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Introduction

In this thesis we are going to speak about one important result of

algebraic topology, the Invariance of dimension theorem:

There is no continuous one-to-one map f : Rn → Rm, for m < n.

In the first chapter we start recalling all preliminary notions that we need,

before proceeding. Then we dwell on another important brick, necessary to

build the structure of our aim: Brouwer fixed point theorem.

Going on with the statement, we come to the third chapter, dedicated to our

target.

There we propose three ways to solve our problem: Brouwer’s original proof,

a standard proof (with the help of Homology theory) and finally a topological

demonstration made by Wladislaw Kulpa, that is easily deduced as a corol-

lary of another important principle, the Invariance of domain theorem.

It is important to underline that this work is inspired by a publication of

Terence Tao1.

It will be not hard to see that instead of the first two demonstrations, the

last one, that gives the name at this work, is the easiest and maybe the most

brilliant among all that we showed, because is purely topological.

1[Tao]
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Chapter 1

Preliminary notions

Before proceeding to the Invariance of dimension theorem, we recall the

basic notions that we are going to use1. We start with

Definition 1.1 (Topology and open set).

Let X be a set and let U be a collection of subsets of X satisfying:

(i) ∅ ∈ U, X ∈ U;

(ii) the intersection of two members of U is in U;

(iii) the union of any number of members of U is in U.

Such a collection of subsets of X is called a topology for X.

The set X together with U is called a topological space and is denoted by

(X,U) which is often abbreviated to T or just X.

The members U ∈ U are called the open sets of T .

Elements of X are called points of T .

Open sets are really important in Topology, because on them are built

almost all the notions. From this definition, we can consider now a family of

open sets.

1the references of this chapter are [Kosniowsky],[Morris],[Weisstein], [Joshi],[Sernesi],

[Do Carmo],[Kosn],[Kim], [Kreyszig], [Estep], [Cohen].
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Definition 1.2 (Open covering).

Let X be a topological space, and E ⊆ X. We say that the family of open

sets {Gα}α∈A is an open covering of E if and only if

E ⊆
⋃
α

Gα.

And as its direct consequence, we have

Definition 1.3 (Compact set).

A subset S of a topological space X is compact, if for every open covering

of S there exists a finite subcover of S.

We remark that from an open set we define closed set too, as its complement.

So we can look at

Definition 1.4 (Normal space).

A normal space is a topological space in which, for any two disjoint closed

sets C,D, there are two disjoint open sets U and V such that C ⊆ U and

D ⊆ V.

There could exist sets there are open and closed at the same time, the closed-

open sets.

If in a topological space X, the only closed-open subsets of X are X and ∅,
then we say that the topological space X is called connected.

Another important concept is

Definition 1.5 (Continuous map).

Let X, Y be topological spaces. Then a map f : X → Y is said to be con-

tinuous if if for every open set U ∈ Y , the inverse image f−1(U) is open in

X.
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From the last definition we can now deal with

Definition 1.6 (Path connected set).

Let X be topological space. Then it is said to be path connected if for each

pair of distinct points a, b ∈ X, there exists a continuous mapping

f : [0, 1]→ X, s.t. f(0) = a, f(1) = b.

Later, in the third chapter of this paper, we are going to use an example of

the next concept, the n− ball Bn , that is the interior of the sphere Sn−1.

Definition 1.7 (Interior of a set).

Let S be a subset of a topological space X. Then we define the interior of

a set, the union of all open sets U ⊂ S:

int(S)
def
=
⋃

U, U open set of S.

To continue with considerations about definitions linked to open sets, we

need to speak about distance and metric space

Definition 1.8 (Distance).

We define as distance, the map

d : A× A → R

(x,y) 7→ d(x,y)
def
=

(
n∑
i=1

(xi − yi)2
)1/2

= ‖x− y‖

that satisfies the properties:

d(x,y) = 0⇔ x = y; (1.1)

d(x,y) + d(x, z) ≥ d(y, z), ∀ x,y, z ∈ A. (1.2)

The couple (A, d) is called metric space. When A = Rn, d is called Eu-

clidean distance.
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With the notion of metric space we can consider

Definition 1.9 (Bounded set).

A set S in a metric space (S, d) is bounded, if it has a finite generalized

diameter, i.e., there is an R <∞, such that

d(x, y) ≤ R, ∀ x, y ∈ S.

