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Introduction

Our work fits in the context of symplectic geometry and, in particular, the

aim of this work is to compute minimal symplectic atlases for classical Her-

mitian symmetric spaces of compact type.

A symplectic manifold (M,ω) is a 2n-dimensional manifoldM equipped with

a closed and nondegenerate 2-form ω. The basic example of symplectic man-

ifold is R2n equipped with the standard symplectic form ω0 =
∑

j dxj ∧dyj .

The first interesting result about symplectic geometry is that for all p ∈M
there is a symplectic embedding ϕ of the 2n-dimensional ball equipped with

the standard symplectic form (B2n(r), ω0) in (M,ω) such that ϕ(0) = p.

This result gave rise to the introduction of an important symplectic invari-

ant cG called Gromov width:

cG(M,ω) = sup
{
πr2| ∃ ϕ :

(
B2n(r), ω0

)
→ (M,ω)

}
In [21] Rudyak-Schlenk introduced the invariant:

SB(M,ω) := min{k|M = B1 ∪ · · · ∪ Bk}

where B is the image of a Darboux chart ϕ(B2n) ⊂M . This is the minimal

number of symplectic charts needed to cover (M,ω). An immediate lower

bound for SB(M,ω) is λ(M,ω) := max{Γ(M,ω); B(M)} where B(M) is the

number of charts of a minimal (not necessarily symplectic) atlas and

Γ(M,ω) :=

⌊
V ol(M,ω)n!

cG(M,ω)n

⌋
+ 1,

the braket bxc denoting the maximal integer smaller than or equal to x.

Their main result about minimal atlases in [21] is the following
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Theorem 1. i) If λ(M,ω) ≥ 2n+ 1 then SB(M,ω) = λ(M,ω).

ii) If λ(M,ω) < 2n+ 1 then n+ 1 ≤ λ(M,ω) ≤ SB(M,ω) ≤ 2n+ 1.

It is then clear that problem of computing the invariant SB(M,ω) is

strictly related to the knowledge of the Gromov width of (M,ω).

If we consider a 2n-dimensional projective variety M in CP d the result

can be presented in terms of the degree of the embedding F : M → CP d.
Indeed such a manifold is Kähler when equipped with the restriction ωM of

the Fubini-Study form ωFS of CP d. Moreover the volume of such a manifold

is related to the volume of CPn by the formula Vol(M) = deg(F )Vol(CPn).

Thus we get the following:

Corollary 2. Let (M,ωM ) be a projectively induced Kähler manifold with

cG(M,ωM ) = πr2. If
deg(F )πn

cG(M,ωM )n
≥ 2n then SB(M,ωM ) = deg(F )/r2n+1.

In particular this corollary implies that for a projectively induced Kähler

manifold (M,ωM ) it is sufficient to know cG(M,ωM ) and the degree of the

embedding in order to compute the invariant SB(M,ωM ). Unfortunately

computing the Gromov width of a symplectic manifold is usually a very

delicate problem. However in [12] Loi-Mossa-Zuddas calculated the Gromov

width of Hermitian symmetric spaces of compact type. In this thesis, using

the above results, we prove the following:

Theorem 3. Let (M,ω) be an irreducible compact Hermitian symmetric

spaces of type I,II or III. Then SB(M,ωM ) = deg(F )+1 when the dimension

of M is sufficiently large.

Moreover, using the work of Loi-Mossa-Zuddas, we are able to extend

this result to product of these spaces. Unfortunately the irreducible com-

pact domain of type IV Qn does not satisfy the hypothesis of corollary 2

thus we cannot compute SB using the same arguments.

Nevertheless, in the last part of the thesis, we provide an explicit construc-

tion of a full symplectic embedding of Qn, namely a collection of symplectic

embeddings ϕi : B2n(1)→ Qn such that
⋃
i ϕi(B

2n(1)) = Qn.
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Chapter 1

Symplectic geometry

This chapter is dedicated to the basic notions the reader will need through-

out the thesis. It is meant to be an overview of some concept of symplectic

geometry we will use in next chapters. Helpful introductive readings on sym-

plectic geometry are [17, 18]. We will not present an exhaustive study of

symplectic geometry, neither of the other fields we consider along the chap-

ter, indeed we only give an introduction to the topics and fix the notation.

However we will introduce some important ideas and results which justify

the interest in this subject. The chapter is organized as follows. In the first

section we introduce symplectic manifolds and give an overview of the prop-

erties which are related to the symplectic structure. In section 2 we focus on

the problem of symplectic embedding and present Gromov’s nonsqueezing

theorem which plays an important role throughout next chapters. Moreover

we introduce symplectic capacities and, in particular, Gromov width. In the

last section we focus on Hermitian symmetric spaces, which we regard from

the point of view of Lie theoretic methods.

1.1 Symplectic manifolds

Let us start with the definition of symplectic vector space:

Definition 1.1. A symplectic vector space (V, ω) is a finite dimensional real

vector space V with a bilinear form ω satisfying the following properties

1. ω(u, v) = −ω(v, u),

1



2 Chapter 1

2. ∀v 6= 0 ∈ V there is u ∈ V s.t. ω(u, v) 6= 0 (nondegeneracy)

An example that plays an essential role in this context is (R2n, ω0) with

ω0(u, v) = 〈Ju, v〉 ∀ u, v ∈ R2n

where 〈, 〉 is the Euclidean product in R2n and J is the standard complex

structure

J =

(
0 Id

−Id 0

)

with respect to the splitting R2n = Rn × Rn. This splitting allows us to

identify R2n with Cn via the map

(x, y) ∈ R2n 7→ x+ iy ∈ Cn.

Note that under this identification the linear map J corresponds to the

multiplication by −i.
Back to the general context we want to point out that the bilinear form ω

gives rise to a notion of orthogonality: we say that two vectors u, v ∈ V

are orthogonal to each other if ω(u, v) = 0. If E is a linear subspace of

V then we call E⊥ its orthogonal complement. As a direct consequence of

nondegeneracy property we get

dimE + dimE⊥ = dimV

However this notion of orthogonality is quite different from the usual one.

For instance the subspaces E and E⊥ do not need to be complementary

subspaces: e.g. if dimE = 1 then E ⊂ E⊥ since for all v ∈ V it holds

ω(v, v) = −ω(v, v) = 0.

If E ⊂ V is a subspace such that E ⊂ E⊥ then E is called an isotropic sub-

space. Moreover the restriction of ω to a linear subspace E is not necessarily

nondegenerate, if it happens we call E a symplectic subspace and we have

V = E ⊕ E⊥.
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The following proposition contains the most important properties of sym-

plectic vector spaces.

Proposition 1.2. The dimension of a symplectic vector space (V, ω) is even.

Moreover if dimV = 2n then there exist a basis e1, . . . , en, f1, . . . , fn of V

satisfying, for i, j = 1, . . . n

ω(ei, ej) = 0

ω(fi, fj) = 0

ω(ei, fj) = δi,j

Such a basis is called a symplectic (or canonical) basis of V .

Proof. Choose a non-zero vector e1 ∈ V . By nondegeneracy of ω there exist

v ∈ V such that ω(e1, v) 6= 0. Now normalize f1 = αv so that ω(e1, f1) = 1.

We see that E =span{e1, f1} is a 2-dimensional linear subspace of V . If

dimV = 2 the proof is complete, otherwise we apply the same argument to

E⊥ and we prove the claim in finitely many steps.

Proposition 1.2 implies that, if u, v ∈ V with respect to the symplectic

basis are given by

u =

n∑
i=1

xiei + xn+ifi

v =

n∑
i=1

yiei + yn+ifi

then

ω(u, v) = 〈Jx, y〉 x, y ∈ R2n

In addition the subspaces Vj =span{ej , fj} are symplectic and orthogonal

to each other so that V can be decomposed as

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn.

Now let us consider linear a map A : (V, ωV )→ (W,ωW ) between symplectic

vector spaces such that A∗ωW = ωV , where A∗ is the so-called pullback of
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A that is (A∗ωW )(u, v) = ωW (Au,Av). Such a map is called symplectic.

The following proposition gives an essential characterization of symplectic

vector spaces.

Proposition 1.3. If (V1, ω1) and (V2, ω2) are two symplectic spaces of the

same dimension then there exist a linear isomorphism A : V1 → V2 such that

A∗ω2 = ω1

.

Proof. This comes from Proposition 1.2. We choose symplectic bases (ej , fj)

of V1 and (êj , f̂j) of V2 and we define A : V1 → V2 by

Aej = êj , Afj = f̂j

for 1 ≤ j ≤ n. Then by definition of symplectic basis we get A∗ω2 = ω1.

It means that two symplectic spaces of same dimension are symplectically

indistinguishable and makes the study of symplectic vector spaces not really

interesting. Thus we want to generalize from vector spaces to manifolds and

we will see that new properties arise in this context.

Definition 1.4. A symplectic manifold (M,ω) is a differentiable manifold

M equipped with a closed nondegenerate 2-form ω. Here nondegeneracy

condition means that for every tangent space TpM if ωp(u, v) = 0 for all

v ∈ TpM then u = 0.

From this definition we clearly see that every tangent space TpM is a

symplectic vector space with the bilinear form ωp and we conclude that M

must be even-dimensional. In the context of symplectic manifolds there

exist a ”standard model” that is (R2n, ω0) where we write a point in R2n as

(x1, . . . , xn, y1, . . . , yn) and the so-called standard symplectic form is

ω0 =

n∑
i=1

dxi ∧ dyi.

Other examples of symplectic manifold are:
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1) Any orientable surface Σ equipped with a volume form ν is a symplec-

tic manifold since a volume form is closed and nondegenerate.

2) The complex projective space CPn with the so-called Fubini-Study

form ωFS , which in homogeneous coordinates [z0 : . . . : zn], is given by

ωFS =
i

2π
∂∂̄ log(|z0|2 + · · ·+ |zn|2). (1.1)

3) The product of any two symplectic manifolds (M1, ω1) and (M2, ω2)

is symplectic with the form ω1 ⊕ ω2.

Definition 1.4 also implies that β = (∧ω)n is a volume form on M due

to the nondegeneracy of ω. The volume of (M,ω) will then be

1

n!

∫
M
β (1.2)

We will see in this chapter that symplectic geometry is substantially

dissimilar from Riemannian geometry. The first difference we can observe by

now is that every symplectic manifold carries a Riemannian structure while

not every 2n-dimensional manifold admits a symplectic structure. Consider

for example the sphere S2n and suppose ω is a symplectic form on S2n. In

particular ω = dα for some 1-form α since H2(S2n) is trivial. That means

the volume form β = (∧ω)n is exact that is it can be written as β = dγ

where γ = ω ∧ · · · ∧ ω ∧ α. In conclusion, by Stokes Theorem, we have∫
S2n

β =

∫
∂S2n

γ = 0

which is impossible for a volume form.

The following Theorem justifies the term ”standard model” we used

introducing (R2n, ω0).

Theorem 1.5 (Darboux). Let (M,ω) be a symplectic 2n-dimensional man-

ifold and p ∈ M . There exist coordinates (U,ϕ) with U ⊂ R2n such that

ϕ(0) = p and

ϕ∗ω = ω0.

Proof. If we choose any local coordinates we can assume that ω is a sym-
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plectic form on R2n depending on z ∈ R2n and that p corresponds to the

origin. Furthermore by a linear change of coordinates we can manage ω to

ω(0) =

n∑
i=1

dxi ∧ dyi.

We can do that thanks to Proposition 1.2. Now the goal is to find a local

diffeomorphism φ in a neighborhood of z = 0 leaving the origin fixed and

such that φ∗ω = ω0.

The technique employed to prove this is called the deformation method of

J. Moser. We define a family of forms interpolating ω and ω0 by

ωt = ω0 + t(ω − ω0) 0 ≤ t ≤ 1

and look for a family of diffeomorphisms φt such that φ0 = Id and

φ∗tωt = ω0 0 ≤ t ≤ 1. (1.3)

Our solution will be then the diffeomorphism φ1. We want to construct φt

as the flow of a vector field Xt. Thus we look at the conditions that the

vector field Xt must satisfy. Differentiating (1.3) we get

0 =
d

dt
(φt)

∗ωt = (φt)
∗
{

£Xtωt +
d

dt
ωt

}
where £X is the Lie derivative of the vector field X. By Cartan identity

and assuming dωt = 0 we get

0 =

{
d(ιXtωt) + ω − ω0

}
then Xt must satisfy the equation

0 = (ιXtωt) + ω − ω0 (1.4)

In order to solve this equation note that, since ω − ω0 is closed, then it is
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locally exact and there exist a 1-form λ so that

ω − ω0 = dλ and λ(0) = 0

Observe that since ωt(0) = ω0 the forms ωt are nondegenerate in an open

neighborhood of the origin. Hence there is a unique vector field Xt which

solves the equation (1.4) and it is given by

ιXt(ωt) = ωt(Xt, ·) = −λ 0 ≤ t ≤ 1

There is an open neighborhood of z = 0 in which the flow φt of Xt exist for

0 ≤ t ≤ 1, moreover φt(0) = 0 and φ0 = Id since λ(0) = 0 implies Xt(0) = 0.

