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Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea in Matematica

Correspondences and
selections

Relatore Tesi di Laurea di

Prof. Andrea Loi Elisa Manfredi

Anno Accademico 2011/2012

29/11/2012



One of the most interesting and important problem in topology is the

extension problem, i.e. given two topological space X and Y , together with

a closed set A ⊂ X, we would like to know whether every continuous function

g : A → Y can be extended to a continuous function f from X into Y , or

at least to some open U ⊂ X which contains A. We may also add some

additional conditions on f , for example a natural requirements could be that

for every x ∈ X, f(x) must be an element of a preassigned subset of Y .

This is frequently the case in the theory of the fiber bundles. This kind of

problem, called the selection problem, presents a challenge even when A is

the null set or a one-point set.

Before Ernest Michael papers’s [2], which appeared in Annals of Math-

ematics, only isolated and special cases of the selection problem have been

considered, and excluding some isolated exception, no attempt has been made

to obtain results under minimal hypotheses. The question of existence of se-

lection in such a setting turns out to be the question about the unique choice

of the solution of the problem under given initial condition. One could say

that the key importance of Michael’s theory is not so much in providing a

comprehensive solution of different selection problems, but rather the imme-

diate inclusion of the obtained results into the general contest of development

of topology. However in a remarkable number of cases, results of Michael on

solvability of the selection problems, turned out to be the final answers, that

is they provided condition on which turned out to be necessary and sufficient.

For a large number of those working in topology, functional analysis,

multivalued analysis, approximation theory, convex geometry, control theory,

mathematical economics and several other areas find the result of Michael an

indispensable tool for their studies. But they may find a detailed investiga-

tion on this pears some way discouraging. This theorems together with the

same important application were described by Ernest Michael in his paper

[2] to whom the present dissertation is based. The purpose of this thesis is to

give a detailed proof of the principal results of Michael’s papers together with

some application, accessible to the casual reader. The thesis is organized in
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two chapters and two appendixes. In the first section of the first chapter we

recall the basic definitions of correspondence and selections, and we state the

main results of thee thesis: Theorem 1.1.3 and Theorem 1.1.4. The purpose

of this thesis is to give a detailed proof of the principal results of Michael’s

papers together with some application. The thesis contains two chapters

and two appendixes. In the first chapter, after recalling the definition of

correspondences and selections, we state and proof the main results of the

thesis (Theorem 1.1.3 and Theorem 1.1.4). In Chapter two we describe three

applications of the main results, namely Theorem 2.1.2, Theorem 2.2.1 and

Theorem 2.2.2. The two appendixes contain the basic results on topology

and complex analysis needed for the applications.
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Chapter 1

Correspondences and selections

1.1 Basic definitions and statements of the

main results

Let X and Y be two topological space and let φ be a map from X to the

powerset of Y , denoted by P (Y ) or by 2y , we call φ a correspondence or

multivalued function.

Definition 1.1.1. Let φ : X → P (Y ) be a correspondence. A continuous

map f : X → Y is called a selection for φ if f ∈ φ(x) for every x ∈ X.

Definition 1.1.2. A correspondence φ from X to Y is said to be lower

semicontinuous at the point x if for any open set V ⊂ Y , such that V ∩φ(x) 6=
∅, there exist a neighborhood U of x such that: φ(u) ∩ V 6= ∅ for all u in U .

The main result we are interested in this thesis are represented by the

following two theorems.

Theorem 1.1.3. If X is a paracompact space, then every lower semi-continuous

map φ from X to the non empty, closed , convex subsets of a Banach space

Y admits a selection.

5



Theorem 1.1.4. Let X be paracompact and zero-dimensional topological

space and let Y be a complete metric space. Then every lower semi continu-

ous correspondence φ from X to the non-empty, closed subsets of Y admits

a selection.

1.2 Proof of the main results

In order to prove Theorem 1.1.3 we need the following lemma. In the se-

quel given a subset B of a metric space (Y, ρ) we denote Sr(B) = {y ∈
Y | ρ(y,B) < r}.

Lemma 1.2.1. If X is a paracompact space, Y a normal linear space and φ

a lower semi-continuous function from X to a non-empty and convex subset

of Y , then there exist a continuous function fr, with fixed r > 0, from X to

Y such that f(x) ∈ Sr(φ(x)) for every x ∈ X .

Proof. We consider the two subsets:

Uy = {x ∈ X | y ∈ Sr(φ(x))}

and

U ′y = {x ∈ X | φ(x) ∩ Sr(y) 6= ∅}.

We will proof that these sets are equal. The inclusion U ′y ⊂ Uy is immediate.

On the other side chosen y ∈ Uy it means that y ∈ Sr(φ(x)) and so the

distance ρ(y, Sr(φ(x))) < r consequently there exist at least one point of φ(x),

that we can call y0, such that ρ(y, y0) < r and this implies φ(x) ∩ Sr(y) 6= ∅.
So y ∈ U ′y.

As U ′y and Uy define the same set, we can call it, from now, Uy and use one

of the two definition freely. We observe that since φ is LSC then Uy= { x ∈
X|φ(x)∩Sr(y) 6= ∅ } is an open set, indeed the subset { x ∈ X|φ(x)∩U 6= ∅}
is an open set for every open subset U ⊂ Y and Sr(y) is obviously an open

set of Y .
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Figure 1.1: Representation of Uy. Here we represent the image of an element

x throughout the function φ, which is a subset of Y , with a piece of curve in

bold.