Remember that if we are in a Euclidean space, the closed and bounded

sets are compact set.

A very important concept is the next one, widely used in every branch of

mathematics

Definition 1.10 (Homeomorphism).

Let X and Y be topological spaces. We say that X and Y are homeomor-

phic if there exist inverse continuous functions f : X → Y , g : Y → X.

We write X ∼= Y and say that f and g are a homeomorphism between X

and Y .

So if two topological spaces are homeomorphic, they are, using the tech-

niques of topology, equivalent.

From homeomorphisms and continuous maps we give

Definition 1.11 (Embedding).

Let (X, τ) and (Y, τ ′) be topological spaces.

We say that (X, τ) can be embedded in (Y, τ ′), if there exists a continuous

mapping

f : X → Y

such that

f : (X, τ)→ (f(X), τ”)

is a homeomorphism, where τ” is the subspace topology on f(X) from (Y, τ ′).

The mapping

f : (X, τ)→ (f(X), τ ′)

is said to be an embedding.
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In differential geometry and particularly related with regular surfaces,

there is the

Definition 1.12 (Differential of a map).

Given a map

F : U ⊆ Rm → V ⊆ Rn (1.3)

we call differential of F at p ∈ U, the linear map

dFp : U ⊆ Rm → V ⊆ Rn (1.4)

wp 7→ dFp(w) = v. (1.5)

Since F is defined as a mapping of points and has no notion of vectors, the

differential is defined by examining a curve α(t) passing through p and having

velocity at p equal to w , that is

α(0) = p and α′(0) = w. (1.6)

One of the last concept that we are going to recall is the stereographic pro-

jection.

We will consider both cases, from the North pole and from the South pole.

It could be described as a bijection between the points of a hypersphere

divested of a point and the points of a hyperplane.
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Formally we have

Definition 1.13 (Stereographic projection). Let N = (0, 0, ..., 1) ∈ Rn+1

and let H = {xn+1 = 0 } be the hyperplane of Rn+1 that does not contain N .

The stereographic projection (from the north pole) is defined by:

πN : Sn \N → H (1.7)

x 7→ πN(x) =

(
x1

1− xn
,

x2
1− xn

, ...,
xn−1

1− xn
, 0

)
. (1.8)

The inverse of this application is defined by:

π−1N ((x1, x2, ..., xn)) =

(
2x1

‖x‖2 + 1
, ...,

2xn
‖x‖2 + 1

,
‖x‖2 − 1

‖x‖2 + 1

)
. (1.9)

Now we consider the antipodal point of the north pole.

Let S = (0, 0, ...,−1) ∈ Rn+1 and let H = {xn+1 = 0 } be the hyperplane of

Rn+1 that does not contain S.

The stereographic projection (from the south pole) is defined by:

πS : Sn \ S → H (1.10)

x 7→ πS(x) =

(
x1

1 + xn
,

x2
1 + xn

, ...,
xn−1

1 + xn
, 0

)
. (1.11)

And its inverse is:

π−1S ((x1, x2, ..., xn)) =

(
2x1

‖x‖2 + 1
, ...,

2xn
‖x‖2 + 1

,
1− ‖x‖2

‖x‖2 + 1

)
. (1.12)

At this point, we introduce a definition mainly related to set theory and

algebra than topology

Definition 1.14 (Cardinality). Sets X and Y have the same cardinality if

there is a one-to-one and onto function (a bijection) from X to Y. Symboli-

cally, we write |X| = |Y |.

The cardinality of the real numbers, known as the cardinality of the contin-

uum and denoted by c, was one of the most important Cantor’s results.



10

The cardinality of the continuum is strictly greater then the cardinality of

the natural numbers, indicated as ℵ0: c > ℵ0.
The last one preliminary notion is a theorem, an essential instrument in

polynomial interpolation and complex analysis

Theorem 1.1 (Weierstrass approximation theorem).

Assume that f is a continuous map on a closed bounded interval I = [a, b].

Given any ε > 0, there is a polynomial Pn, with sufficiently high degree n,

such that

|f(x)− Pn(x)| < ε, for a ≤ x ≤ b.



Chapter 2

Brouwer fixed point theorem

Theorem 2.1 (Brouwer fixed point theorem1).

Every continuous mapping f from the disk Dn to itself, possesses at least one

fixed point.