By construction this family of diffeomorphism satisfies

d

dt
(φt)

∗ωt = 0, 0 ≤ t ≤ 1.

Thus (φt)
∗ωt = (φ0)∗ω0 = ω0 for 0 ≤ t ≤ 1 and this proves the Theorem.

Remark. In short Darboux Theorem means that every 2n-dimensional sym-

plectic manifold looks locally like R2n with the standard symplectic form

that is: there is no local symplectic invariant other than the dimension.

Extending this concept we will call φ : (M1, ω1) → (M2, ω2) a symplec-

tomorphism between two symplectic manifold (M1, ω1) and (M2, ω2) if φ

is a diffeomorphism such that φ∗ω2 = ω1. If dim(M1) ≤ dim(M2) we call

symplectic an embedding φ such that

φ∗ω2 = ω1.

This makes symplectic geometry sharply different from Riemannian ge-

ometry where one can easily find local invariants (consider for example the

Gaussian curvature). We should then focus on the construction of global

invariants.

The first (even though trivial) example is the symplectic volume defined in

equation (1.2). In fact if φ : (M1, ω1) → (M2, ω2) is a symplectomorphism

and βi = (∧ωi)n (i = 1, 2) then φ∗β2 = β1. Furthermore since φ preserves
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orientation we get ∫
M1

φ∗β2 =

∫
M2

β2

and we conclude that ∫
M1

β1 =

∫
M2

β2.

Conversely one cannot expect that two symplectic manifolds with same vol-

ume must be symplectomorphic. Still we will show that it holds in the

special case of closed connected oriented 2-manifolds. Closed connected

symplectic surfaces can be indeed classified by the Euler characteristic and

total volume. This result comes from the following more general

Theorem 1.6 (Moser). Let M be a closed connected m-dimensional mani-

fold and let α and β be two volume forms such that∫
M
α =

∫
M
β.

Then there is a diffeomorphism φ such that φ∗β = α.

Proof. The technique is the same we used to prove Darboux Theorem. The

only difference is that here we are looking for a global result instead of a

local one. It is obtained by compactness of M and by the existence of a

(m−1)-form γ on M such that dγ = (α−β). The existence of γ is given by

the fact that (α− β) is closed and therefore exact since Hm+1(M) = 0.

Another concept that arises naturally with the symplectic structure is

that of Hamiltonian vector field. Let then (M,ω) be a symplectic manifold.

In order to introduce Hamiltonian vector fields note that since ω is non-

degenerate it induces an isomorphism between vector fields and 1-forms by

X 7→ ιXω. In particular if H : M → R is a smooth function then we can

consider the vector field XH correspondent to the 1-form dH:

ιXH
ω = ω(XH , ·) = −dH. (1.5)

This distinguished vector field is called the Hamiltonian vector field belong-

ing to the function H. Since dω = 0 combining equation (1.5) with Cartan
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identity and ddH = 0 we deduce

£XH
ω = 0

Now if ϕt is the flow of XH we see that

d

dt
(ϕt)∗ω = (ϕt)∗£XH

ω = 0.

It follows then from (ϕ0)∗ω = ω that the flow of an Hamiltonian vector

field leaves the symplectic form invariant. Hamiltonian vector fields are also

invariant under symplectomorphisms as shows the following:

Proposition 1.7. If u : M → M is a symplectomorphism then for every

smooth function H : M → R it satisfies the equation

u∗XH = XH◦u

Proof. The claim follows from the nondegeneracy of ω and the calculation

ιXH◦uω = −d(H ◦ u) = −u∗(dH)

= u∗(ιHω) = ιu∗XH
(u∗ω)

= ιu∗XH
ω.

In order to conclude our brief introduction to symplectic manifolds we

want to underline that given a symplectic structure on a even-dimensional

manifold we can construct an auxiliary structure which assume an important

role.

Proposition 1.8. Let (M,ω) be a symplectic manifold. There exist on M

an almost complex structure J and a Riemannian metric 〈·, ·〉 such that

ω(X, JY ) = 〈X,Y 〉 (1.6)

The condition above is called taming condition and we will call such

an almost complex structure an ω-tame J . Note that in R2n the triple
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(ω0, g0, J0), where J0 is the standard complex structure, satisfies the taming

condition. Moreover proposition 1.8 gives an expression of a Hamiltonian

vector field XH in terms of the gradient ∇H of the generating function H

with respect to the metric 〈·, ·〉 that is

XH(p) = J∇H(p) ∈ TpM.

If (M,ω) is a complex manifold we can define a richer structure on M:

Definition 1.9. A complex manifold M is called a Kähler manifold if it

admits a symplectic form ω and a Hermitian metric g such that for all

X,Y ∈ TM
g(X, JY ) = ω(X,Y )

where J is the complex structure on M . We will then call ω a Kähler form

and g a Kähler metric.

1.2 Symplectic capacities

We will see in this section that symplectic geometry is much more rigid

than it seems at first glance. One of the first problems which arises is that

of symplectic embedding. Starting by a simple case one can ask which are

the conditions for the existence of a symplectic embedding ϕ : U → V from

an open domain U in R2n to another open domain V .

Clearly, since ϕ is volume preserving, a necessary condition must be

Vol(U) ≤ Vol(V ) and it turns out that the condition Vol(U) < Vol(V ) is
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already sufficient to guarantee the existence of a volume preserving diffeo-

morphism. Thus the question is whether there are symplectic obstruction

to the existence of a symplectic embedding. Consider for example the ball

B2n(R) of radius R in R2n and the cylinder

Ẑ2n(r) =
{

(x, y) ∈ R2n| x2
1 + x2

2 < r2
}
.

In this case the volume of B2n(R) is finite unlike the volume of Ẑ2n(r), and

we can construct a symplectic embedding ϕ : B2n(R) → Ẑ2n(r) for every

r,R ∈ R which is indeed given by

ϕ(x, y) = (εx1, εx2, . . . , xn,
1

ε
y1,

1

ε
y2, . . . , yn)

for ε sufficiently small. The problem changes radically if we replace Ẑ2n(r)

by

Z2n(r) =
{

(x, y) ∈ R2n| x2
1 + y2

1 < r2
}
.

We can notice that in this case case the plane Span{x1; y1} is a symplectic

subspace in contrast with the first case. One could try, in analogy with the

previous situation, to define the embedding

ψ(x, y) = (εx1,
1

ε
x2, . . . , xn, εy1,

1

ε
y2, . . . , yn)

Unfortunately in this case ψ is a volume preserving embedding for ε

small enough but it is symplectic only if ε = 1 that is when R ≤ r.
One can think to do better with nonlinear maps but next theorem shows

that it is not possible.

Theorem 1.10 (Gromov’s Nonsqueezing Theorem). There exist a symplec-

tic embedding ϕ : B2n(R)→ Z2n(r) if and only if R ≤ r.

Gromov’s nonsqueezing theorem was the first step to understand the

rigidity of symplectic geometry. It gives us the idea that the behaviour of

symplectic embeddings might be very different from how one can imagine

it.

In order to present the idea of Gromov’s proof we introduce the concept of

J-holomorphic curves. Consider the set J of all ω-tame J that is nonempty
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Figure 1.1: Embedding B2n(R) in Z2n(r)

by proposition 1.8. It can be proved that J is contractible, hence one can

find invariants of (M,ω) looking at those of the almost complex manifold

(M,J) which do not depend on the choice of ω-tame J . In order to find his

invariant Gromov looked at the maps of Riemannian surfaces with complex

structure j:

u : (Σ, j)→ (M,ω)

satisfying the generalized Cauchy-Riemann condition

du ◦ j = J ◦ du (1.7)

Such maps are called J-holomorphic curves. Since equation (1.7) is el-

liptic the solution spaces have nice properties.

In particular it turns out that, for a ω-tame J , the space M(A, J) of solu-

tion in a homology class A is finite dimensional. Moreover, even ifM(A, J)

is not compact because curves can degenerate, the taming condition allow

us to understand and control these degenerations and then compactify the

space of solutions.

Now, since the space J is path-connected, given any two ω-tame J we can

construct a path Jt joining them such that so that the spaces of solutions

M(A, Jt) for all t ∈ [0, 1] give us a cobordism between the solution spaces
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at 0 and 1. In many cases this cobordism is compact meaning that the

properties of M(A, J) which are cobordism invariant do not depend on the

choice of J .

Then Gromov defined his invariant counting the number of J-holomorphic

curves (with given genus in a given homology class) that pass through a

fixed number of points or cycles.

We will show now how Gromov used this construction to prove theorem

1.10. Note that the symplectic area of a J0-holomorphic curve S properly

embedded in B2n(R) passing through the origin is at least πR2. This comes

from the fact that J0-holomorphic curves are complex curves in the usual

sense and so are minimal surfaces with respect to g0. Moreover one can

easily see that the g0-area of a complex surface S equals the symplectic area∫
S ω0. Thus the claim follows from the well known fact that the minimal

surface through the origin is the flat disc.

We now consider an embedding of the ball B2n(R) in the cylinder Z2n(r).

On the image we have the pushforward of J0 which we can extend to a ω0-

tame J near the boundary of the cylinder. Then J extends to the compact

manifold S2 × R2n−2 obtained by closing up the cylinder.

Now the product almost complex structure on S2 × R2n−2 is generic (that

means we are in the situation we described above). Moreover if J is the prod-

uct almost complex structure than there is a unique (up to reparametriza-

tion) flat J-holomorphic 2-sphere through every point.

Thus the value of the Gromov invariant that counts the number of spheres

in the homology class [S2×pt] is 1. Since this value does not depend on the

ω-tame J , there is at least one J-holomorphic sphere Σ through the image

of the center of the ball where J equals the pushforward of J0 on the image

of the ball.

Note that the symplectic area of Σ depends only on its homology class and

hence it is π(r+ ε)2 for arbitrary small ε (the term ε appears with the com-

pactification of Z2n(r)).

We now look at the inverse image S of Σ in B2n(R):

For what we have seen above the area of S must be at least πR2, but

since symplectomorphisms preserve area it has to be less than the area of Σ
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Figure 1.2: The surface S in B2n(R)

which is π(r+ ε)2. Since ε is arbitrary small we get R ≤ r which proves the

theorem.

This theorem has been generalized later generalized by McDuff and Lalonde

([10]) in the following form:

Theorem 1.11. For any symplectic 2n-dimensional manifold M there exist

a symplectic embedding

ϕ : B2n+2(r)→ B2(R)×M

if and only if r ≤ R.

Remark. Roughly speaking the symplectic obstruction to the existence of

a symplectic embedding ϕ : (M,ωM ) → (N,ωN ) is related to the size of

surfaces in the manifolds M and N , that means symplectic geometry regards

surfaces rather than curves.

From this concept and Darboux theorem arises the key idea to define a

global invariant called Gromov width. Indeed we can symplectically embed

a ball B2n(ε) of radius ε small enough in every symplectic manifold (M,ω)
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of dimension 2n thus it makes sense to ask which is the bigger ball that can

be embedded in M .

Definition 1.12. The Gromov width cG(M,ω) of a symplectic 2n-dimensional

manifold is

cG(M,ω) = sup

{
πr2
∣∣∣ ∃ ϕ :

(
B2n(r), ω0

)
→ (M,ω)

}
(1.8)

where ϕ is a symplectic embedding.

It is then clear from the previous remark on the proof of nonsqueezing

theorem why the Gromov width of a manifold is defined as in (1.8). We will

now investigate the properties of Gromov width in a more general context.

Gromov’s nonsqueezing theorem gave rise to the concept of symplectic ca-

pacity which is a generalization of that of Gromov width.