If we consider the family {Uy}y∈Y this is an open covering of X, and since

X is paracompact, it follows that there exist an locally finite refinement ,that

we will call {Uα}α∈A. Since we lie in the hypothesis of proposition B.2.1 there

exist a family of continuous function {pα}α∈A such that every function goes

from X to the unit interval [0, 1] ⊂ R.

And since {Uα}α∈A is a refinement of {Uy}y∈Y we can choose for every

y ∈ Y : y(α) ∈ Vα ⊂ Uy(α) .

The desired continuous function f can be now defined by

f(x) =
∑

pα(x)y(α).

To see that f is the desired function, we can observe that every x has a

neighborhood U intersecting only a finite number of Vα and so f is a finite
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Figure 1.2: Representation of U ′y.

sum of continuous functions. Since f is continuous in a neighborhood of every

x ∈ X then f is continuous on X. Moreover, we notice that for every x, f(x)

is a convex, linear combination of finitely many y(α), and all of them lie in

the convex set Sr(φ(x)) and therefore also f(x) ∈ Sr(φ(x)). This complete

the proof of the lemma.

Proof of Theorem 1.1.3.

To proof Theorem 1.1.3 we will construct a sequence of continuous function

fi : X → Y such that:

(a) fi(x) ∈ S2−i+2(fi−1(x)), i = 2, 3, ...

(b) fi(x) ∈ S2−i(φ(x)), i = 1, 2, 3, ....

If we can build a such sequence {fi}, it will be a Cauchy sequence since (a)

is true and as the neighborhood S2−i+2(fi−1(x)) has radius independent from

the point x, then the sequence is an uniformly Cauchy sequence. As {fi} is
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a Cauchy sequence of continuous functions in a Banach space, it converges

uniformly to a continuous function f which goes from X to Y and such that

f(x) ∈ φ(x), by (b).

The function f will be the desired selection for φ.

Now we are now going to construct the sequence {fi} for induction. As

we lie in the previous lemma’s hypothesis, we know that there exist f1 such

that (b) is valid. In other worlds, by Lemma 1.2.1, we know that there exist

f such that:

fr : X → Y | f(x) ∈ Sr(φ(x)), ∀x ∈ X

where we choose r = 2−1.

Figure 1.3: Representation of f1.

We use now the induction hypothesis and we suppose to have already

built f1, . . . , fn, and we will show that we can build also fn+1. Let us build

the function φn+1 :

φn+1(x) := φ(x) ∩ S2−n(fn(x)).

Since fn(x) lies in a neighborhood of φ(x) of radius 2−n, we are sure that

the mentioned intersection is not empty. Now we want to show that also

φn+1 is lower semi-continuous. In other worlds we want to show that for
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Figure 1.4: Representation of φn+1.

every U ⊂ Y , the set V = {x ∈ X |φn+1(x) ∩ U 6= ∅} is open. We will show

that V contains a neighborhood of all his points. Let x0 in V and choose

y0 ∈ φn+1(x0) i.e. such that y0 ∈ Sλ(fn(x0)), where λ < 2−n. Let us consider

now the two sets:

W1 = {x ∈ X |φ(x) ∩ Sλ(fn(xo)) ∩ U 6= ∅}

and

W2 = {x ∈ X | fn(x) ∈ S2−n−λ(fn(x0))} .

We want to show that W1∩W2 is a neighborhood of x0. Let see that W1 is non

empty. In fact at least x0 ∈ W1 since : φ(x0) ∩ Sλ(fn(x0)) ∩ U is equivalent

to say φn+1(x0) ∩ U but for all x ∈ V we know that this intersection is non

empty.

Shall we see now that W1 is also open. Indeed for the lower semi-

continuity of φ we have that {x ∈ X |φ(x) ∩ Ũ 6= ∅} is an open set in

X for every open set Ũ , and we observe that Sλ(fn(x0)) ∩ U is an open set

in Y . So W1 is open in X. We are going to show that also W2 open and

nonempty. W2 is open since the continuity of fn. Because Ss−n−λ(fn(x0)) is

an open set of Y and his inverse image, since fn is continuous, is an open in
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X. On the other hand we see that W2 is also non empty because at least x0

is in W2, since fn(x0) ∈ S1/2n−λ(fn(x0)).

Figure 1.5: Representation of φn+1.

Now that we have shown that W1 and W2 are non empty, open and that

x0 ∈ W1 ∩W2, we will proof that W1 ∩W2 is contained in V . In other words

we have to proof that

[φ(x) ∩ Sλ(fn(x0))] ∩
[
U ∩ S1/2n−λ(fn(x0)) ⊂ φn+1(x) ∩ U

]
.

We have that

Sλ(fn(x0)) ∩ S1/2n−λ(fn(x0)) ⊂ S1/2n(f(x0)).

This implies

φ(x) ∩
[
Sλ(fn(x0)) ∩ S1/2n−λ(fn(x0))

]
∩ U ⊂ φ(x) ∩ S1/2n(f(x0)) ∩ U.

By definition of φn+1 we have

φ(x) ∩ S1/2n(f(x0)) ∩ U = φn+1(x) ∩ U.