Proof.

First we want to define a non-zero vector field on Dn and we can call it v.

If we suppose that

f(x) 6= x, ∀x ∈ Dn (2.1)

then we can define v as

v = x− f(x) (2.2)

remarking that this vector field points away from the boundary in each point

of it: that means

s · v(s) > 0 ∀s ∈ Sn−1. (2.3)

To narrow the field on Dn we say that w is a non-zero vector field that heads

outwards on the boundary, if

w(u) = u ∀u ∈ Sn−1. (2.4)

1The complete proof was made by Milnor. For more details, see [Milnor]
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as it is shown in the following picture

Figure 2.1: The vector field w points outward in R2.

As example, we could take

w(x) = x− y (1− x · x)

(1− x · y)
∀x, y ∈ Rn (2.5)

where is easy to show that verifies the property 2.4 every time that2 x ∈ Sn−1,

and even varying the value of x, the denominator could not be zero.

It is important to underline that the definition of w in 2.5 does not van-

ish obviously when x and y are independent, but it works even if they are

dependent, in fact:

x = λy ⇒ (x · x)y = (x · y)x, (2.6)

then

w(x) =
(x− y)

(1− x · y)
6= 0. (2.7)

Let us consider the unit n-sphere Sn ⊆ Rn+1 and we try to bring that vector

field previously defined on Sn; we also bethink of the hyperplane xn+1 = 0

2namely x · x = 1
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that divides Sn into two equal parts.

Now we take the stereographic projection previously defined 3, its inverse4,

and the definition of w in equation 2.5 .

Derivating πN in x and applying it to w(x), we accomplish a tangent vector

V(u) to Sn at the image point π−1N (x) = u, as it is showed in the following

picture.

Figure 2.2: Construction of the tangent vector field V(u) on S2 ⊆ R3.

To figure out what this tangent vector field is, we think about the curve γ

on the sphere, defined by

γ : R → Sn (2.8)

t 7→ γ(t) = πN(x+ tw(x)). (2.9)

Then we can define V(u) as

V(u) =
d

dt
πN
(
x+ tw(x)

)
t=0

. (2.10)

Now we want show that this tangent vector field is non-zero for all points

of Sn: first we will look at it on the northern hemisphere, and then on the

3See equation 1.11
4See equation 1.9
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southern.

If we get a point y of the equator of Sn we have that

π−1N (y) = π−1N ((y1, y2, ..., yn, 0)) =

(
(2y1, 2y2, ..., 2yn, ‖y‖2 − 1)

‖y‖2 + 1

)
, (2.11)

but the point belongs to the sphere too, so ‖y‖2 = 1 and then

π−1N (x) =

(
(2x1, 2x2, ..., 2xn, 0)

2

)
= (x1, x2, ..., xn, 0) = x. (2.12)

Additionally, we know that w(y) points outward, but what about the vector

field V?

Remembering definition 1.12, we want calculate the differential of V:

dπ−1N (x) =
d

dt
π−1N
(
x + tV(x)

)
t=0

=

=
d

dt

((
2(x1 + tV(x)), . . . , 2(xn + tV(x)), ‖(x + tV(x))‖2 − 1

)(
‖(x + tV(x))‖2 + 1

) )
t=0

=


(

2V(x)
(
‖(x + tV(x))‖2 + 1

)
− 2(x + tV(x))[2x ·V(x)], 2(2x ·V(x))

)
(
‖(x + tV(x))‖2 + 1

)2

t=0

=


(

2V(x)
(
‖(x)‖2 + 1

)
− 2x[2x ·V(x)], 4(x ·V(x))

)
(
‖(x)‖2 + 1

)2
 ,

where in the second line of the calculus we used the fact

(
‖(x + tV(x))‖2 − 1

)(
‖(x + tV(x))‖2 + 1

) =

(
‖(x + tV(x))‖2 + 1− 2

)(
‖(x + tV(x))‖2 + 1

) =

= 1− 2(
‖(x + tV(x))‖2 + 1

) .