The definition we give is due to Ekeland and Hofer ([2]):

Definition 1.13. A symplectic capacity is a functor c which assigns to

every symplectic manifold (M,ω) a nonnegative (possibly infinite) number

c(M,ω) and satisfies the following properties:

1. (monotonicity) If there exist a symplectic embedding

(M2n
1 , ω1) ↪→ (M2n

2 , ω2) then c(M2n
1 , ω1) ≤ c(M2n

2 , ω2),

2. (conformality) c(M,λω) = |λ|c(M,ω),

3. (nontriviality) c(B2n(1), ω0) > 0 and c(Z2n(1), ω0) <∞.

Not that the first axiom implies naturality: if (M2n
1 , ω1) and (M2n

2 , ω2)

are symplectomorphic then c(M2n
1 , ω1) = c(M2n

2 , ω2). The deep link between

the Gromov width and the idea of symplectic capacity lies in nontriviality

axiom: it prevents the volume of M from being a capacity. In fact it means

that capacities are 2-dimensional invariants as well as Gromov width is. The

following theorem shows the relation we mentioned above.

Theorem 1.14. The existence of a symplectic capacity c such that

c(B2n(1), ω0) = c(Z2n(1), ω0) = π (1.9)
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is equivalent to Gromov’s nonsqueezing theorem. Moreover the smallest of

all these capacities is the Gromov width cG.

Proof. Note that equation (1.9) is equivalent to the following

c(B2n(r), ω0) = c(Z2n(r), ω0) = πr2

since for every subset U ⊂ R2n there exist a symplectomorphism

ψ : (λU, ω0)→ (U, λ2ω0)

In fact it is given by x 7→ 1
λx and the claim follows from the conformality

axiom.

So now assuming Gromov’s nonsqueezing theorem we prove that the Gromov

width cG is indeed a capacity which satisfies (1.9).

Monotonicity axiom holds because composition of symplectomorphisms is a

symplectomorphism. In order to prove the second axiom we prove that to

every embedding

ϕ : (B2n(r), ω0)→ (M,λω)

corresponds an embedding

ϕ̂ : (B2n(
r√
|λ|

), ω0)→ (M,ω)

and conversely so that by definition of cG we get the assertion. If ϕ is given

then we have

ϕ∗(ω) =
1

λ
ω0

Now consider the symplectomorphism ψ : (B2n( r√
|λ|

), ω0)→ (B2n(r), 1
|λ|ω0)

we constructed at the beginning of the proof. Then if λ > 0 the embedding

we are looking for is ϕ̂ = ϕ ◦ ψ. If λ < 0 then the embedding is given by

ϕ̂ = ϕ ◦ ψ ◦ ψ0 where ψ0 is

ψ0 :

(
B2n

(
r√
|λ|

)
, ω0

)
→
(
B2n

(
r√
|λ|

)
,−ω0

)
, (x, y) 7→ (−x, y)

We prove now cG(B2n(r), ω0) = cG(Z2n(r), ω0) = πr2. Note that, since a
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symplectomorphism is volume preserving, we must have R ≤ r for the exis-

tence of an embedding ϕ : (B2n(R), ω0)→ (B2n(r), ω0). On the other hand

the identity is a symplectomorphism and thus cG(B2n(r), ω0) = πr2. The

equality cG(Z2n(r), ω0) = πr2 comes directly from Gromov’s nonsqueezing

theorem.

Conversely, let c be a capacity that satisfies (1.9), then the nonsqueezing

theorem follows from monotonicity axiom.

For the last part of the theorem consider any capacity c satisfying (1.9) and

an embedding

ϕ : (B2n(r), ω0)→ (M,ω)

Monotonicity axiom implies that πr2 = c(B2n(r), ω0) ≤ c(M,ω) and taking

the supremum we get the claim.

The Gromov width is not the only interesting capacity, the most used is

the Hofer-Zender capacity but we will not go further in this direction since we

are interested only in Gromov width of manifolds. Anyway we now present

some properties of Gromov width which hold true for all capacities. In

particular we can try to extend the definition of capacities including subsets

of R2n in analogy with the fact that it can be easily done for the Gromov

width. In order to do so we need the following definition: a symplectic

embedding ψ : A → R2n of an arbitrary subset A of R2n (with symplectic

form inherited from R2n) is a map which extends to a symplectic embedding

in a neighbourhood of A.

Definition 1.15. An intrinsic symplectic capacity c assigns to every

subset A ⊂ R2n a number c(A) ∈ [0,∞] such that the following hold

1. (monotonicity) If there exist a symplectic embedding ψ : A → R2n

such that ψ(A) ⊂ B then c(A) ≤ c(B),

2. (conformality) c(λA) = λ2c(A),

3. (nontriviality) c(B2n(1), ω0) > 0 and c(Z(1), ω0) <∞.

We already know that cG satisfies these three axioms. We call these

capacities intrinsic in order to underline the fact that c(A) does not depend
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on how A is embedded in R2n but only on the symplectic structure on A.

We start with one of the most studied subsets of R2n, the ellipsoids, but we

present only the basic results. An ellipsoid E is given by:

E =

{
x ∈ R2n|

2n∑
i,j=1

aijxixj ≤ 1

}

but we know that, by a linear symplectomorphism, it can always be put in

the form

E =

{
z ∈ Cn|

n∑
j=1

∣∣∣∣zjrj
∣∣∣∣2 ≤ 1

}

where r = (r1; . . . ; rn), with r1 ≤ · · · ≤ rn, is called the spectrum of E.

we can easily see that since

B2n(r1) ⊂ E ⊂ Z2n(r1)

we must have c(E) = πr2
1 for every symplectic capacity which satisfies (1.9).

This holds true in general: for every subset U of R2n and every capacity c

satisfying (1.9) if B2n(r) ⊂ E ⊂ Z2n(r) then we have c(U) = πr2.

Figure 1.3: B2n(r) contained in U embedded in Z2n(r)

Then next proposition follows directly from what we said:

Proposition 1.16. Assume E and F are two ellipsoids and ϕ : E → F is

a symplectic embedding, then

r1(E) ≤ r1(F )
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Our last result on ellipsoids is the following

Proposition 1.17. There exist a symplectomorphism

ϕ : B2(r1)×B2(r2)→ B2(s1)×B2(s2)

if and only if r1 = s1 and r2 = s2.

Proof. Since r1 = r2 we can use the symplectomorphism ϕ to define a sym-

plectic embedding:

B4(r1)→ B2(r1)×B2(r2)→ B2(s1)×B2(s2)→ Z(s1)

By monotonicity of c we conclude r1 ≤ s1. Applying the same argument to

ϕ−1 we get r1 ≥ s1. Now, since a symplectomorphism is volume preserving,

the last equality follows from r1r2 = s1s2.

In order to conclude this section we introduce a result that explains in

which sense the capacities are 2-dimensional invariants:

Proposition 1.18. Assume Ω ⊂ R2n is an open bounded nonempty set and

W ⊂ R2n is a linear subspace with codimW = 2 and consider the cylinder

Ω +W . Then

i) c(Ω +W ) =∞ if W⊥ is isotropic

ii) 0 < c(Ω +W ) <∞ if W⊥ is not isotropic

1.3 Hermitian symmetric spaces

In this section we introduced the class of spaces we are going to deal with

and state their main properties. Let us start directly with the definition:

Definition 1.19. Let M be a connected complex manifold with a Hermitian

structure. M is said to be an Hermitian symmetric space if each point p ∈M
is an isolated fixed point for an involutive holomorphic isometry sp of M .

From now on we will write in short HSS meaning Hermitian symmetric

space. The group I(M), namely the group of isometries of M , has a struc-

ture of Lie group compatible with the open-compact topology and is a Lie
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transformation group of M . Moreover, the group of holomorphic isometries

of M , which we denote with A(M), is a closed subgroup of I(M) and thus

a Lie transformation group of M itself. The group A(M) and its identity

component G act transitively on M .

Now choose a point p ∈M and let K be the subgroup of G leaving p fixed.

It can be proved that M is diffeomorphic to G/K under the map g(p) 7→ gK

where g ∈ G.

As a first consequence of this definition we get that any Hermitian symmet-

ric space M is a Kähler manifold.

The following proposition gives a rough idea of the structure of a HSS.

Proposition 1.20. Every HSS admits a Hermitian isometry with a space

M ′0 ×M1 × · · · ×Mk where M ′0 is the quotient of a complex euclidean space

by a discrete group of pure translations and the Mi are irreducible simply

connected HSS.

Proof. We consider the de Rham decomposition of the universal covering M̃

of a Hermitian symmetric space M :

M̃ = M0 ×M1 × · · · ×Mk

where we know that M1 . . .Mk are irreducible (not euclidean and not locally

isomorphic to a product of lower dimensional manifolds) and M0 is an Eu-

clidean space. Moreover M̃ is symmetric (Kähler) if and only if each Mi is

symmetric (Kähler). Thus we can conclude that M̃ ∼= M0 ×M1 × · · · ×Mk

is a Hermitian isometry. Now if π : M̃ →M is the universal covering there

is a unique complex structure and a unique Hermitian metric on M̃ such

that π is locally a Hermitian isometry. That makes M̃ a HSS since the

symmetries of M lift. Now M = M̃/Γ where Γ is a discontinuous group

of Hermitian isometries and then M0 is complex and the Mi are irreducible

simply connected HSS. Since Γ preserves each Mi ([24]) it acts as a group

of pure translations on M0 and acts trivially on each Mi.

Referring to the previous de Rham decomposition we say that the space

M is

1. Euclidean if M̃ = M0,
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2. Irreducible if M̃ = M1,

3. Strictly non-Euclidean if M̃ = M1 × · · · ×Mk,

4. of compact type if M̃ = M1 × · · · ×Mk and each Mi is compact,

5. of noncompact type if M̃ = M1×· · ·×Mk and each Mi is noncompact.

We will deal with HSS that fall into the third case. Note that if M is

strictly non-Euclidean then it always holds true that π1(M) = 0.

The last two cases are closely related to each other. In fact there is a duality

between HSS of compact type (in short HSSCT ) and HSS of noncompact

type (in short HSSNT ) that will play a key role hereafter. We explain now

how this duality is expressed.

We start with a HSSCT M∗. Recall that M∗ ∼= G/K where G is the

identity component of the group of Hermitian isometries A(M∗) of M∗ and

K the isotropy group at p ∈M∗. Denote as always the symmetry at p with

sp.

The Lie algebra g of G can be decomposed with respect to the

(±1)-eigenspaces of the adjoint ad(sp) of sp: g = k + m. That gives another

algebra

g0 = k + m0 m0 = im

that has the same complexification as g. Passing to the group level we get

the HSSNT M = G0/K. One can easily see that applying this construction

to M the result is M∗. We will then say that:

M is the (noncompact) dual of M∗

M∗ is the (compact) dual of M .

We will always denote a HSSCT (resp. HSSNT ) by M∗ (resp. M). The

duality yields some interesting relations betweenHSSCT and their duals. In

particular we can always holomorphically embed a HSSNT in its compact

dual via the Borel embedding. In order to present this link let us introduce

some notation:

• gC = kC + mC is the complexification of g = k + m

• GC is the complex Lie group associated to gC
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• z ∈ k is a central element such that J = ad(z)|mC is the complex

structure on M and M∗)

• m±C are the (±1)-eigenspaces of J

• p = kC + m−C is a parabolic subalgebra of gC that is the sum of the

nonnegative eigenspaces of ad(iz) : gC → gC

• P is the Lie group associated to p

We can now prove the

Theorem 1.21 (Borel embedding). G is transitive on the complex coset

space GC/P with isotropy group G ∩ P = K; thus

M∗ = GC/P

Moreover if p = 1 ·P ∈ GC/P then G0∩P = K and thus gP 7→ g(p) embeds

M holomorphically as an open G0-orbit.

Proof. Since g ∩ p = k we have dimG(p) = dim g − dim k = dimm =

dimm+
C = dimGC/P where dim denotes the dimension over R. Thus G(p)

is open in GC/P and the same holds for G0(p). Now since G is compact also

G(p) is compact and then closed (as well as open) in the connected space

GC/P . Hence we get GC/P = G(p). Now gK 7→ g(p) gives a complex ana-

lytic covering space M∗ → GC/P . This endows GC/P with the structure of

HSSCT implying it is simply connected. Thus we conclude GC/P ∼= M∗.

Similarly M = G0/K → G0(p) is a complex analytic diffeomorphism.

This does not end the list of relations between duals. The next theorem

shows that we can regard M as an open bounded (symmetric) domain in

m+
C . This will be studied in next chapter in a more convenient context thus

we do not linger on proving this theorem or discussing the consequences

here.