So we have that W1 ∩ W2 ⊂ V and as we choose x0 generically it follows

that V is open and we shown that φn+1 is lower semicontinuous. By Lemma

1.2.1, we can find a function that we will call fn+1, such that fn+1(x) ∈
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S2−n−1(φn+1(x)), as we pick r = 1/2n+1. By definition of φn+1 and by def-

inition of Sn, we see now that if fn+1(x) belongs to S2−n−1(φn+1(x)) then

fn+1(x) ∈ S2−n−1(fn(x)). But fn+1(x) ∈ S2−n−1(fn(x)) is condition (a) and

fn+1 ∈ S2−n−1(φn+1(x)) is condition (b).

We have shown how to build fn+1 by induction, and so the Cauchy se-

quence {fi} that is convergent to a selection f for φ.

Lemma 1.2.2. Let X be paracompact and zero-dimensional, Y a metric

space and φ a lower semicontinuous function from X to the non-empty subset

of Y . Then, for every r > 0, there exist a continuous function f such that

f(x) ∈ Sr(φ(x)) ∀x ∈ X.

Proof. For every y ∈ Y let us define Uy := {x ∈ X | y ∈ Sr(φ(x))}. We have

shown in Lemma 1.2.1 since φ is lower semi continuous, Uy is open in X. For

y varying in Y , {Uy}y∈Y is an open covering of X. Since X is paracompact

{Uy}y∈Y admits an open locally finite refinement {Wα}α∈A. By proposition

B.2.1 in the appendix below, as X is zero-dimensional, so this refinement is

also disjoint.

Now consider the function y : X → Y , where y(Wα) ∈ Y is such that

Wα ⊂ Uy(Wα). This function associate to every point of a certain Wα a

point y ∈ Y which is the same that induced the open set Uy, in which Wα

is contained. We observe that Wα is contained in Uy(Wα) as {Wα}α∈A is a

refinement for {Uy}y∈Y . Now we define f(x) := y(W ) if x ∈ W . The function

f just defined satisfy our requirements. As a matter of facts f is a continuous

map. By construction of f , we see that all point from a same Wα are sent

in a same y ∈ Y . Then the inverse image of a point y ∈ Y is or the empty

set or union of some Wα. Therefore the inverse image of every set in Y is

an open set, since is union of some open sets. Moreover by construction we

have that f(x) ∈ Sr(φ(x)). Since

f(x) := y(Wα) if x ∈ Wα where Wα ⊂ Uy(Wα) := {x ∈ X | y ∈ Sr(φ(x))},

and we are done.

12



Proof of Theorem 1.1.4.

In order to prove Theorem 1.1.4 we will need, as in the proof of Theorem 1.1.3,

to build an uniformly Cauchy sequence convergent to our desired function f

which is a selection for φ. By Lemma 1.2.2 we can build a sequence as follow:

(a) fi(x) ∈ S2−i+2(fi−1(x)) (i ∈ 2, 3, ... )

(b) fi(x) ∈ S2−i(φ(x)) (i ∈ 1, 2, 3, ... ).

Where the existence of the sequence is assured by Lemma 1.2.2, mean-

while the convergence of the saucy sequence is assured by the completeness

of Y . The full proof repeat step by step the proof of Theorem 1.1.3 by using

Lemma 1.2.2 instead of Lemma 1.2.1.
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Chapter 2

Applications

2.1 Bartle – Graves Theorem

This chapter is dedicated to three consequences ( Theorem 2.1.2, Theorem

2.2.1 and Theorem 2.2.2) of the results proved in the first chapter. In order

to prove them we need the following lemma dealing with an important class

of correspondences, namely those arising as preimage of maps.

Proposition 2.1.1. Let u : Y → X be surjective and φ : X → P (Y ) defined

as φ = u−1(x). The correspondence φ is lower semi continuous if and only

if u is an open function.

Proof. Let us remember that under this hypothesis, φ is lower semicontinuous

if for each open V ⊂ Y , the set W := {x ∈ X|u−1(x) ∩ V 6= ∅} ⊂ X is an

open set.

We first proof, that if u is an open function then φ is lower semicontinuous.

In order to show that W is an open set, we show first that W = u(V ).

Let x ∈ u(V ), then we have that u−1(x) ∩ V 6= ∅, since we know that

there exist at least one y such that x = u(y), and this y belongs to this

intersection.

Let x ∈ W , hence u−1(x) ∩ V 6= ∅, then there exist ω ∈ W such that

u(w) = x, and therefore: x ∈ u(V ). In this way we just proof that W = u(V )
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where V is open and u is an open function and it implies that W is also

open. To proof that if φ is lower semicontinuous then u is an open function,

is sufficient remember that W = u(V ) is open and this implies that u(V ) is

open since V is open.

Theorem 2.1.2. (Bartle–Graves)

Let X and Y be two Banach spaces, and let u : Y → X be a continuous,

linear and surjective map. Then there exists a continuous function f : X →
Y which is a continuous right inverse for u.

Proof. We want to apply Theorem 1.1.3 , then we define the correspondence

φ as follows:

φ : X → P (Y ) such that φ(x) = u−1(x).