15

Considering that x belongs to the equator of Sn,

V(x) = x (2.13)

then

V(x) · x = x · x = ‖x‖2 (2.14)

and also

‖x‖2 = 1. (2.15)

So we obtain

dπ−1N (x) =


(

2V(x)
(
‖(x)‖2 + 1

)
− 2(x)[2x ·V(x)], 4(x ·V(x))

)
(
‖(x + tV(x))‖2 + 1

)2
 =

=


(

2x ·
(
‖x‖2 + 1

)
− 2(x)[2x · x], 4(x · x)

)
(
‖x‖2 + 1

)2
 =

=

((
2x(1 + 1)− 2x(2‖x‖2), 4‖x‖2

)
(1 + 1)2

)
=

(4x− 4x, 4)

4
=

and definitely we have

dπ−1N (x) = (0, . . . , 0, 1). (2.16)

The value in 2.16 means that the corresponding vector of a point of the

equator of Sn tips toward the north and then, away from the southern hemi-

sphere.
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Likewise, taking the inverse of the stereographic projection from the south

pole 5,

Figure 2.3: Construction of the tangent vector field B(z) on S2 ⊆ R3.

calculating the differential of the vector field B:

B(z) =
d

dt
πS
(
y + tw(y)

)
t=0

. (2.17)

5see equation 1.12
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Its differentials will be found on the same way we did for V(x):

dπ−1S (y) =
d

dt
π−1S
(
y + tB(y)

)
t=0

=

=
d

dt

((
2(y1 + tB(y)), . . . , 2(yn + tB(y)), 1− ‖(y + tB(y))‖2

)(
‖(y + tB(y))‖2 + 1

) )
t=0

=


(

2B(y)
(
‖(y + tB(y))‖2 + 1

)
− 2(y + tB(y))[2y ·B(y)], − 2(2y ·B(y))

)
(
‖(y + tB(y))‖2 + 1

)2

t=0

=


(

2B(y)
(
‖(y)‖2 + 1

)
− 2y[2y ·B(y)], − 4(y ·B(y))

)
(
‖(y)‖2 + 1

)2
 ,

where in the second line of the calculus we used the fact

(
1− ‖(y + tB(y))‖2

)(
‖(y + tB(y))‖2 + 1

) =

(
2− 1− ‖(y + tB(y))‖2

)(
‖(y + tB(y))‖2 + 1

) =

=
2(

‖(y + tB(y))‖2 + 1
) − 1.

Considering that y belongs to the equator of Sn,

B(y) = y (2.18)

then

B(y) · y = y · y = ‖y‖2 (2.19)

and also

‖y‖2 = 1. (2.20)
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So we obtain

dπ−1S (y) =


(

2B(y)
(
‖(y)‖2 + 1

)
− 2(y)[2y ·B(y)], − 4(y ·B(y))

)
(
‖(y + tB(y))‖2 + 1

)2
 =

=


(

2y ·
(
‖y‖2 + 1

)
− 2(y)[2y · y], − 4(y · y)

)
(
‖y‖2 + 1

)2
 =

=

((
2y(1 + 1)− 2y(2‖y‖2),−4‖y‖2

)
(1 + 1)2

)
=

(4y − 4y,−4)

4
=

and definitely we have

dπ−1S (z) = (0, . . . , 0,−1). (2.21)

If we take the vector field -w(y) instead of w(y) in 2.17, we obtain in 2.21

dπ−1S (z) = (0, . . . , 0, 1) (2.22)

and we can associate to it, by the stereographic projection from the south

pole, a vector field on the northern hemisphere that points north too on the

equator.

Assembling together the vector fields w and -w we have a tangent vector

field BV on the entire Sn, and it is non-zero.

Now we need the

Theorem 2.1. An even dimensional sphere does not admit any continuous

field of non-zero tangent vectors.

which help us to claim that if n of Sn is even, the construction of Sn is not

realizable and this contradiction proves theorem 2.1 for this values.

In a more general way, we can take odd values of n too: from generic map

f : D2k−1 → D2k−1 (2.23)
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where D2k−1 has no fixed points, we can build another map

F : D2k → D2k

(x1, . . . , xn) 7→ F(x1, . . . , xn) = f
(
(x1, . . . , xn), 0

)
,

which has no fixed point.



Chapter 3

Topological invariance of

dimension theorem

3.1 Theorem and historical background

The1 concept of dimension was a very hard notion to manage in mathe-

matics.

Before the second part of XIX century no-one among mathematicians denied

or has showed before that every point x of Rn could be uniquely identified

from n coordinates, (i.e. n real numbers) but they just supposed it as true.