Theorem 1.22 (Harish-Chandra Embedding). The map

ξ : m+
C →M∗ = GC/P given by ξ(p) = exp(p)P
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is a complex analytic diffeomorphism of m+
C onto an open dense subset of M∗

that contains M . Furthermore ξ−1(M) = Ω is an open bounded symmetric

domain in m+
C .

As a consequence the space m+
C inherits the Kähler structure on M∗ as

we will see in next chapter. On the other hand, since m+
C is a complex vector

space, it is a Kähler manifolds with the flat form ω0. In other words we are

saying that m+
C is a Kähler manifold with respect to both the forms ωFS

(coming from M∗) and ω0 (coming from Cn = m+
C ). Even if we are going to

study these spaces later we state here some of the structure on a bounded

symmetric domain.

So let Ω ⊂ Cn be a bounded symmetric domain and denote with H2(Ω) the

set of functions of L2(Ω) which are holomorphic in Ω.

This is actually a complete Hilbert subspace of H2(Ω) with the inner product

(
f |g
)

=

∫
Ω
f(z)g(z)dµ(z)

where dµ(z) is the Lebesgue measure on R2n. Now for every w ∈ Ω, by

Riesz representation theorem, there exists Kw ∈ H2(Ω) such that

f(w) =
(
f |Kw) ∀f ∈ H2(Ω)

Definition 1.23. The Bergman kernel KΩ (or shortly K) of Ω is the func-

tion K : Ω× Ω→ C defined by

K(z, w) := Kw(z) =
(
Kw|Kz

)
Furthermore for any complete orthonormal system {ϕj}, applying the

evaluation at z of the Hilbert space we see that

K(z, w) =

∞∑
j=0

ϕj(z)ϕj(w)

Another property of the Bergman kernel is that it is invariant under isomor-
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phism: if F : Ω→ Ω′ is holomorphic with holomorphic inverse then

KΩ′(F (z), F (w))jF (z)jF (w) = KΩ(z, w)

where jF is the complex Jacobian of F . However the main result about the

Bergman kernel is the following

Theorem 1.24. Let Ω be a bounded symmetric domain and K its Bergman

kernel. Then the matrix

gij(z) =
∂2

∂zi∂zj
logK(z, z)

defines an invariant Kähler metric on Ω which is called Bergman metric.

Here, as above, invariant means that |dF (X)| = |X| if F : Ω → Ω′

is an isomorphism. Moreover next theorem shows that the correspondence

between bounded symmetric domains and HSSNT works in both ways

Theorem 1.25. Each bounded symmetric domain Ω is, when equipped with

the Bergman metric, a HSSNT . In particular Ω is simply connected.

We can say something also in the case M∗ is a HSSCT : it can be proved

that every Hermitian symmetric space of compact type can be holomorphi-

cally embedded in CP d for some d which makes M∗ a complex projective

variety. Thus the Kähler form on M∗ is induced by the Fubini-Study form of

CP d. With an abuse of notation we will indicate with ωFS this form on M∗.

From now on, when we say that M∗ is a HSSCT we mean it equipped with

the form ωFS normalized so that ωFS(A) = π where [A] is the generator

of H2(M∗,Z). We will see a realization of M∗ as projective variety in next

chapter in the language of Jordan triple systems.

Now let us come back to the distinction between HSSCT and their non-

compact duals. Recall that every strictly non-Euclidean HSS is a product

of irreducible HSSCT and HSSNT . These irreducible spaces have very

nice characterization:
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Theorem 1.26.

• The irreducible HSSNT are exactly the manifolds G/K where G is

a connected noncompact simple Lie group with center {e} and K has

nondiscrete center and is a maximal compact subgroup of G.

• The irreducible HSSCT are exactly the manifolds G/K where G is a

connected compact simple Lie group with center {e} and K has nondis-

crete center and is a maximal connected proper subgroup of G.

Furthermore in 1935 H. Cartan classified the irreducible bounded sym-

metric domains (thus irreducible HSSNT and their compact duals) into

four classical families and two exceptional cases. This is Cartan classifica-

tion:

• Type Ik,n (k ≤ n): the domain of k × n matrices Z ∈ Ckn satisfying

the condition Id− ZZ ′ > 0. It has real dimension 2kn.

• Type IIn (n ≥ 1): the domain of n× n symmetric matrices satisfying

the condition Id− ZZ > 0. It has real dimension n(n+ 1).

• Type IIIn (n ≥ 2): the domain of n × n skew-symmetric matrices

satisfying the condition Id+ ZZ > 0. It has real dimension n(n− 1).

• Type IVn(n > 2): the so-called Lie ball of Cn that is the domain of

z ∈ Cn such that

z′z < 1, 1 + |z′z| − 2z′z > 0

It has real dimension 2n.

• Type V: exceptional domain of dimension 16

• Type VI: exceptional domain of dimension 27

Here and throughout the thesis Z
′
will denote the conjugate transpose of Z.

Once we know this classification we can construct all HSSNT and thus,

knowing the dual classification, all HSSCT . For example the compact dual

of the first domain is the Grassmannian of k-planes in Cn+k and the compact



26 Chapter 1

dual of the domain of type IV is the complex projective quadricQn in CPn+1

i.e.

Qn =

{
[z0 : . . . : zn+1] ∈ CPn+1

∣∣∣∣ n+1∑
i=0

z2
i = 0

}
In order to give a deeper understanding of what we presented in this section

we investigate the simplest possible nontrivial case: the domain Ω = I1,2

and its compact dual M∗ which is nothing but CP 1.

We consider the Riemann sphere S2(1) = CP 1. In this case the groups are:

GC =

{
±

(
a b

c d

)∣∣∣∣ad− cb = 1

}

P =

{
±

(
a 0

c d

)∣∣∣∣ad = 1

}

We have M∗ = GC/P where GC acts by

±

(
a b

c d

)
: z 7→ (az + b)/(cz + d)

Now passing to the noncompact dual the groups are

G0 =

{
±

(
a b

b̄ ā

)∣∣∣∣|a|2 − |b|2 = 1

}

K =

{
±

(
a 0

0 ā

)∣∣∣∣|a|2 = 1

}

Under the action of G0, M∗ decomposes into two open orbits: the upper

hemisphere (G0(0) = M) and the lower hemisphere (G0(∞)) and a closed

one that is the equator (G0(i)).

Now m+
C = C = M∗ \ {∞} is embedded in M∗ via the stereographic pro-

jection. Hence the realization of M as a bounded symmetric domain is the

open disc in the complex line C: M = {z ∈ C : |z|2 < 1}.
Further material on HSS from the Lie theoretic point of view can be found

for example in [5, 25, 26].
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Geometry of Hermitian

symmetric spaces

This chapter is dedicated to the study of the geometry of Hermitian sym-

metric spaces of compact and noncompact type. The theory introduced here

will be of great importance in the last chapter of the thesis. In the first sec-

tion we establish a correspondence between HSS and Jordan triple systems

which give us a useful language we will use in the remainder of the thesis. In

section 2 we present a recent result which gives a deep relation between Jor-

dan triple systems and HSSNT . In the last part of the chapter we explain

the work [12] of Loi-Mossa-Zuddas where they compute the Gromov width

of Hermitian symmetric spaces of compact and noncompact type. This last

part is the key ingredient of our work.

2.1 Jordan triple systems

An alternative approach to the Lie theoretic methods for the study of Her-

mitian symmetric spaces is provided by Jordan triple systems (JTS). In

particular there is a one-to-one correspondence between bounded symmet-

ric domains and Hermitian positive Jordan triple systems (HPJTS). At

the end of the section we will also present a realization of M∗ as a complex

projective variety.

We present here some basic facts about JTS that can be found in [20, 3].

27
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Definition 2.1. A Hermitian Jordan triple system is a (finite dimensional)

complex vector space V equipped with an antilinear involution z 7→ z̄ : V →
V (called conjugation) and a trilinear map {, , } : V × V × V :→ V called

triple product such that

{u, v, w} = {w, v, u}

{x, y, {u, v, w}} − {u, v, {x, y, w}} = {{x, y, u}, v, w} − {u, {v, x, y}, w}

We will consider only the case of simple JTS that means V is not the

sum of two nontrivial subsystem with component-wise triple product. On a

JTS we can define the operators

D(u, v)w = {u, v, w}

Q(u,w)v = {u, v, w}

Q(u) =
1

2
Q(u, u)

B(u, v) = Id−D(u, v) +Q(u)Q(v) (2.1)

Note that they depend only on the triple product on V. We will then

say that V is a Hermitian positive Jordan triple system if the product

(u|v) =
1

g
trD(u, v) (2.2)

(where g is defined by (2.4) below) is positive definite on V.

We can then state the correspondence between HPJTS and HSSNT :

Theorem 2.2. To every HPJTS V is associated a HSSNT realized as

circled bounded domain ΩV centered in 0 ∈ V. It is the connected component

containing the origin of the set of all u ∈ V such that B(u, u) is positive

defined with respect to (·|·).
Conversely the HPJTS can be recovered from ΩV as the tangent space at

the origin V = T0ΩV with the triple product given by

{u, v, w} = −1

2
(R0(u, v)w + J0R0(u, J0v)w) (2.3)

where R0 (resp. J0) is the curvature tensor of the Bergman metric (resp.
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the complex structure) of ΩV evaluated in the origin.

We can give another and more useful way of describing ΩV in V. In

order to do this we need to focus on HPJTS. We start giving a particular

decomposition of Hermitian JTS. An element c ∈ V is called tripotent if

{c, c, c} = 2c. If c ∈ V is a tripotent then the operator D(c, c) (which is

self-adjoint with respect to (·|·)) has its eigenvalues in {0, 1, 2} and we have

V = V0(c)⊕ V1(c)⊕ V2(c)

This is called the Pierce decomposition of V with respect to c. We will call

two tripotents c1, c2 orthogonal if D(c1, c2) = 0.

Consider now a family of mutually orthogonal tripotents (c1, . . . , cp). Such

a family is called a frame if it is maximal. It turns out that all frames have

the same number r of elements and this number is called the rank of V .

Let (c1, . . . , cp) be any family of tripotents, then
(
D(cj , cj)

)
is a family of

commutative self-adjoint operators, giving rise to the simultaneous Pierce

decomposition

V =

p∑
j=0

j∑
i=0

Vij

where

Vij = {u ∈ V | D(ck, ck)u = (δki + δkj )u; k = 1, . . . , p}

When (c1, . . . , cr) is a frame the simultaneous Pierce decomposition has nice

properties:

1. V00 = 0

2. Vii = Cci for i = 1, . . . , r

3. All Vij have the same dimension a = dimVij for 1 ≤ i < j ≤ r

4. All V0j have the same dimension b = dimV0j for 1 ≤ j ≤ r

This leads us to the definition of another invariant of V : the genus g, given

by

g = 2 + a(r − 1) + b (2.4)
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We want now to explain how one can regard a bounded symmetric domain

in V. Consider an element u ∈ V. It has a unique spectral decomposition

u = λ1c1 + · · ·+ λpcp

where (c1, . . . , cp) is a family of mutually orthogonal tripotents and

λ1 > λ2 > · · · > λp > 0. The map u 7→ λ1 is a norm ‖ · ‖max on V called

the spectral norm.

Theorem 2.3. Let ΩV be the HSSNT associated to V . Then

ΩV = {u ∈ V |‖u‖max < 1}

An element u is called regular if p = r in its spectral decomposition.

The set of regular points is dense in V. Thus let again u = λ1c1 + · · ·+λrcr

be the spectral decomposition of a regular element u ∈ V. It is not hard to

prove that

B(u, u)v = (1− λ2
i )(1− λ2

j )v (2.5)

if v ∈ Vij . From this formula we easily get the following

detB(u, u) =

( r∏
i=1

(1− λ2
i )

)g
In particular one can recover the Bergman form on ΩV as

ωBerg = − i

2π
∂∂ log detB

The real polynomial
∏r
i=1(1− λ2

i ) is called the generic norm and indicated

with m(u, u). It can be extended to a complex polynomial m(u, v) on V ×V
which is also called the generic norm and has the expansion

m(u, v) = 1−m1(u, v) + · · ·+ (−1)jmj(u, v) + · · ·+ (−1)rmr(u, v)

where the mj ’s are nondegenerate polynomials, homogeneous of bidegree

(j, j). We are now able to define the hyperbolic form we introduced in the
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previous chapter.