Now we want to be sure that we lie in the Theorem 1.1.3 hypothesis. By

A.H. Stone theorem[9], every metric space is paracompact and since X is a

Banach space then is also a metric space. Moreover, the image of a point

in X through φ is closed as it is the inverse image through the continuous

function u of a point, which is closed. The image through φ is also non-empty

by the subjectivity of u. The convexity of the image comes from the linearity

of u: let v1 and v2 ∈ u−1(x) and t ∈ [0, 1] then

u(tv1 + (1− t)v2) = tx+ (1− t)x = x.

The lower semicontinuity of φ arise by Proposition 2.1.1. As we lie in theorem

1.1.3 ’s hypothesis, there exist a continuous function f such that f(x) ∈ φ(x).

By construction of φ, f is a continuous right inverse of u.

2.2 Two others important applications

Theorem 2.2.1. Let X be a zero-dimensional and paracompact space, and

let Y be a complete metric space. If u : Y → X is a continuous, open

and surjective map, then there exist a continuous f : X → Y which is a

continuous right inverse for u.
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Proof. Our aim is to apply theorem 1.1.4. For first let us define the corre-

spondence φ as follows:

φ : X → P (Y ) and φ(x) = u−1(x).

By proposition 2.1.1, φ is lower semi continuous. Moreover the image trough

φ is non-empty and closed, by construction as we proof in Theorem 2.2.1.

Then we lie in theorem 1.1.4’s hypothesis and there exist a selection for φ,

which is also a continuous right inverse for u.

Theorem 2.2.2. Let X be a zero-dimensional, paracompact space; let C be

the complex numbers and let g : X → C be continuous. If ω is any polynomial

with complex coefficients, then there exist a continuous function f : X → C
such that ω(f(x)) = g(x) for every x ∈ X.

Proof. Let us define a correspondence φ as follows:

φ : X → P (C) and φ(x) = ω−1(g(x)).

If the hypotheses of Theorem 1.1.4 are satisfied, it would exist a continuous

function f which is a selection for φ and therefore such that

f(x) ∈ φ(x)→ f(x) = ω−1(g(x))→ ω(f(x)) = g(x)

as wished. Hence we have to proof that the image trough φ is closed and

non empty and that φ is lower semicontinuous. The lower-semicontinuity of

φ follows by Proposition 2.1.1. Moreover the image trough φ is closed as

it is inverse image trough a continuous function of a closed set. The non

emptiness of φ(x) is assured by the fundamental theorem of algebra.
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Appendix A

Two open mapping theorems

A.1 Maps between Banach spaces

Definition A.1.1. X is a Banach space if it is a complete, normed vector

space. In other words X is a Banach space if it is a normed vector space in

which every Cauchy sequence is convergent to an element of X.

Definition A.1.2. Let X be a topological space, we say that A ⊂ X is a

nowhere dense set if the closure of A has empty interior.

Theorem A.1.3. Let X and Y be two Banach spaces, and let A be a linear,

continuous, surjective map from X in to Y . Then A is an open map.

In order to proof Theorem A.1.3 we first need a lemma and its corollary.

Lemma A.1.4. Let X be a complete metric space and that A1, A2, A3, ... is

a sequence of dense open sets. Then ∩n∈NAn is nonempty.

Proof. In this proof we will frequently use the fact that an open ball Bε(x)

contains the closure of another open ball, for example Bε/2(x).

Let Bε1(x1) be an open ball such that Bε1(x1) is contained in A1. Since A2

is open and dense, the intersection between Bε1(x1) and A2 is still an open set.

Therefore there exists an open ball Bε2(x2) contained in Bε1(x1)∩A2. In this

way, we can construct a sequence of open ball, in which every open ball has
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its closure contained in the previous one. The sequence Bε1(x1), Bε2(x2), ...

can be choose such that εn vanish when n approaches to zero (for example,

it is sufficient to choose εj+1 < εj/2 ). In a such case the sequences (xn)n∈N

is a Cauchy sequence. Since X is a complete metric space, this sequence

converges to a certain x ∈ X. Note that Bεn(xn) contains all xj with j ≥ n,

then x is contained in Bεn(xn). Thus x ∈ An. Therefore x ∈ ∩n∈NAn, then

the intersection is nonempty.

Corollary A.1.5. Let X be a complete metric space and let F1, F2, F3, ... be

closed and nowhere dense sets. Then ∪n∈NFn 6= X.

Proof. Set Aj = X r Fj. By Lemma A.1.4:

∩n∈NAn 6= ∅ ⇒ ∩n∈N(X r Fj) 6= ∅ ⇒ X r ∪n∈NFn 6= ∅ ⇒ X 6= ∪n∈NFn,

as wished.

Proof of Theorem A.1.3.

We want to show that A(U) is open in Y when U is open in X. By the

linearity of A it is sufficient to prove that A send the open unitary ball

centered in 0 ∈ X in one neighborhood of 0 ∈ Y .

Let U = B1(0) ⊂ X, by the surjectivity of the map A we have:

Y = A(X) = A(∪∞k=1kU) = ∪∞k=1A(kU).

By Lemma A.1.4 and its corollary, we know that a Banach space cannot be

union of a numerable number of nowhere dense sets. As Y is a Banach space

we deduce that there exist a k > 0 such that A(kU) has nonempty interior.

Therefore there exist c ∈ A(kU) and r > 0 such that B(c, r) ⊂ A(kU).

