ..., X_n - a_n)$$
 è massimale

$$M = (X_1 - a_1, ..., X_n - a_n)$$

$$V(M) = \{(a_1, ..., a_n)\} \neq \emptyset$$

Se K è un campo algebricamente chiuso e J è un ideale proprio di $K[X_1,...,X_n]$, allora $V(J) \neq \emptyset$

Allora
$$K = L$$

$$\forall i = 1, ..., n \quad \exists a_i \in K : \quad X_i + M = a_i = a_i + M$$

$$\forall i \quad X_i - a_i \in M \quad \text{e quindi } M \supseteq (X_1 - a_1, ..., X_n - a_n)$$

Si dimostra che
$$(X_1 - a_1, ..., X_n - a_n)$$
 è massimale

$$M = (X_1 - a_1, ..., X_n - a_n)$$

$$V(M) = \{(a_1, ..., a_n)\} \neq \emptyset$$

Se K è un campo algebricamente chiuso e J è un ideale proprio di $K[X_1,...,X_n]$, allora $V(J) \neq \emptyset$

Allora
$$K = L$$

$$\forall i = 1, ..., n \quad \exists a_i \in K : \quad X_i + M = a_i = a_i + M$$

$$\forall i \quad X_i - a_i \in M \quad \text{e quindi } M \supseteq (X_1 - a_1, ..., X_n - a_n)$$

Si dimostra che
$$(X_1 - a_1, ..., X_n - a_n)$$
 è massimale

$$M = (X_1 - a_1, ..., X_n - a_n)$$

$$V(M) = \{(a_1, ..., a_n)\} \neq \emptyset$$

Sia J un ideale di $K[X_1,...,X_n]$, allora $Rad(J)\subseteq I(V(J))$

Dimostrazione

Sia $F \in Rad(J)$. Allora $\exists N \in \mathbb{N} : F^N \in J$ $\forall P \in V(J) \quad F^N(P) = 0 \quad \text{e quindi } F(P) = 0$

Sia J un ideale di $K[X_1,...,X_n]$, allora $Rad(J)\subseteq I(V(J))$

Dimostrazione.

Sia
$$F \in Rad(J)$$
. Allora $\exists N \in \mathbb{N} : F^N \in J$

$$\forall P \in V(J)$$
 $F^N(P) = 0$ e quindi $F(P) = 0$
 $F \in I(V(J))$

Sia J un ideale di $K[X_1,...,X_n]$, allora $Rad(J)\subseteq I(V(J))$

Dimostrazione.

Sia
$$F \in Rad(J)$$
. Allora $\exists N \in \mathbb{N} : F^N \in J$
 $\forall P \in V(J)$ $F^N(P) = 0$ e quindi $F(P) = 0$
 $F \in I(V(J))$

Sia J un ideale di $K[X_1,...,X_n]$, allora $Rad(J)\subseteq I(V(J))$

Dimostrazione.

Sia
$$F \in Rad(J)$$
. Allora $\exists N \in \mathbb{N} : F^N \in J$
 $\forall P \in V(J)$ $F^N(P) = 0$ e quindi $F(P) = 0$
 $F \in I(V(J))$

Sia J ideale di $K[X_1,...,X_n]$.

Allora J è generato da un numero finito di polinomi $F_1,...,F_r$

Dimostrazione

K è un campo, quindi un anello Noetheriano

Per il teorema della base di Hilbert, $K[X_1,...,X_n]$ è un anello Noetherianco

Sia J ideale di $K[X_1,...,X_n]$.

Allora J è generato da un numero finito di polinomi $F_1,...,F_r$

Dimostrazione.

K è un campo, quindi un anello Noetheriano

Per il teorema della base di Hilbert, $K[X_1,...,X_n]$ è un anello Noetheriano

$$J=(F_1,...,F_r)$$
 per qualche $F_1,...,F_r\in K[X_1,...,X_n]$

Sia J ideale di $K[X_1,...,X_n]$.

Allora J è generato da un numero finito di polinomi $F_1,...,F_r$

Dimostrazione.