ωhyp := − i

2π
∂∂ logm =

ωBerg
g

(2.6)

Moreover by means of the generic norm we can define the flat Kähler form

on V
ω0 :=

i

2π
∂∂m1 (2.7)

Since we are considering only the simple JTS we can rewrite ω0 = i
2π∂∂trD.

Note that in the rank 1 case it is the standard Euclidean form on V = Cn.

The next proposition explains the structure of the generic norm:

Proposition 2.4. Let V be a simple Hermitian JTS and m(u, v) its generic

norm. There exist maps σj : V → V (j) for J = 0, . . . , r with the following

properties:

1. V (0) = C, V (1) = V, V (2), . . . , V (r) are finite dimensional complex

vector spaces with conjugation z 7→ z and inner product (:).

2. σ0 = 1, σ1 = Id, σ2, . . . , σr are homogeneous polynomial maps of

bidegree j such that σj(u) = σj(u) and σj(V ) spans V (j).

3. the identity

m(u, v) = 1− (σ1u, σ1v)+ · · ·+(−1)j(σju, σjv)+ · · ·+(−1)r(σru, σrv)

holds in V × V.

The only prove of proposition 2.4 known to the author is a case by case

verification which we do not report here. We want now to introduce the

compactification of V. The construction of the canonical compactification

was presented by Loos ([13]) but we would like to present it in an equivalent

form which is based on the theory exhibited above.

Then let us state the theorem that constructs the compactification of V as

a complex projective variety which is isomorphic to the compact dual of the

HSSNT associated to V.

Theorem 2.5. Let V be a simple Hermitian JTS of rank r and σ1, . . . , σr
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as in proposition 2.4. Let

W = C⊕ V (1) ⊕ · · · ⊕ V (r)

and σ : V → P(W ) be defined by

σ(v) = [1 : σ1v : . . . : σrv]

Then the closure of σ(V) in P(W ) is an algebraic submanifold X which is

isomorphic to the compact dual of ΩV and σ : V → P(W ) is isomorphic to

the canonical compactification.

The previous theorem implies that, given any HSSNT , its compact

dual M∗ can be embedded in CP d for some d > 0. It means that M∗ is an

Hermitian Symmetric space of compact type with the Kähler form induced

by the Fubini-Study form on CP d. That is what we run over in the previous

chapter.

2.2 The symplectic duality

In this section we present the work of Di Scala and Loi ([1]). In particular

we are going to show that there is a symplectic duality Ψ between V and

ΩV and that by the theory of HSS it extends to a symplectic embedding

from ΩV to M∗ \ Yp where Yp is the cut locus of p ∈M∗.
We will prove this theorem in the case of HSSNT of classical type even if

in ([1]) is also provided a proof which holds for all HSSNT .

Let us start with some result which will be needed in the proof of the theo-

rem. Note first that under the identification m+
C
∼= V one can endow V with

the restriction of the Fubini-Study form on M∗. It can be proved that this

restriction is written as

ωFS =
i

2π
∂∂ log detm∗ (2.8)

where m∗(u, u) = m(u,−u) = 1 +
∑

jmj(x, x).

The next result is of great importance for the proof.



Chapter 2 33

Proposition 2.6. Let (M, 0) be a HSSNT with center 0 and let V be the

associated HPJTS. Then there exist a one-to-one correspondence between

(complete) complex totally geodetic submanifolds through the origin (T, 0)

and sub-HPJTS T ⊂ V where T is the HPJTS associated to (T, 0).

Proof. It is known that there is a one-to-one correspondence between com-

plex totally geodesic submanifolds of HSS through the origin and complex

Lie triple system. This can be found for example in ([8]). Now from formula

(2.3) and using the fact that

R0(u, v)w = −{u, v, w}+ {v, u, w}

it arises the one-to-one correspondence between complex Lie triple systems

and sub-HPJTS of V.

We are now ready to state the main theorem in ([1]) in the form we are

going to prove it. In the following theorem we will identify the HSSNT

M with its realization ΩV as circled bounded symmetric domain centered in

the origin of V.

Theorem 2.7 (Di Scala, Loi). Let M be a HSSNT with no exceptional

factor in its de Rham decomposition. Let B be the Bergman operator on the

associated HPJTS V defined in (2.1).

Then the map

ΨM : M → V, z 7→ B(z, z)−
1
4 z,

has the following properties:

(D) ΨM is a real analytic diffeomorphism and its inverse is given by:

Ψ−1
M : V →M, z 7→ B(z,−z)−

1
4 z;

(H) For any (T, 0)
i
↪−→ (M, 0) complex and totally geodesic embedded sub-

manifold (T, 0) with i(0) = 0 one has

ΨM |T = ΨT , ΨM (T ) = T

where T is the HPJT associated to T ;
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(I) For any τ ∈ K ⊂ I(M), where K is the isotropy group at the origin,

the following equality holds:

ΨM ◦ τ = τ ◦ΨT ;

(S) ΨM is a symplectic duality, i.e. the following hold

Ψ∗Mω0 = ωhyp (2.9)

Ψ∗MωFS = ω0 (2.10)

where ω0 on M is considered as the restriction of (2.7).

Proof. The proof is divided in three parts. The first step consists in prov-

ing properties (D) and (S) in the special case of In which is the bounded

symmetric domain of first type In,n. Then we will prove properties (H) and

(I) for the four classical domains. Finally using proposition (2.6) and the

second part we prove properties (D) and (S) for all classical HSSNT .

Step 1.(Proof of (D) and (S) for In)

We have already seen that

In = {Z ∈Mn(C)|Id− ZZ ′ > 0}

The triple product making Cn2
a HPJTS is given by:

{U, V,W} = UV
′
W +WV

′
U U, V,W ∈Mn(C).

From this it is easy to calculate the Bergman operator:

B(U, V )W = (Id− UV ′)W (Id− V ′U),

the hyperbolic form:

ωhyp = − i

2π
∂∂ log det(Id− ZZ ′)
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and the map ΨM : In →Mn(C) ∼= Cn2
is:

ΨM (Z) = (Id− ZZ ′)−
1
2Z.

Thus we can calculate the explicit expression of the Fubini-Study (2.8) and

the flat Kähler form (2.7) on Cn2
:

ωFS =
i

2π
∂∂ log det(Id+XX

′
),

ω0 =
i

2π
∂∂tr(XX

′
).

Now part (D) can be proved by verifying that the map:

ΦM : Cn
2 → In, X 7→ (Id+XX

′
)−

1
2X.

is the inverse of ΨM and keeping in mind the equality:

XX
′
(Id+XX

′
)
1
2 = (Id+XX

′
)
1
2XX

′
.

We are now ready to prove the property (S). Consider first the equality (2.9)

and observe that we can write

ωhyp = − i

2π
∂∂ log det(Id− ZZ ′) =

i

2π
d∂ log det(Id− ZZ ′)

=
i

2π
d∂tr log(Id− ZZ ′) =

i

2π
dtr∂ log(Id− ZZ ′)

= − i

2π
dtr[Z

′
(Id− ZZ ′)−1dZ],

where we used the decomposition d = ∂ + ∂ and the identity log detA =

tr logA. By substituting X = (Id− ZZ ′)−
1
2 in the last equation we get

− i

2π
dtr
[
Z
′
(Id−ZZ ′)−1dZ

]
= − i

2π
dtr
[
X
′
dX
]
+
i

2π
dtr
{
X
′
d
[
(Id−ZZ ′)−

1
2
]
Z
}

Note that − i
2πdtr

[
X
′
dX
]

= ω0 and the 1-form tr
{
X
′
d
[
(Id−ZZ ′)−

1
2

]
Z
}

is

exact being equal to dtr(C
2

2 − logC), where C = (Id− ZZ ′)−
1
2 .

Then equality (2.9) follows since ωhyp equals ω0 in the X-coordinates.
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With the same arguments we can prove (2.10). Consider indeed

ωFS =
i

2π
∂∂ log det(Id+XX

′
) = − i

2π
dtr∂ log(Id+XX

′
)

= − i

2π
dtr
[
X
′
(Id+XX

′
)−1dX

]
.

Now substituting Z = (Id+XX
′
)−

1
2 we get

− i

2π
dtr
[
X
′
(Id+XX

′
)−1dX

]
= − i

2π
dtr
(
Z
′
dZ
)

+
i

2π
dtr
{
Z
′
d
[
(Id+XX

′
)−

1
2
]
X
}

= ω0 +
i

2π
d2tr

(
logD − tr

D2

2

)
= ω0

where D = (Id+XX
′
)−

1
2 . This ends the first step of the proof.

Step 2.(Proof of (H) and (I) for classical domains)

From now on M will be a HSSNT and V its associated HPJTS. Consid-

ering that the map ΨM depends only on the properties of the triple product

{, , }, part (H) follows from proposition 2.6.

Hence we only need to prove (I). As we have seen in the first chapter the

M can be regarded as the coset space M = G/K where G is the connected

component of I(M) containing the origin and K is the isotropy group at

the origin 0 ∈M . Cartan has proven ([19, p. 63]) that the group K consist

entirely of linear transformations. In particular the Bergman operator of V
is invariant under the action of K:

B(τu, τv)(τw) = τ
(
B(u, v)(w)

)
∀τ ∈ K,

which implies

B(τz, τz)−
1
4 (·) = τ

(
B(z, z)−

1
4 (τ−1(·))

)
∀z ∈M.

Thus (I) follows.

Step 3.(Proof of (D) and (S) for all classical domains)

It is known that every bounded symmetric domain can be embedded in IN
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for some N sufficiently large. This follows directly from the definition for

Ik,n, IIn and IIIn while the explicit embedding for IVn can be found in

([16, p. 42]). Moreover we can always assume that the embedding brings

the origin 0 ∈M to the origin 0 ∈ In.

Thus, by proposition 2.6, V is a sub-HPJTS of (Cn2
, {, , }). Hence the claim

follows from property (H) and the fact that (D) and (S) hold true for In.

2.3 Gromov width of Hermitian symmetric spaces

In this section we want to present the work of Loi, Mossa and Zuddas ([12])

where they computed the Gromov width and others symplectic capacities

of Hermitian symmetric spaces of compact and noncompact type.

We will focus on the calculation of the Gromov width of HSSCT . As usu-

ally happens one computes the Gromov width of a manifold by giving upper

and lower bounds. The lower bound is obtained by proving that the ball

(B2n(1), ω0) can be embedded in any HSSCT . We will show how this em-

bedding is constructed while we will only give the idea of how the upper

bound is achieved.

Let (M∗, ωFS) be a 2n-dimensional HSSCT and (M,ω0) its noncompact

dual regarded as a bounded symmetric domain in (V, (·|·)) ∼= (Cn, h0) where

(·|·) was defined in (2.2) and h0 is the canonical Hermitian product. Recall

that throughout this thesis the canonical Kähler form ωFS is normalized so

that ωFS(A) = π where [A] is the generator of H2(M∗,Z).

Let us start showing that the ball (B2n(1), ω0) can be embedded in a bounded

symmetric domain (M,ω0). In order to do this consider now the spectral

decomposition v = λ1c1 + · · ·+ λrcr of a regular point in M ⊂ V.

The distance d(0, v) = (v|v)
1
2 can be expressed in terms of the spectral de-

composition of v. In fact the spaces Vij in the Pierce decomposition of V
with respect to the frame (c1, . . . , cr) are the eigenspaces for D(v, v) with

eigenvalues (λ2
i + λ2

j ). As the subspaces Vii, Vij and V0j for 0 < i < j have

dimensions 1, a and b we obtain

trD(v, v) = g

r∑
i=1

λ2
i
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From the definition of the product (·|·) easily follows that

d(0, v) =

√√√√ r∑
i=1

λ2
i

Recall that M ⊂ V is the set of point whose spectral norm is less than 1.

Now from the identification (V, (·|·)) ∼= (Cn, h0) and the fact that the set of

regular points is dense we conclude that

(B2n(1), ω0) ⊂ (M,ω0).

Recall that in the previous section we constructed a symplectomorphism

ΨM : M → V which, amongst other properties, satisfies Ψ∗MωFS = ω0. The

form ωFS appearing in the last equality is induced on V by its Harish-

Chandra embedding ξ : V → M∗. Hence we actually get a symplec-

tic embedding ΦM of (M,ω0) in (M∗, ωFS). Thus we have proved that

cG(M∗) ≥ π.

The upper bound cG(M∗) ≤ π is obtained by estimating some (pseudo)

symplectic capacities. We present here a rough idea of how it is done.