Choose v ∈ V := B1(0) ⊂ Y , then both c and c + rv are interior point

of A(kU). As the translation is an open map, rv = c+ rv − c is an internal

point of A(kU)−A(kU) := {z = x−y |x, y ∈ A(kU)}. In particular rv is an

interior point of A(2kU). As rv ∈ A(2kU) then v ∈ A(2k
r
U), by linearity of

A. Thus, for any ε > 0, Bε(v) ∩ A
(
2k
r
U
)
6= ∅. Therefore for any v ∈ V and
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ε > 0 there exists x such that ‖x‖X < 2k
r

and ‖v−A(x)‖Y < ε. It follow, by

the linearity of A, that for any y ∈ Y and any ε > 0, there is an x ∈ X such

that

‖x‖X < δ−1‖y‖Y and ‖y − A(x)‖Y < ε, (A.1)

where δ = r
2k

.

Fix y1 ∈ δU and ε = δ
2
. By (A.1) there exists x1 such that ‖x1‖ <

δ−1‖y‖ < 1 and ‖y −A(x1)‖ < δ
2
. We define by induction the sequence {xj}

as follow. Assume ‖xn−1‖ < 2−(n−2) and yn = y − A(x1 + · · · + xn−1) with

‖yn‖ < δ2−(n−1). By (A.1), choosing y = yn and ε = δ2n, there exist xn such

that

‖xn‖ < 2−(n−1) and ‖y − A(x1 + ...+ xn)‖ < δ2−n. (A.2)

Consider the sequence {sn} with sn = x1 + · · · + xn. {sn} is a Cauchy

sequence. Assume n > m, we have

‖sn − sm‖ = ‖xm+1 + ...+ xn‖ ≤ ‖xm+1‖+ ...+ ‖xn‖

< 2−m + ...+ 2−(n−1) = 2−(n−1)
(

1 +
1

2
+ · · ·+ 2n−m−1

)
≤ 2−n+2.

So {sn} is a Cauchy sequence, since X is complete, sn converge to point

x ∈ X, moreover by (A.2) the sequence A(sn) converge to a point y ∈ Y . By

the continuity A(x) = y. Note that

‖x‖ = lim
n→∞

‖sn‖ ≤
∞∑
n=1

‖xn‖ = 2.

Hence x ∈ 2U and y ∈ A(2U). By the arbitrariness of y we see that δV ⊂
A(2U), equivalently δ

2
V ⊂ A(U). We proved that A(U) is a neighborhood of

the origin in Y .

Now let U be an open set in X, y0 ∈ A(U) ⊂ Y and x0 such that

y0 = A(x0). Since U is open there exists Bε(x0) ⊂ U . We consider a

translation of Bε(x0) in the origin, then A(Bε(x0)− x0) is a neighborhood of

0 in Y . Therefore A(Bε(x0) − x0) + y0 is a neighborhood of y0 in Y . Our

aim is to show that A(Bε(x0) − x0) + y0 is contained in A(U). In this way
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since y0 is arbitrary, every point in A(U) is an internal point and then A(U)

is open. By linearity of A:

A(Bε(x0)− x0) + y0 = A(Bε(x0))− A(x0) + y0 = A(Bε(x0)).

But since Bε(x0) ⊂ U then A(Bε(x0)) ⊂ A(U), as wished.

A.2 Holomorphic maps

Definition A.2.1. A function f is meromorphic on an open subset D of the

complex plane, if f is a function that is holomorphic on all D except a set of

isolated points, which are poles for the function.

Definition A.2.2. An homotopy map between two continuous functions f

and g from a topological space X to a topological space Y is defined to be a

continuous map H : X × [0, 1]→ Y from the product of the space X with the

unit interval [0, 1] to Y such that, if x ∈ X then:

H(x, 0) = f(x) and H(x, 1) = g(x).

In other words two continuous map from one topological space to another are

called homotopic, if one can be “continuously deformed” into the other, and

such deformation being called a homotopy between the two functions.

Definition A.2.3. A topological space X is contractible if the identity map

on X is null-homotopic, i.e. if it is homotopic to some constant map.

Theorem A.2.4. Any non constant holomorphic function on an open and

connected set is an open map.

In order to proof the theorem we need some lemma.

Lemma A.2.5. Let f(z) be a meromorphic function on an open set Ω in

the complex plane and that C is a closed, simple, counter-clockwise oriented

curve in Ω , and f has no zeros or poles on C. Then∫
C

f ′(z)

f(z)
dz = 2πi (N − P ) ,
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where N and P denote respectively the number of zeros and poles of f(z)

inside the domain delineated by the curve C, with each zero and pole counted

as many times as its multiplicity, respectively order.

Proof. Let zN be a zero of f , with multiplicity k. We can write:

f(z) = (z − zN)kg(z),

where g(zN) 6= 0. We have

f ′(z) = k(z − zN)k−1g(z) + (z − zN)kg′(z)

and then:
f ′(z)

f(z)
=

k

z − zN
+
g′(z)

g(z)
.

Since g(zN) 6= 0, it follows that g′(z)
g(z)

has no singularities at zN , and ths is

analitic at zN , which implies that the residue of f ′(z)
f(z)

at zN is k. Now let zP

be a pole for f . We have

f ′(z) = −m(z − zP )−m−1h(z) + (z − zP )−mh′(z),

and
f ′(z)

f(z)
=
−m
z − zP

+
h′(z)

h(z)
.