K è un campo, quindi un anello Noetheriano

Per il teorema della base di Hilbert, $K[X_1,...,X_n]$ è un anello Noetheriano

$$J=(F_1,...,F_r)$$
 per qualche $F_1,...,F_r\in K[X_1,...,X_n]$

Sia J ideale di $K[X_1, ..., X_n]$.

Allora J è generato da un numero finito di polinomi $F_1,...,F_r$

Dimostrazione.

K è un campo, quindi un anello Noetheriano

Per il teorema della base di Hilbert, $K[X_1,...,X_n]$ è un anello Noetheriano

$$J=(F_1,...,F_r)$$
 per qualche $F_1,...,F_r\in \mathcal{K}[X_1,...,X_n]$

Sia K un campo algebricamente chiuso e $J=(F_1,...,F_r)$ un ideale di $K[X_1,...,X_n]$ Allora $I(V(J))\subseteq Rad(J)$

Dimostrazione

Sia $G \in I(V(J)) \setminus \{0\}$

Sia $H = (F_1, ..., F_r, X_{n+1}G - 1) \subseteq K[X_1, ..., X_{n-r}]$

Sia
$$K$$
 un campo algebricamente chiuso e $J=(F_1,...,F_r)$ un ideale di $K[X_1,...,X_n]$
Allora $I(V(J))\subseteq Rad(J)$

Dimostrazione.

Sia
$$G \in I(V(J)) \setminus \{0\}$$

Sia
$$H = (F_1, ..., F_r, X_{n+1}G - 1) \subseteq K[X_1, ..., X_{n+1}]$$

Mostriamo che
$$V(H) = \emptyset$$

Supponiamo che P sia zero di tutti gli F_i

$$P \in V(J)$$
, perché $J = (F_1, ..., F_r)$

$$G(P)=0$$

P non è uno zero di $X_{n+1}G - 1$

Sia
$$K$$
 un campo algebricamente chiuso e $J=(F_1,...,F_r)$ un ideale di $K[X_1,...,X_n]$
Allora $I(V(J))\subseteq Rad(J)$

Dimostrazione.

Sia
$$G \in I(V(J)) \setminus \{0\}$$

Sia $H = (F_1, ..., F_r, X_{n+1}G - 1) \subseteq K[X_1, ..., X_{n+1}]$
Mostriamo che $V(H) = \emptyset$
Supponiamo che P sia zero di tutti gli F_i
 $P \in V(J)$, perché $J = (F_1, ..., F_r)$
 $G(P) = 0$

Sia
$$K$$
 un campo algebricamente chiuso e $J=(F_1,...,F_r)$ un ideale di $K[X_1,...,X_n]$
Allora $I(V(J))\subseteq Rad(J)$

Dimostrazione.

Sia
$$G \in I(V(J)) \setminus \{0\}$$

Sia $H = (F_1, ..., F_r, X_{n+1}G - 1) \subseteq K[X_1, ..., X_{n+1}]$
Mostriamo che $V(H) = \emptyset$
Supponiamo che P sia zero di tutti gli F_i
 $P \in V(J)$, perché $J = (F_1, ..., F_r)$
 $G(P) = 0$

Sia
$$K$$
 un campo algebricamente chiuso e $J=(F_1,...,F_r)$ un ideale di $K[X_1,...,X_n]$
Allora $I(V(J))\subseteq Rad(J)$

Dimostrazione.

Sia
$$G \in I(V(J)) \setminus \{0\}$$

Sia $H = (F_1, ..., F_r, X_{n+1}G - 1) \subseteq K[X_1, ..., X_{n+1}]$
Mostriamo che $V(H) = \emptyset$
Supponiamo che P sia zero di tutti gli F_i
 $P \in V(J)$, perché $J = (F_1, ..., F_r)$
 $G(P) = 0$

Sia
$$K$$
 un campo algebricamente chiuso e $J=(F_1,...,F_r)$ un ideale di $K[X_1,...,X_n]$
Allora $I(V(J))\subseteq Rad(J)$

Dimostrazione.