Loi, Mossa and Zuddas used the concept of k-pseudo symplectic capacity

(due to Lu [14]) which is weaker than that of symplectic capacity and de-

pends on the homology classes of the symplectic manifold. Formally if we

denote with C(2n, k) the set of all tuples (M,ω;α1, . . . , αk) consisting of a

symplectic manifold (M,ω) and k nonzero homology classes αi ∈ H∗(M ;Q)

then a k-pseudo symplectic capacity is a map c(k) from C(2n, k) to [0,∞]

satisfying the following

1. (pseudo monotonicity) If there exist a symplectic embedding

ϕ : (M1, ω1)→ (M2, ω2) then, for any αi ∈ H∗(M1;Q), i = 0, . . . , k,

c(k)(M1, ω1;α1, . . . , αk) ≤ c(k)(M2, ω2;ϕ∗(α1), . . . , ϕ∗(αk))

2. (conformality) c(k)(M,λω;α1, . . . , αk) = |λ|c(k)(M,ω;α1, . . . , αk),

3. (nontriviality) c(k)(B2n(1), ω0; pt, . . . , pt) = π = c(k)(Z2n(1), ω0; pt, . . . , pt)

where pt denotes the homology class of a point.
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Lu defined two 2-pseudo symplectic capacities which he called of Hofer-

Zehnder type and he proved that their values are always greater than or

equal to that of the Gromov width.

These pseudo symplectic capacities of Hofer-Zehnder type are estimated by

using other two pseudo symplectic capacities GW (M,ω;α1, α2) and

GW0(M,ω;α1, α2) which are defined in terms of Gromov-Witten invariants.

These last invariants can be seen, roughly speaking, as functions counting,

for an ω-tame almost complex structure J , the number of J-holomorphic

curves of given genus representing an homology class A ∈ H2(M,Z) with k

marked points pi passing through cycles Xi representing k homology classes

αi ∈ H∗(M ;Q).

Then the value of the pseudo symplectic capacities GW (M,ω;α1, α2) and

GW0(M,ω;α1, α2) is the infimum of the areas ω(A) of homology classes for

which an associated Gromov-Witten invariant is nonzero.

Lu in [14] proved that the values ofGW (M,ω;α1, α2) andGW0(M,ω;α1, α2)

are always greater than or equal to those of the 2-pseudo symplectic capac-

ities of Hofer-Zehnder type.

Loi, Mossa and Zuddas proved the existence for any HSSCT M∗ with

ωFS(CP 1) = π of two homology classes α and β such that the associated

Gromov-Witten invariant is nonzero and deduced thatGW (M∗, ωFS ; pt, γ) =

GW0(M∗, ωFS ; pt, γ) = π where γ is either α or β.

Then, from what we said on these pseudo capacities, it follows that

cG(M∗, ωFS) ≤ π

One can prove that this result can be extended from irreducible to arbitrary

HSSCT . In fact in the same article the authors proved the following

Theorem 2.8. Let (M∗i , ω
i
FS), i = 1, . . . , r, be irreducible HSSCT of di-

mension 2ni endowed with the canonical Kähler form ωiFS normalized so

that ωiFS(Ai) = π where [Ai] is the generator of H2(M∗i ,Z). Then

cG(M∗1 × · · · ×M∗r , ω1
FS ⊕ · · · ⊕ ωrFS) = π

Proof. The bound cG(M∗1 ×· · ·×M∗r , ω1
FS⊕· · ·⊕ωrFS) ≤ π is obtained with
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the same estimates of pseudo symplectic capacities we mentioned above.

The lower bound, instead derives from the product of the symplectic em-

bedding we constructed above:

×ri=1B
2ni(1) ⊂ ×ri=1Mi

ΦM1
×···×ΦMr−−−−−−−−−→ ×ri=1M

∗
i

and from the natural inclusion

B2n1+···+2nr(1) ⊂ ×ri=1B
2ni(1)
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Minimal atlases for closed

symplectic manifolds

In this chapter we focus on the work of Rudyak and Schlenk [21] on minimal

atlases for closed symplectic manifolds. In the first section we introduce the

setting and explain the results. We state the main theorem and give the

sketch of the proof which is simple and elegant in the idea while we avoid

to examine the realization of the proof because it is technical and does not

give further information. In order to get a deeper understanding of the topic

we discuss, in the second section, some examples that can be found in the

paper. In the last section we study the case of the complex Grassmannian.

In particular we show that the embeddings produced by Rudyak and Schlenk

do not cover the Grassmannian as wrongly claimed in [21].

3.1 The work of Rudyak and Schlenk

The aim of the paper of Rudyak and Schlenk is to study the minimal num-

ber SB(M,ω) of Darboux charts needed to parametrize a closed symplectic

manifold (M,ω). Note that SB(M,ω) is well defined due to Darboux the-

orem and the compactness of M . The estimate of SB(M,ω) essentially

consists of giving upper and lower bounds based on the Gromov width and

the Lusternik-Schnirelmann category of M .

Let us explain how Rudyak and Schlenk used these two invariants to esti-

41
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mate SB(M,ω).

Denoting with B the image of a Darboux chart φ(B2n) ⊂M we can formally

define:

SB(M,ω) := min{k|M = B1 ∪ · · · ∪ Bk}

An immediate lower bound for the number SB(M,ω) is given by the diffeo-

morphism invariant

B(M) = min{k|M = B1 ∪ · · · ∪Bk}

where each Bi is diffeomorphic to the open ball B2n. This estimate from

below depends only on the differential structure of M and thus it does not

take in account the symplectic structure on the manifold.

We will now show another lower bound which depends on the symplectic

structure. Consider the number

γ(M,ω) := max{V ol(B2n(r))|B2n(r) sympletically embeds in M}

It is clear that a bound from below for SB(M,ω) is the integer

Γ(M,ω) :=

⌊
V ol(M,ω)

γ(M,ω)

⌋
+ 1

where the braket bxc denote the maximal integer smaller than or equal to

x.

Remark. The number γ(M,ω) is equal to 1
n!(cG(M,ω))n thus we can rewrite

the last lower bound we introduced as

Γ(M,ω) =

⌊
V ol(M,ω)n!

(cG(M,ω))n

⌋
+ 1

Note also that the invariants Γ(M,ω) and B(M) have very different

nature and are indeed not related in any way. The simplest example one

can consider is the complex projective space (CPn, ωFS) for which we have

Γ(CPn, ωFS)=2 and B(CPn)=n+1.

From this originates the need to set a lower bound which takes into account
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both the differential and the symplectic structures on M :

λ(M,ω) := max{Γ(M,ω); B(M)}

What we have shown so far is nothing more than

λ(M,ω) ≤ SB(M,ω) (3.1)

We will focus on the invariant B(M) before we state the main result.

We recall some invariants that give a estimate from below for B(M). The

first is the Lusternik − Schnirelmann category of M, that is defined for

any CW -complex X:

Cat(X) := min{k|X = A1 ∪ · · · ∪Ak}

where each Ai is a open contractible subset of X. Obviously when M is a

smooth closed manifold we have

Cat(M) ≤ B(M).

In general the Lusternik-Schnirelmann category of a CW -complex X is not

easy to compute, but may itself be estimated from below by the cup lenght

of X which is defined as:

cl(X) := sup{k|u1 · · ·uk 6= 0, ui ∈ H̃∗(X)}

where H̃∗(X) denotes the reduced singular cohomology ofX with coefficients

in any ring. It has been proved, for any CW -complex X, that

cl(X) + 1 ≤ Cat(X)

and , for any smooth closed connected m-dimensional manifold M , that

([15]) B(M) ≤ m + 1. Then, being M a smooth closed connected m-

dimensional manifold, we can conclude that

cl(M) + 1 ≤ Cat(M) ≤ B(M) ≤ m+ 1. (3.2)
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This is not all we can say about these invariants, in fact in [23] is proved

the following

Theorem 3.1 (Singhof). Let Mm be a close smooth p-connected manifold

with m ≥ 4 and Cat(M) ≥ 3. Then

a) B(M) = Cat(M) if Cat(M) ≥ m+ p+ 4

2(p+ 1)
,

b) B(M) ≤

⌈
m+ p+ 4

2(p+ 1)

⌉
if Cat(M) <

m+ p+ 4

2(p+ 1)
.

Where dxe denotes the minimal integer greater than or equal to x.

This result can be improved when we deal with symplectic manifolds:

Proposition 3.2. Let (M,ω) be a 2n-dimensional closed connected sym-

plectic manifold. Then

n+ 1 ≤ cl(M) + 1 ≤ Cat(M) ≤ B(M) ≤ 2n+ 1. (3.3)

Moreover the following claims hold true:

i) If π1(M) = 0, then n+ 1 = cl(M) + 1 = Cat(M) = B(M),

ii) If [ω]|π2(M) = 0, then Cat(M) = B(M) = 2n+ 1,

iii) If Cat(M) < B(M), then n ≥ 2 , n + 1 = cl(M) + 1 = Cat(M) and

B(M) = n+ 2.

Proof. Since ω is a symplectic form we have [ω]n 6= 0 which implies

cl(M) + 1 ≥ n + 1. From this and from 3.2 we get 3.3. To prove asser-

tions (i) to (iii) we will make use of Theorem 3.1. Note that we dropped

the hypothesis dim(M) ≥ 4 and Cat(M) ≥ 3 in Theorem 3.1: in fact if

dim(M) = 2 we are in the case of closed orientable surfaces and it is easy

to check that B(M) = Cat(M); on the other hand if Cat(M) = 2 then
1
2 dim(M) ≤ cl(M) + 1 ≤ Cat(M) = 2 gives dim(M) = 2.

i) If M is simply connected, it has been shown in [7] that Cat(M) ≤ n+1

and thus Cat(M) = n+ 1. Since p ≥ 1 we conclude that we are in the

situation of Theorem 3.1 a) and it follows Cat(M) = B(M) = n+ 1.
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ii) It has been proved that if [ω]|π2(M) = 0 then Cat(M) = 2n + 1,(see

[22]). From this and from B(M) ≤ 2n+ 1 follows the assertion.

iii) We know that B(M) = Cat(M) if n = 1. Thus, assuming B(M)>Cat(M),

let n ≥ 2. From i) we get p = 0 and the claim follows from Theorem

3.1 b).

We can now present the main result of [21]:

Theorem 3.3 (Rudyak-Schlenk). Let (M,ω) be a closed connected sym-

plectic manifold of dimension 2n.

i) If λ(M,ω) ≥ 2n+ 1 then SB(M,ω) = λ(M,ω).

ii) If λ(M,ω) < 2n+ 1 then n+ 1 ≤ λ(M,ω) ≤ SB(M,ω) ≤ 2n+ 1.

Idea of the proof: The proof of the theorem appears technical in sev-

eral points, thus we will just present the idea behind the proof (for which

Rudyak and Schlenk thank Gromov).

By inequalities 3.1 and 3.3 the assertion is a direct consequence of the fol-

lowing:

Theorem 3.4. Let (M,ω) be a closed connected 2n-dimensional symplectic

manifold.

i) If Γ(M,ω) ≥ 2n+ 1, then SB(M,ω) = Γ(M,ω),

ii) If Γ(M,ω) ≤ 2n+ 1, then SB(M,ω) ≤ 2n+ 1.

Let us denote with µ(A) the symplectic volume of any Borel set A ⊂M
and set

k = max{Γ(M,ω); 2n+ 1}.

Then by definition of Γ(M,ω) we have

γ(M,ω) >
µ(M)

k
.
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Now by definition of γ(M,ω) there exists a Darboux chart ϕ : B2n(r) →
B ⊂M such that

µ(B) >
µ(M)

k
.

From the last inequality and from k ≥ dim(M), by means of elementary

dimension theory, it is provided a covering of M consisting in k sets C1 . . . Ck

each of which is the image of a disjoint union of cubes in R2n and such that

µ(Cj) < µ(B), j = 1, . . . , k.

It is then constructed a symplectomorphism Φj : M →M such that

Φj(Cj) ⊂ B.

Figure 3.1: The idea behind the map Φj

It yields a symplectic cover of M made up of k charts:

(φj)−1 ◦ ϕ : B2n(r)→M,

and this ends the proof.

This Theorem basically reduces the issue of estimating SB(M,ω) to two

different problems: those of computing B(M) and cG(M,ω). The results

we know about B(M) are summarized in Proposition 3.2. Calculate cG(M)

is instead an open and delicate problem in which there has recently been

remarkable progress.