It follows that h′(z)
h(z)

has no singularities at zP since h(zP ) 6= 0 and thus it

is analytic at zP . We find that the residue of f ′(z)
f(z)

at zP is −m. Putting

these together, each zero zN of multiplicity k of f generates a simple pole for
f ′(z)
f(z)

with the residue being k, and each pole zP of order m of f generates

a simple pole for f ′(z)
f(z)

with the residue being −m. By Residue Theorem [7]

we have that the integral about C is the product of 2πi and the sum of the

residues. As N is the number of zeroes counted with their multiplicity and

P the number of the poles counted with their orders we have our result.
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Lemma A.2.6. Let K ⊂ C be a bounded region with continuous boundary.

Two holomorphic functions f and g have the same number of roots in K, if

the strict inequality:

|f(z)− g(z)| < |g(z)| ( z ∈ ∂K)

holds on the boundary ∂K.

Proof. Note that by hypotheses both f and g do not have any roots on the

boundary ∂K and that f(z)
g(z)

is not a negative real number for z ∈ ∂K. Thus

the homotopy map:

I(t) :=
1

2πi

∫
∂K

F ′(z)

F (z) + t
dz,

where F (z) := f(z)
g(z)

, is well defined for t ≥ 0. Clearly I(t) tends to zero as t

increases indefinitely. As I(t) is continuous and integer valued, it folows that

I(0) = 0. By Lemma A.2.5:

0 =
1

2πi

∫
∂K

F ′(z)

F (z)
dz = NF (K)− PF (K),

where NF (K) is the number of zeroes of F inside K and PF (K) is the num-

ber of poles inside K counted with they multiplicity and order respectively.

Hence NF (K) = PF (K). As F is the ratio of two holomorphic functions f

and g inside K, the zeroes are those of f and the poles are the zeroes of g,

that is :

0 = NF (K)− PF (K) = Nf (K)−Ng(K),

as wished.

Observation A.2.7. Lemma A.2.6 can be used also to give a short proof of

the Fundamental Theorem of Algebra. Let p be the polynomial:

p(z) = a0 + a1z + a2z
2 + ...+ anz

n
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and let R be positive and such that:

|a0+a1z+a2z
2+...+an−1z

n−1| ≤
n−1∑
j=0

|aj|Rn−1 < |an|rn = |anzn| for |z| = R.

since anz
n has n zeros inside the disk |z| < R (as R > 0), it follows from

Lemma A.2.6 that p has the same number of zeros inside the disk.

Proof of Theorem A.2.4.

Let U ⊂ C be an open set and f : U ⊂ C → C be a non-constant

holomorphic map. We want to show that every point in f(U) is an interior

point in f(U). Let w0 be an arbitrary point in f(U). Then there exists a

point z0 in U such that w0 = f(z0). Since U is an open set we can find an

open ball Bd(z0) such that its closure is fully contained in U . Consider the

function g(z) = f(z)−w0. Note that z0 is a root for g(z). By definition, g(z)

is also non constant and holomorphic. Then the roots of g(z) are isolated.

Indeed if v0 is a root of order k for g, we have g(z) = (z − v0)kh(z), where

h(z) does not vanish in v0. Therefore |h(v0)| 6= 0 and then there exists

an ε such that |h(v0)| 6= 0 for z in Bε(v0). Let z ∈ Bε(v0) and z 6= z0,

then g(z) = (z − z0)kh(0) 6= 0. Thus z0 is an isolated root. So, by further

decreasing the radius of the image disk d, we can assume that g(z) has only

a single root in B (although this single root may have multiplicity greater

than 1), in fact it is sufficient to pick d = ε/2 and we have Bd ⊂ Bε(z0).

The boundary of Bd is a circle and hence a compact set, and |g(z)| is a

continuous function, so g(z) reach a minimum in the boundary of Bd. Let e

be this minimum e = min∂Bd(|g(z)|). Now let D := Be(w0) be an open disk

around w0. By Lemma A.2.6 the function g(z) = f(z) − w0 has the same

number of roots (counted with multiplicity) in B as f(z)−w for any w ∈ D.

Indeed we can pick (by abuse of notation) as f(z) the function f(z)−w and

as g(z) the function g(z) = f(z)− w0. We have in fact

|f(z)− g(z)| = |w − w0| < |g(z)|

on the boundary of Bd as e := min∂Bd(|g(z)|) and w ∈ D. Thus for every
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w ∈ D there exists at least one z1 in Bd such that f(z1) = w. This means

that the disk D is contained in f(B) which is contained in f(U), as wished.
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Appendix B

Basic facts in topology

B.1 Covering and paracompact spaces

In the following definitions X will denote a topological space.

Definition B.1.1. A collection {Vα}α∈A of subsets is said to be a covering

of X if their union equal X.

Definition B.1.2. We say that a family {Vα}α∈A is an open covering of X

if it is a covering in which every member is an open set.

Definition B.1.3. If {Vα}α∈A and {Wβ}β∈B are covering of X, then {Vα}α∈A
is a refinement of {Wβ}β∈B if every Vα is a subset of some Wβ .

Definition B.1.4. A covering {Vα}α∈A of X is said to be locally finite if

every point of X has a neighborhood which intersects only finitely many Vα

of the covering.