Sia
$$G \in I(V(J)) \setminus \{0\}$$

Sia $H = (F_1, ..., F_r, X_{n+1}G - 1) \subseteq K[X_1, ..., X_{n+1}]$
Mostriamo che $V(H) = \emptyset$
Supponiamo che P sia zero di tutti gli F_i
 $P \in V(J)$, perché $J = (F_1, ..., F_r)$
 $G(P) = 0$

Sia
$$K$$
 un campo algebricamente chiuso e $J=(F_1,...,F_r)$ un ideale di $K[X_1,...,X_n]$
Allora $I(V(J))\subseteq Rad(J)$

Dimostrazione.

Sia
$$G \in I(V(J)) \setminus \{0\}$$

Sia $H = (F_1, ..., F_r, X_{n+1}G - 1) \subseteq K[X_1, ..., X_{n+1}]$
Mostriamo che $V(H) = \emptyset$
Supponiamo che P sia zero di tutti gli F_i
 $P \in V(J)$, perché $J = (F_1, ..., F_r)$
 $G(P) = 0$

P non è uno zero di $X_{n+1}G - 1$

Sia
$$K$$
 un campo algebricamente chiuso e $J=(F_1,...,F_r)$ un ideale di $K[X_1,...,X_n]$
Allora $I(V(J))\subseteq Rad(J)$

Dimostrazione.

Sia
$$G \in I(V(J)) \setminus \{0\}$$

Sia $H = (F_1, ..., F_r, X_{n+1}G - 1) \subseteq K[X_1, ..., X_{n+1}]$
Mostriamo che $V(H) = \emptyset$
Supponiamo che P sia zero di tutti gli F_i
 $P \in V(J)$, perché $J = (F_1, ..., F_r)$
 $G(P) = 0$
 P non è uno zero di $X_{n+1}G - 1$

Sia K un campo algebricamente chiuso e $J=(F_1,...,F_r)$ un ideale di $K[X_1,...,X_n]$ Allora $I(V(J))\subseteq Rad(J)$

Dimostrazione.

Sia
$$G \in I(V(J)) \setminus \{0\}$$

Sia $H = (F_1, ..., F_r, X_{n+1}G - 1) \subseteq K[X_1, ..., X_{n+1}]$
Mostriamo che $V(H) = \emptyset$
Supponiamo che P sia zero di tutti gli F_i
 $P \in V(J)$, perché $J = (F_1, ..., F_r)$
 $G(P) = 0$
 P non è uno zero di $X_{n+1}G - 1$

Sia K un campo algebricamente chiuso e $J=(F_1,...,F_r)$ un ideale di $K[X_1,...,X_n]$ Allora $I(V(J))\subseteq Rad(J)$

Dimostrazione (continua).

$$H = \mathbb{A}^{n+1}(K)$$
 e quindi $1 \in H = (F_1, ..., F_r, X_{n+1}G - 1)$

Esistono $A_1,...,A_r,B\in K[X_1,...,X_{n+1}]$ tali che

$$1 = \sum_{i} A_{i}(X_{1}, ..., X_{n+1}) F_{i} + B(X_{1}, ..., X_{n+1}) (X_{n+1} G - 1)$$

Quest'uguaglianza vale anche in $K(X_1,...,X_n)[X_{n+1}]$

Valutiamo primo e secondo membro in $\frac{1}{G} \in K(X_1,...,X_n)$

$$G^N = \sum_i C_i(X_1,...,X_n) F_i \in J$$
, che implica $G \in Rad(J)$

Sia K un campo algebricamente chiuso e $J=(F_1,...,F_r)$ un ideale di $K[X_1,...,X_n]$ Allora $I(V(J))\subseteq Rad(J)$

Dimostrazione (continua).

$$H = \mathbb{A}^{n+1}(K)$$
 e quindi $1 \in H = (F_1, ..., F_r, X_{n+1}G - 1)$
Esistono $A_1, ..., A_r, B \in K[X_1, ..., X_{n+1}]$ tali che

$$1 = \sum_{r} A_r(X_1, ..., X_{n+1}) F_r + B(X_1, ..., X_{n+1})(X_n)$$

$$1 = \sum_{i} A_{i}(X_{1}, ..., X_{n+1}) F_{i} + B(X_{1}, ..., X_{n+1}) (X_{n+1} G - 1)$$