A related and more complicated problem than computing SB(M,ω) is the

one of symplectic packings. We say that a symplectic 2n-manifold (M,ω)

admits a symplectic packing by N balls of radii λ1, . . . , λN if there exist a
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symplectic embedding from the disjoint union of the balls into (M,ω):

ϕ :
N∐
j=1

(
B2n(λj), ω0

)
→ (M,ω).

It is usually required a symplectic packing by N equal balls. Moreover we

say that (M,ω) admits a full symplectic packing by N equal balls if the

supremum of volumes which can be filled by symplectic embeddings of N

disjoint equal balls is the volume of (M,ω) itself.

In analogy to this problem, Rudyak and Schlenk introduce the invariant

S=
B (M,ω) which is defined in the following way. First consider the number

SrB(M,ω) := min{k|M = B1 ∪ · · · ∪ Bk}

where each Bj is the image of the same ball B2n(r) through a symplectic

embedding. Now define

S=
B (M,ω) := min

r>0
SrB(M,ω).

Remark. Theorem 3.3 holds true if we replace SB(M,ω) with S=
B (M,ω) since

in the proof we constructed embeddings of equal balls.

Anyway, since we deal with HSSCT , we will not investigate further in

this direction.

3.2 Some explicit computations

In this section we will present two examples which we find interesting in

order to study the invariant SB(M,ω) in the case of HSSCT .

We start with a very simple case

Riemann surfaces. Consider the case n = 1 that means we are dealing

with closed oriented surfaces (Σg, ω) where ω is an area form. The following

Lemma will give us the key ingredient.

Lemma 3.5 (Greene-Shiohama). Let U and V be two bounded domains in

(R2, ω0) which are diffeomorphic and have equal area. Then U and U are
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symplectomorphic.

Proposition 3.6. Let (Σg, ω) be a closed oriented surface of genus g. Then

the following assertions hold true

i) If g = 0, then SB(Σg, ω) = 2,

ii) If g ≥ 1, then SB(Σg, ω) = 3.

Proof. From the previous Lemma we get B(Σg) = SB(Σg, ω). Now the claim

follows from Proposition 3.2.

Complex Projective spaces. Let CPn be the n-dimensional complex

projective space and let ωFS the Fubini-Study form on CPn normalized so

that ωFS(CP 1) = π.

Proposition 3.7. SB(CPn, ωFS) = n+ 1.

Proof. Since π1(CPn) = 0 by Proposition 3.2.i) we get the inequality

SB(CPn, ωFS) ≥ B(M) = n+ 1.

On the other hand we can construct a symplectic atlas consisting in n + 1

charts. Consider for 0 ≤ i ≤ n the subsets of CPn

Si = {[z0 : . . . : zn] ∈ CPn|zi = 0}

and the functions fi : B2n(1)→ CPn defined by

fi(z) = fi(z1, . . . , zn) = [z1 : . . . : zi−1 :
√

1− |z|2 : zi+1 : . . . , zn] (3.4)

which are well known to be symplectomorphisms between (B2n(1), ω0) and

(CPn\Si, ωFS). Since CPn =
⋃
i fi
(
B2n(1)

)
we found an atlas {(B2n(1), fi)}0≤i≤n

that gives us the inequality

SB(CPn, ωFS) ≤ n+ 1.
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3.3 The case of the complex Grassmannian

The last result in [21] is the computation of SB(Gk,n, ωFS) where Gk,n is the

complex Grassmannian of k-planes in Cn and ωFS is, as usual, the Fubini-

Study form on it. Note that this is a special case of our result presented in

next chapter since Gk,n is the compact dual of the bounded symmetric do-

main Ik,n−k. We will present the calculation of Rudyak and Schlenk which is

based both on the knowledge of the volume and Gromov width of the Grass-

mannian manifold and on the construction of a specific symplectic atlas for

Gk,n. We show next that the charts they claimed to make up the atlas do

not cover the Grassmannian. Before that we need to introduce the notation.

We will consider only the case n ≥ 2k and k 6= 1 since Gk,n = Gn−k,n

and G1,n = CPn−1. Let

Pk,n : Gk,n → P (∧kCn) = CP (nk)−1

be the Plücker embedding and denote with pk,n its degree. It is well know

that

pk,n =
(k − 1)! · · · 2! 1! · (k(n− k))!

(n− 1)! · · · (n− k + 1)! (n− k)!
.

In order to underline the construction of Rudyak and Schlenk we split their

result in two parts.

Proposition 3.8.

1. SB(G2,4, ωFS) ∈ {5, . . . , 9},

2. SB(G2,5, ωFS) ∈ {7, . . . , 13},

3. SB(G2,6, ωFS) ∈ {15, 16, 17},

4. SB(Gk,n, ωFS) = pk,n + 1 if n ≥ 7 or k ≥ 3.

Proof. Since Gk,nis simply connected, from Proposition 3.2 follows

B(Gk,n) = k(n− k) + 1.
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Moreover

V ol(Gk,n, ωFS) =
πk(n−k) · pk,n
(k(n− k))!

Now, being cG(Gk,n, ωFS) = π, a simple calculation yields

Γ(Gk,n, ωFS) = pk,n + 1

and the claim follows directly from Theorem 3.3.

Remark. We will prove this Proposition in details in the more general context

of HSSCT .

Proposition 3.9. Embeddings in 3.4 can be generalized to
(
n
k

)
embeddings

B2k(n−k)(1)→ Gk,n covering Gk,n.

Construction. The construction in [21] was first presented by Lu in [14],

thus we refer to this last article.

Let us look at the matrix definition of the Grassmannian as the quotient

Gk,n = M(k, n)/GL(k)

where M(k, n) = {A ∈ Ck×n| rank(A) = k}
and GL(k) = {Q ∈ Ck×k| det(Q) 6= 0} acts on M(k, n) from the left by

matrix multiplication. Let Pr : M(k, n)/GL(k) → Gk,n, A 7→ [A] be the

quotient projection and denote

M0(k, n) = {A ∈M(k, n)| AA′ = Idk}

where A
′

is the conjugate transpose of A and Idk is the unit k × k matrix.

The following Lemmata are the keys of the construction:

Lemma 3.10. Let τ0 = Pr∗(ωFS), then τ0|M0(k,n) = ω0|M0(k,n).

Lemma 3.11. The map

φ : (Ik,n−k, ω0)→ (Ck×n, ω0), Z 7→

(√
Idk − ZZ ′, Z

)

is a symplectic embedding with image in M0(k, n) and therefore it defines a

symplectic embedding φ̂ = Pr ◦ φ of (Ik,n−k, ω0) into (Gk,n, ωFS).
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Now we need to use these result to construct
(
n
k

)
embeddings ofB2k(n−k)(1)

into Gk,n.

In order to do this rewrite the matrix A ∈M(k, n) as (A1, . . . , An) where Aj

is the j-th column. Then for increasing integers 1 ≤ α1 ≤ . . . ≤ αk ≤ n con-

sider the complement {αk+1, . . . , αn} of {α1, . . . , αk} in the set {1, . . . , n}.
We write Aα1···αk

to indicate the matrix (Aα1 , . . . , Aαk
).

Note that for every set {α1, . . . , αk} there exist a permutation matrix

P (α1, . . . , αk) such that

(Aα1 , . . . , Aαk
, Aαk+1

, . . . , Aαn)P (α1, . . . , αk) = (A1, . . . , An)

We can now define
(
n
k

)
symplectic embeddings as

φ̂α1···αk
: (Rk,n−kI , ω0)→ (GC , ωk,n)

Z 7→

[(√
Idk − ZZ ′, Z

)
P (α1, . . . , αk)

]

Remark. The embedding φ̂ is exactly the embedding ΨM we constructed in

the second chapter when M = Ik,n−k.

The claim of Rudyak and Schlenk is that the restrictions to B2k(n−k)(1)

of the embeddings φ̂α1···αk
cover Gk,n.

Proposition 3.12. For every couple {k, n} with k ≥ 2 and n ≥ 2k there

exist at least one point [B] ∈ Gk,n such that for every set {α1 · · ·αk} we have

[B] /∈ φ̂α1···αk

(
B2k(n−k)(1)

)
Proof. Let A = φα1···αk

(Z) that means φ̂α1···αk
(Z) = [A] and note that

Aα1···αk
=
(√

Idk − ZZ ′
)

; Aαk+1···αn = Z

We can easily compute ‖A‖2:

‖A‖2 = ‖Aα1···αk
‖2 + ‖Aαk+1···αn‖2 =

tr(Aα1···αk
A
′
α1···αk

) + tr(Aαk+1···αnA
′
αk+1···αn

) =

tr(Idk − ZZ ′) + tr(ZZ
′
) = k
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From this calculation we get

‖Aα1···αk
‖2 = k − ‖Aαk+1···αn‖2 = k − ‖Z‖2

This shows that the image of B2k(n−k)(1) under φ̂α1···αk
is contained in

Λk,nα1···αk
= {[B] ∈ Gk,n|∀A ∈ [B] ∩M0(k, n), ‖Aα1···αk

‖2 > k − 1}

thus the set Λk,n defined as

{[B] ∈ Gk,n|∀A ∈ [B] ∩M0(k, n) ∃{α1 · · ·αk} s.t. ‖Aα1···αk
‖2 > k − 1}

contains the union of all the images φ̂α1···αk
(B2k(n−k)(1)).

Now, starting with the case n = 2k, we exhibit a point [B] /∈ Λk,n. Consider

then the k × k matrix C with entries ci,i = 1√
2

and ci,j = 0 if i 6= j. Then

the point [B] = [(C,C)] does not belong to Λk,2k since B ∈ M0(k, 2k) but

on the other hand it is easy to see that

max
{α1,...,αk}

‖Bα1···αk
‖2 =

k

2
≤ k − 1 (3.5)

Now in case n > 2k we set [D] = [(C,C, 0, . . . , 0)] where 0 denotes the

column of zeroes. Clearly equation 3.5 holds if we replace B with D.

Remark. If we rewrite the results of Rudyak and Schlenk taking into account

Proposition 3.12 we will find differences only in the cases of G2,4, G2,5 and

G2,6.

Note that proposition 3.12 does not imply that G2,4, G2,5 or G2,6 do not

admit a symplectic atlas of less then
(
n
k

)
charts, on the contrary we believe

that the following conjecture (which was stated in [21]) holds true.

Conjecture. λ(M,ω) = SB(M,ω) for all closed connected symplectic man-

ifold (M,ω).
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Minimal symplectic atlases

for HSSCT

In this final chapter we present our result about minimal atlases of HSSCT .

In particular in the first section, combining the result of [12] and [21], we

compute the invariant SB(M∗, ωFS) where M∗ is an irreducible HSSCT of

type Ik,n, IIn or IIIn. In the second part we focus on HSSCT of type IVn.

Concretely, we provide a full symplectic embedding of the complex quadric.

4.1 Minimal symplectic atlases for Ik,n, IIn and IIIn

We focus now on the properties of HSSCT which originate from their em-

bedding in the complex projective spaces.

In general suppose that X is a 2n-dimensional manifold which admits an

holomorphic embedding f : X → CP d. It is well know that X is a Kähler

manifold when equipped with the form (which we denote as usual with ωFS)

induced by the Fubini-Study form on CP d. We can associate to f an integer,

namely its degree deg(f), defined in the following way.

If d > n there exist a point p ∈ CP d such that p /∈ f(X). Up to composition

with a unitary transformation of CP d we can assume p = [1 : 0 : . . . : 0].

Consider now the projection

pd : CP d → CP d−1; [z0 : . . . : zd] 7→ [z1 : . . . : zd]

53
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and define the function fd−1 = pd ◦ f . Now iterating this argument we get

a map F : X → CPn given by F = pn+1 ◦ · · · ◦ pd ◦ f .

Then deg(f) is by definition deg(F ) that is the integer such that∫
X
F ∗α = deg(F )

∫
CPn

α

where [α] ∈ H2n(CPn,R). We can establish an important relation between

the volume of X and that of CPn via the degree of f .