Definition B.1.5. A covering {Vα}α∈A of X is said to be an open disjoint

covering if for every of Vα of the family we have that Vi ∩ Vj = ∅ if i 6= j,

in other words, if all the sets in the family are two by two disjoint.

Definition B.1.6. X is paracompact if every open finite cover has an open

refinement that is locally finite.
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Definition B.1.7. A vector space X is said to be convex if the segment

joining each of its points is contained in the space.

Definition B.1.8. X is a T1 space if for every x and y belonging to X there

exist two open neighborhood U and V respectively of x and y such that y /∈ U
and x /∈ V .

Definition B.1.9. X is zero-dimensional if every open cover of the space

admits a finite open refinement such that any point in the space is contained

in exactly one set of the refinement.

Definition B.1.10. X is a normal space if for every two closed and disjoint

subset of X, there exists two disjoint open neighborhoods which separate the

two closed.

Proposition B.1.11. The topological space X is a normal space if and only

if for every closed subset F ⊂ X and every open set U , which contains F ,

there exist an open set V such that F ⊂ V and V ⊂ U .

Proof. Given a closed set F ⊂ X and an open set U which contains F , we

consider the two closed set F and U c the complement U . By the normality

of X we can find two open and disjoint set V and V ′ such that F ⊂ V and

U c ⊂ V ′. As V and V ′ are disjoint, and as V and V ′ are open set, also V

and V ′ are disjoint. By construction U c is contained in V ′ so V and U c are

also disjoint.

On the other hand, given two disjoint and closed sets F and F ′, we have

to find two open and disjoint sets U and U ′ such that F ⊂ U and F ′ ⊂ U ′,

only by using that given a closed set and an open which contains it, then

there exist an open set with the closure contained in the open, and which

contains the closed. Let we consider the set (F ′)c, the complement of F ′ in

X, which is an open set. As F and F ′ are disjoint, F is contained in (F ′)c,

then there exist an open set V such that contains F and with its closure

contained in (F ′)c. Now let we consider the open set (V )c, which contains

F ′, then there exist some open set W which contains F ′, but with its closure

contained in (V )c. The two sets V and W separate F and F ′, as wished.
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B.2 Partitions of unity

Proposition B.2.1. If {Vα}α∈A is a locally finite, open covering of a normal

space X, then there exist a family {pα}α∈A of continuous function from X to

the closed unit interval with the following properties:

(a) pα vanishes outside Vα

(b)
∑

α∈A pα(x) = 1 for every x ∈ X

In order to prove the proposition we need some lemma.

Lemma B.2.2. Let {Vα}α∈A be a locally finite open covering of a normal

space X, there exist an open covering {Wα}α∈A of X such that Wα ⊂ Vα.

Proof. Let A be the collection of all open sets A such that A is contained

in Vβ ∈ {Vα}α∈A, for some β in A. As X is normal, A is a covering of X.

Indeed taken p ∈ X, there exist Vα such that p ∈ Vα. Now let us consider

the two closed subset {p,X r Vα}. Since X is a normal space, then there

exists two open sets A and B such that A∩B = ∅ , p ∈ A and X r Vα ⊂ B.

By construction A is contained in Vα. By the paracompactness of X, we can

choose a refinement B = {Bα}α∈J of A. Consider f defined as follows:

f : J → A

such that

f(j) = α⇒ Bj ⊂ Vα

.

Let us define Wα = ∪j|f(j)=αBj. Note that Wα satisfies our condition.

First, Wα ⊂ Vα by construction. Second, it is locally finite: pick a point

p ∈ M , then there exist a neighborhood U of p such that U intersect only

a finite number of element of B, we call them {Bα1 , ..., Bαn}. Then, by

construction U intersect exactly the element {Wf(α1), ...,Wf(αn)} of {Wα}α∈A.
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Lemma B.2.3. If X is a normal space, then for every two closed and disjoint

sets A and B of X there exists a continuous function f : X → [0, 1], such

that

f(x) =

{
1 if x ∈ A
0 if x ∈ B

(B.1)

Proof. Let D be the set of the dyadic rational fraction between 0 and 1, i. e.

all the fraction of the form k
2n

with k ∈ [0, 2n]. For each r ∈ D we will build

a sequence of sets U(r) such that:

1. B ⊂ U(r) , ∀ r ∈ D

2. U(r) ∩ A = ∅ , ∀ r ∈ D

3. if r < s⇒ U(r) ⊂ U(s) , ∀ r , s ∈ D .

First we define U(0) as that open set which has its closure contained in

Ac, contains B and which existence is assured by the normality of X and

Proposition B.1.11, let we call this set V , then U(0) := V . Moreover we define

U(1) := Ac. We suppose, as induction hypothesis, that we have already build

the sequence of U(r) until r = k
2n

where k is odd. We observe that as k is

odd, k − 1 is even and then k−1
2n

can be simplify, becoming of the form m
2n−1

where m is odd. Then we assured the existence of the set U(k−1
2n

) with the

inductive hypothesis. The same holds for the set U(k+1
2n

). By the inductive

hypothesis and by (3) we have: U(k−1
2n

) is contained in U(k+1
2n

). On the other

hand, by normality of X there exist an open set, that we can call U( k
2n

), such

that :

U

(
k − 1

2n

)
⊂ U

(
k

2n

)
⊂ U

(
k

2n

)
⊂ U

(
k + 1

2n

)
.