Quest'uguaglianza vale anche in $K(X_1,...,X_n)[X_{n+1}]$

Valutiamo primo e secondo membro in $\frac{1}{G} \in K(X_1,...,X_n)$

$$G^N = \sum_i C_i(X_1, ..., X_n) F_i \in J$$
, che implica $G \in Rad(J)$

Sia K un campo algebricamente chiuso e $J=(F_1,...,F_r)$ un ideale di $K[X_1,...,X_n]$ Allora $I(V(J))\subseteq Rad(J)$

Dimostrazione (continua).

$$H = \mathbb{A}^{n+1}(K)$$
 e quindi $1 \in H = (F_1, ..., F_r, X_{n+1}G - 1)$

Esistono $A_1,...,A_r,B\in K[X_1,...,X_{n+1}]$ tali che

$$1 = \sum_{i} A_{i}(X_{1}, ..., X_{n+1}) F_{i} + B(X_{1}, ..., X_{n+1}) (X_{n+1} G - 1)$$

Quest'uguaglianza vale anche in $K(X_1,...,X_n)[X_{n+1}]$

Valutiamo primo e secondo membro in $\frac{1}{G} \in K(X_1,...,X_n)$

$$G^N = \sum_i C_i(X_1, ..., X_n) F_i \in J$$
, che implica $G \in Rad(J)$

Sia K un campo algebricamente chiuso e $J=(F_1,...,F_r)$ un ideale di $K[X_1,...,X_n]$ Allora $I(V(J))\subseteq Rad(J)$

Dimostrazione (continua).

$$H = \mathbb{A}^{n+1}(K)$$
 e quindi $1 \in H = (F_1, ..., F_r, X_{n+1}G - 1)$

Esistono $A_1,...,A_r,B\in K[X_1,...,X_{n+1}]$ tali che

$$1 = \sum_{i} A_{i}(X_{1}, ..., X_{n+1}) F_{i} + B(X_{1}, ..., X_{n+1}) (X_{n+1} G - 1)$$

Quest'uguaglianza vale anche in $K(X_1,...,X_n)[X_{n+1}]$

Valutiamo primo e secondo membro in $rac{1}{G} \in \mathcal{K}(X_1,...,X_n)$

$$G^N = \sum_i C_i(X_1, ..., X_n) F_i \in J$$
, che implica $G \in Rad(J)$

Sia K un campo algebricamente chiuso e $J=(F_1,...,F_r)$ un ideale di $K[X_1,...,X_n]$ Allora $I(V(J))\subseteq Rad(J)$

Dimostrazione (continua).

$$H = \mathbb{A}^{n+1}(K)$$
 e quindi $1 \in H = (F_1, ..., F_r, X_{n+1}G - 1)$

Esistono $A_1,...,A_r,B\in K[X_1,...,X_{n+1}]$ tali che

$$1 = \sum_{i} A_{i}(X_{1},...,X_{n+1})F_{i} + B(X_{1},...,X_{n+1})(X_{n+1}G - 1)$$

Quest'uguaglianza vale anche in $K(X_1,...,X_n)[X_{n+1}]$

Valutiamo primo e secondo membro in $rac{1}{G} \in \mathcal{K}(X_1,...,X_n)$

$$G^N = \sum_i C_i(X_1, ..., X_n) F_i \in J$$
, che implica $G \in Rad(J)$

Sia K un campo algebricamente chiuso e $J=(F_1,...,F_r)$ un ideale di $K[X_1,...,X_n]$ Allora $I(V(J))\subseteq Rad(J)$

Dimostrazione (continua).

$$H = \mathbb{A}^{n+1}(K)$$
 e quindi $1 \in H = (F_1, ..., F_r, X_{n+1}G - 1)$

Esistono $A_1,...,A_r,B\in K[X_1,...,X_{n+1}]$ tali che

$$1 = \sum_{i} A_{i}(X_{1}, ..., X_{n+1}) F_{i} + B(X_{1}, ..., X_{n+1}) (X_{n+1}G - 1)$$

Quest'uguaglianza vale anche in $K(X_1,...,X_n)[X_{n+1}]$

Valutiamo primo e secondo membro in $\frac{1}{G} \in \mathcal{K}(X_1,...,X_n)$

$$G^N = \sum_i C_i(X_1, ..., X_n) F_i \in J$$
, che implica $G \in Rad(J)$