Proposition 4.1. Let X be a 2n-dimensional manifold which admits an

holomorphic embedding f : X → CP d. Then

Vol(X) = deg(f)Vol(CPn)

Proof. Denote by ωFS(d) (resp. ωFS(n)) the Fubini-Study form on CP d

(resp. CPn). Now consider the map g = i ◦ pn+1 ◦ · · · ◦ pd where i is the

canonical inclusion map given by:

i : CPn → CP d; [z0 : . . . : zn] 7→ [0 : . . . : 0 : zd−n . . . : zd]

Keeping in mind that the function

Φ : CP d×[0, 1]→ CP d; ([z0 : . . . : zd], t) 7→ [tz1 : . . . : tzd−n−1 : zd−n . . . : zd]

is an homotopy between the identity map of CP d and g we get

n!Vol(X) =

∫
X
f∗ωFS(d)n =

∫
X

(i ◦ F )∗ωFS(d)n =∫
X
F ∗(i∗ωFS(d)n) =

∫
X
F ∗ωFS(n)n =

deg(F )

∫
CPn

ωFS(n)n = deg(f)n!Vol(CPn).

In consideration of Theorem 3.3 and the above result we deduce the

following
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Corollary 4.2. Let (X,ωFS) be a projectively induced Kähler manifold with

cG(X,ωFS) = πr2. If
deg(f)πn

cG(X,ωFS)n
≥ 2n then SB(X,ωFS) = deg(f)/r2n+1.

Then we see that for projective induced Kähler manifold the computation

of SB(X,ωFS) is strictly related to the degree of the embedding

f : X → CP d. From now on (M∗, ωFS) will be an irreducible HSSCT

with ωFS normalized so that ωFS(A) = π where [A] is the generator of

H2(M∗,Z) and f : M∗ → CP d its holomorphic embedding. We compute

now SB(M∗, ωFS).

We have seen in section 2.3 that cG(M∗, ωFS) = π. we can then rewrite

Corollary 4.2 in the following form.

Corollary 4.3. If (M∗, ωFS) is an irreducible HSSCT with dim(M∗) = 2n

and deg(f) ≥ 2n (or equivalently Vol(M∗) ≥ πn
2n

n!
) then SB(M∗, ωFS) =

deg(f) + 1

Note that an example of embedding f : M∗ → CP d is given by the map

σ in Theorem 2.5.

Now we need to know the degree of f or, equivalently, the volume of M∗.

Recall that in section 2.2 we constructed a symplectic duality which, in

particular, induces a symplectomorphism Φ : (Ω, ω0) → (M∗ \ Yp, ωFS)

where Ω is a bounded symmetric domain, M∗ its compact dual and Yp

is the cut locus of a point p ∈ M∗. Being a symplectomorphism, Φ is

also volume preserving. Thus we see that Vol(Ω, ω0) = Vol(M∗, ωFS) since

Vol(M∗, ωFS) = Vol(M∗ \ Yp, ωFS).

The knowledge of deg(f) is now reduced to that of Vol(Ω, ω0). The volumes

of classical irreducible bounded symmetric has been computed by Hua in [6]

and we will refer to this. However a more general formula has been presented

by Koranyi in [9] while Roos ([20]) proved that, when the volume element

is suitably normalized, the volume of Ω equals the degree of f .

We report here the results of Hua for classical irreducible bounded symmetric
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domains:

• Vol(Ik,n−k) =
(k − 1)! · · · 2!1!

(n− 1)! · · · (n− k + 1)!(n− k)!
πk(n−k)

• Vol(IIn) =
2!4! · · · (2n− 2)!

n!(n+ 1)! · · · (2n− 1)!
π

n(n+1)
2

• Vol(IIIn) =
2!4! · · · (2n− 4)!

(n− 1)!n! · · · (2n− 3)!
π

n(n−1)
2

• Vol(IVn) =
2πn

n!

Note in particular that the result for Ik,n−k is the same we used in the

previous chapter. We are now ready to prove:

Theorem 4.4. Let (M∗, ωFS) be an irreducible compact Hermitian sym-

metric spaces of type I,II or III. If dim(M∗) = 2n is sufficiently large then

Vol(M∗) ≥ πn 2n

n!
and in particular SB(M∗, ωFS) = deg(f) + 1.

Proof. This proof is actually a case by case verification. We denote by fk,n

(resp. fn) the embedding of the compact dual of an irreducible bounded

symmetric domain of type Ik,n−k (resp. IIn or IIIn). Knowing deg(f) for

all irreducible HSSCT we show that, when the dimension is large enough,

the relation deg(f) ≥ dim(M∗) holds and we can thus apply Corollary 4.3.

We start with the irreducible HSSCT of first type that is the complex

Grassmannian Gk,n of k-planes in Cn. We need to show that

(k(n− k))! · (k − 1)! · · · 2!1!

(n− 1)! · · · (n− k + 1)!(n− k)!
≥ 2k(n− k) (4.1)

We will consider, as in previous chapter, k ≤ 2n. A simple explicit calcula-

tion show that in the case k = 2 the first value of n such that equation (4.1)

holds is n = 7. We show now that it holds also for each n > 7.

To do so we use a discrete version of ratio criterion that means we show that

deg(fk,n+1)

deg(fk,n)
≥ 2k(n− k + 1)

2k(n− k)
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Rewriting this explicitly we get

(2(n− 1))!(n− 2)!

n!(2(n− 2))!
≥ n− 1

n− 2

Thus reducing:
2(2n− 3)

n
≥ n− 1

n− 2

which is clearly true for n ≥ 7.

Now consider the case k ≥ 3. Note first first that equation (4.1) is satisfied

when (n, k) = (6, 3). We show now, using the ratio criterion, that it also

holds for each couple (2k, k), namely we prove that

deg(fk+1,2k+2)

deg(fk,2k)
≥ 2(k + 1)2

2k2

Now again reducing we get the inequality:

k2 + 1

k + 1
· · · k

2 + k

2k
· k

2 + k + 1

k + 1
· · · k

2 + 2k + 1

2k + 1
≥ (k + 1)2

k2

which is true because each term in the left-hand member is greater than 3

while the right-hand one is always smaller than 2. With the same argument

we can see that with fixed k ≥ 3 we have

deg(fk,n+1)

deg(fk,n)
≥ 2k(n− k + 1)

2k(n− k)

This ends the proof for the complex Grassmannian. In particular we can

see that equation (4.1) is satisfied when dim(Gk,n) ≥ 18.

The proof for HSSCT of type IIn and IIIn follows exactly the same ar-

guments we used above. For this reason we do not think it this useful to

report it. This computation gives an explicit lower bound for the dimension

of M∗. In particular if M∗ is of type IIn or IIIn then dim(M∗) ≥ 30.

Remark. We have proved a bit more than we have claimed. Indeed we have

shown that the degree of f can be made arbitrary greater than the dimension

of M∗.
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Remark. The computation above is exactly the one we omitted in the proof

of proposition 3.8.

Note that we cannot extend theorem 4.4 to the complex quadric Qn since

the condition deg(f) ≥ dim(Qn) is never verified being deg(f) = 2.

4.2 The case of Qn

From the results of last section we deduce that the only case still open is

that of the irreducible HSSNT of type IV , namely the complex quadric

Qn ⊂ CPn+1. This section is then dedicate to investigate the symplectic

geometry of Qn.

In particular we provide here a full symplectic embedding of Qn, i.e. a

collection of symplectic embeddings ϕi : B2n(1)→ Qn such that

⋃
i

ϕi(B2n(1)) = Qn

This construction arises from the idea that, in view of Conjecture 3.3 one

can provided a symplectic cover of Qn consisting in n+ 1 charts.

We will find this full symplectic embedding using the theory we explained

in section 2.2. Concretely we find the explicit form of the embedding

Φ : B2n(1) → Qn used in the computation of cG(M∗, ωFS) and compose

it with n translation giving rise to n + 1 embeddings. We can resume the

construction of Φ as follows:

B2n(1) ⊂ (Cn, h0)
∼=−→ (V, (·|·)) i−→ (IVn, ω0)

ΨIVn−−−→ (V, ωFS)
ξ−→ (Qn, ωFS)

where ξ is the Harish-Chandra embedding.

Let us first focus on the HPJTS V associated to Qn. The triple product

on Cn making it a HPJTS is given by

{u, v, z} = 2(h0(u, v)z + h0(z, v)u− h0(u, z)v)
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This is a simple HPJTS of rank 2 with genus g = n. From the above

definition we get

(u|v) =
1

n
trD(u, v) = 2h0(u, v)

which gives us the correspondence between (Cn, h0) and (V, (·|·)).
In order to have an explicit formula for ΨIVn we need to understand the

spectral decomposition of a regular point in V. It is easy to verify that

tripotents in V are the elements c = x+ iy (with x, y ∈ Rn) such that

h0(c, c) =
1

2
; h0(c, c) = 0; ‖x‖ = ‖y‖ =

1

2

Now we want to find the spectral decomposition v = λ1c1 + λ2c2 of an ele-

ment v. So let v be any element in V and define arg(v) = h0(v, v)/‖h0(v, v)‖.
For all µ ∈ C such that ‖µ‖ = 1 we have arg(µv) = µ2 arg(v).

Thus if we set α = (arg(v))
1
2 then the element v+ = αv satisfies the equal-

ity h0(v+, v+) = ‖h0(v, v)‖. Now denote by x+ (resp. y+) the real (resp.

imaginary) parts of v+, that is v+ = x+ + iy+.

It is not difficult to check that the spectral decomposition v = λ1c1 + λ2c2

is given by

λ1 = ‖x+‖+ ‖y+‖

c1 =
α

2

(
x+

‖x+‖
+ i

y+

‖y+‖

)
λ2 = ‖x+‖ − ‖y+‖

c1 =
α

2

(
x+

‖x+‖
− i y+

‖y+‖

)
Moreover this decomposition satisfies the properties

h0(v, v) =
λ2

1 + λ2
2

2
; ‖h0(v, v)‖ = λ1 · λ2

We can now understand the explicit form of the symplectic duality ΨIVn .

If v = λ1c1 + λ2c2 is the spectral decomposition of v ∈ V, from equation
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(2.5) we get

B(v, v)ci = (1− λ2
i )

2ci

which in our case implies

z = Ψ−1
IVn

(v) =
λ1

(1 + λ2
1)1/2

c1 +
λ2

(1 + λ2
2)1/2

c2 (4.2)

Now z ∈ B2n(1) ⊂ IVn if and only if ‖z‖ < 1
2 , i.e.

(
λ1

(1 + λ2
1)1/2

)2

+

(
λ2

(1 + λ2
2)1/2

)2

< 1

Then a simple computation shows that if z ∈ B2n(1) then v = ΨIVn(z) must

satisfy the condition

‖v′v‖2 = ‖h0(v, v)‖2 = (λ1 · λ2)2 < 1

Now in order to conclude the construction we need the expression of the

Harish-Chandra map. Wolf computed (see [26]) the Harish-Chandra map

ξ : V → Qn with basepoint 0 = [0 : . . . : 0 : 1 : i] ∈ Qn. The explicit form of

this map is:

ξ(v) = ξ(v1, . . . , vn) = [2iv1 : . . . : 2ivn : (1 + v′v) : i(1− v′v)]

So far we have proved that

Φ(B2n(1)) = {[z0 : . . . : zn+1] ∈ Qn|zn 6= 0; zn+1 6= 0}

At this point we have a symplectic embedding of B2n(1) in Qn, thus only

need to construct n other embeddings such that the claim holds. Consider

then the maps Pi : Cn+2 → Cn+2 for i = 0, . . . , n given by

fi(z0, . . . , zn+1) 7→ (z0, . . . , zi−1, zn, zn+1, zi, . . . , zn−1)

These are n+ 1 unitary isometries of Cn+2, hence they induce holomorphic

isometries Fi on Qn. The embeddings we are looking for are then {Fi ◦ Φ}.
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Now, as final step of our construction, we need to show that

⋃
i

(Fi ◦ Φ)(B2n(1)) = Qn

Note that (Fi ◦ Φ)(B2n(1)) = {[z0 : . . . : zn+1] ∈ Qn|zi 6= 0; zi+1 6= 0}.
Then [z] = [z0 : . . . : zn+1] ∈ Qn is not in the image of (Fi◦Φ) for i = 0, . . . , n

if and only if there does not exist i such that zi 6= 0 and zi+1 6= 0.

Being [z] a point of CPn+1 there exist zj 6= 0. Let α be a complex number

such that αzj = 2. Now from zj+1 = 0 we deduce

[αz] ∈ (Fj ◦ Φ)(B2n(1))

We have then provided a full symplectic embedding of Qn.

Unfortunately we cannot say anything about the invariant SB(Qn, ωFS)

apart from what comes directly from Rudyak and Schlenk theorem that

is

n+ 1 ≤ SB(Qn, ωFS) ≤ 2n+ 1

However we believe that it is possible to cover the complex projective quadric

with n+ 1 Darboux charts.
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