Then we proof the existence of a such sequence. Now we will finally able

to define a continuous function f as wished:

f(x) =

{
1 if x ∈ A
inf {r |x ∈ U(r)} if x /∈ A

(B.2)
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Let we observe that if x belongs to U(0) then f(x) = 0. We now have to

show that a such f is continuous, and we will use the definition of continuity

in a point. Let t , s , r be in D with r − ε < s < r < t < r + ε. The set

U(t) r U(s) is an open set and it is such that:

r − ε < s ≤ f(U(t) r U(s)) ≤ t < r + ε

and then f is continuous in the point x. By arbitrarily of x it follows that f

is continuous.

Remark B.2.4. The previous lemma can be proof also by using two generical

sets A and B instead of two closed sets. Indeed it is sufficient require that

the two closures of the sets has empty intersection.

Proof. of Proposition B.2.1. By Lemma B.2.2 there exists a covering {Wα}α∈A
such that Wα ⊂ Vα for every x ∈ X. By the normality of X and by to lemma

B.2.3 we can find a continuous function qα such that:

(a) qα = 0 x ∈ X r Vα

.

(b) qα = 1 x ∈ Wα

Now define pα(x) = qα(x)∑
β∈A qβ(x)

. The family {pα}α∈A satisfies by construc-

tion all our requirements.

Proposition B.2.5. Let X be a normal space, then the following sentences

are equivalent:

(1) Every open finite covering of X admits a disjoint open finite refine-

ment. (i.e. X is zero dimensional.)

(2) every local finite open covering of X admits an open disjoint refine-

ment.

(3) if V ⊂ X is an open set and A ⊂ V is a closed set , then there exists

a set W which is open and closed such that : A ⊂ W ⊂ V ⊂ X.
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Proof. (1)⇒ (3)

Let consider as a open finite covering of X the family: {XrA, V }. By (1)

we know that there exists an open disjoint finite refinement of this covering,

lets call it U := {Ui}i∈I . Lets define W :=
⋃
j∈J Uj for all Ui ⊂ V . By

definition of W , we have that W ⊂ V . Furthermore A ⊂ W . As a matter

of fact taken x ∈ A, since U is also a covering of X, there exist Ui such that

x ∈ Ui. As U is also a refinement of the covering: {X rA, V }, we have that

every element of U must be contained or in XrA or in V . But Ui ∈
⋃
j∈J Uj

cannot be all contained in X rA, because x ∈ A. Therefore Ui ⊂ V implies,

by construction of W , Ui ⊂ W . So we have just shown that if x is in A then

it is contained in W .

Now we will show that W is an open and closed subset of X. W is clearly

an open set as it is union of some open sets Ui. To proof that W is also closed

we will show that every Ui is also closed, showing that every complement of

every Ui is open. Fixed Ui , let x be in X r Ui. As U is a covering of X,

then there exists Uj such that x ∈ Uj with Uj ∩Ui = ∅. In fact there exist an

open neighborhood of x contained in X r Ui. Since x is arbitrary, we proof

that X r Ui is open. So W :=
⋃
j∈J Uj is also closed.

(3)⇒ (2)

Let Uα be an open covering of X. By to the Lemma B.2.2 we know

that there exist an open covering {Vα}α∈A of X such that Vα ⊂ Uα for each

α ∈ A. As we know by (3) we can find for each α ∈ A also a set Wα such

that Vα ⊂ Wα ⊂ Uα . Using Well − ordering theorem we can provide A

of a well-order, so we can define Rα := Wα r ∪β<αWβ. We observe that,

for every α ∈ A, ∪β<αWβ is the union of a locally finite collection of closed

sets, therefore it is closed. In other words we want to show that ∪β<αWβ is

a closed set, so so it remains to verify that its complement contains an open

neighborhood of every points, and therefore is open. Let p /∈ ∪β<αWβ then

there exists at least one open ball Br(p) intersecting only a finite number of

Wj, in particular, we can find one such that intersect only a finite number

of Wβ with β < α and therefore such that B(p) r ∪β<αWβ is still an open
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set, as ∪β<αWβ is a finite number of closed set. Then by generality of p

∪β<αWβ is open. Therefore Rα is open. Moreover we observe that the family

{Rα}{α∈A} is disjoint. As a matter of fact let Rα and Rβ ∈ {Rα} with β < α.

By definition Rα = Wα r ∪γ<αWγ and since β < α in Rα there are no point

of Wβ. But as we know Rβ ⊂ Wβ. Then Rα ∩Rβ = ∅.
Rα is also a refinement for Uα . As Rα ⊂ Wα ⊂ Uα we know that every

Rα in contained in one Uα. Now we will proof that Rα is also a covering for

X. Let p ∈ X we know that there exists a ball B(p) such that B(p)∩Wβ 6= ∅
with β ∈ {1, ..., n}. More precisely p is just in a finite number of Wβ. Where

the Wβ are a covering of X and therefore p is in at least one of them. Let Wβ

be such that β is the lowest in {1, ..., n} for which p ∈ Wβ ; (β ∈ {1, ..., n}).
Then Rβ = Wβ r ∪β<βWβ contains p. As by construction none of Wβ with

β < β does contains p meanwhile Wβ does. By generality of p Rβ is a

covering.

(2)⇒ (1) immediate.
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