In fact, until 1870, there was a conviction, that taking arbitrary X ⊂ Rn, it

would be possible to create a (at least local) correspondence between them

and some open Y ⊂ R by injective maps.

We can not imagine how wonderful in 1877 it were seemed the Cantor’s dis-

cover of an application between R and Rn for some values of n, and in the

same manner, the curve of Peano in 1890: both results, seemed to be able to

help in the search to formalize the concept of the size.

However in the first case it was a non-continuous function, and in the second

a continuous but not injective function.

The correspondence between Dedekind and Cantor, started in 1872, gave us

1see [Dieudonne] and [Nastasi]

20
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in a letter in 1877, the formulation of the theorem that will still use2 and from

that date to the first decade of XX century, a lot of mathematicians tried

to manage specific cases, assigning a specific value at n and m, considering

X ⊂ Rn and X ⊂ Rm, as we have in statement of the theorem.

Only Brouwer in 1911, found the solution at this problem. After this date,

it started a diatribe between him and Lebesgue, because the last one pub-

lished a lot of demonstrations about this theorem, but no-one of them was

as correct as the Brouwer’s one.

In 1924 finally the disputations ended and Lebesgue recognized to Brouwer

the fatherhood of the discovering.

3.2 Just two simple cases

We now recall the3

Theorem 3.1 (Invariance of dimension theorem).

Let n,m ∈ Z. Then Rn and Rm are homeomorphic if and only if n = m.

Supposing that n < m, if we consider two very simple cases, we could

easily show, in a not very rigorous way, what it is happening.

First we consider the case n = 0, where we have R0 and Rm where m > 0.

It is obvious to see that can not exist a bijection, between two set with

different cardinality:

|R0| = 1 6= c = |Rm| (3.1)

Instead of the previous case, let us take now R1 and Rm with m > 1.

For absurd, if there exists a homeomorphism

f : R→ Rm (3.2)

then the restriction

f : R \ {0} → Rm \ {f(0)} (3.3)

2see 3.1
3see for more details [Hatcher]
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has to be a homeomorphism too.

But R\{0} is not connected, conversely Rm \{f(0)} is path connected, then

the restriction of f can not be a homeomorphism and also f .

At the increasing of n it is really hard to find a simple way to argue our aim,

and so we can not use this approach to demonstrate a general case.

3.3 Brouwer’s proof

We want to demonstrate the following

Theorem 3.2 (Theorem of topological invariance of dimension).

Let n,m ∈ Z, n > m and let U be an open subspace of Rn then there are no

injective and continuous maps from U to Rm. Particularly Rn and Rm are

not homeomorphic.

The idea of Brouwer was to take first the continuous map

f : [−1, 1]n → Rn

which satisfies

|f(x)− x| < 1

2
∀x ∈ [−1, 1]n (3.4)

and then show

f([−1, 1]n) ⊃
[
−1

2
,
1

2

]n
. (3.5)

We turn now into details of Brouwer’s proof.

We assume by a contradiction, that exists an injective continuous map

χ : [−1, 1]n → C ⊂ Rn

where C is a rare set, and also we can find another continuous function that

comes back on the n-cube

ψ : C ⊂ Rn → [−1, 1]n (3.6)
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Figure 3.1: Representation of the maps ψ and χ in Rn where n = 3.

such that

|ψ(χ(x))− x| < 1

2
, ∀x ∈ [−1, 1]n. (3.7)

How is it possible to build ψ?

Suppose now to take a cube ρ that contains C and to create a triangulation

T of ρ.

Figure 3.2: Triangulation T on a cube ρ of R3
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We define

F
def
=

{⋃
n>2

{3, . . . , 3}
n− 1

∣∣∣∣ {3, . . . , 3}n− 1
∈ T ,

{3, . . . , 3}
n− 1

⋂
C 6= ∅

}
(3.8)

Let us consider a n-simplex σ ⊂ F, let c ∈ σ a vertex which satisfies

ψ0(c) ∈ [−1, 1]n and χ(ψ0(c)) ∈ σ (3.9)

as it is shown in the following picture

Figure 3.3: Action of the map ψ0

where we have chosen a piecewise affine map

ψ0 : F → [−1, 1]n. (3.10)

Supposing to see the function 3.6 as

ψ : C→ [−1, 1]n (3.11)

so

ψ = (ψ0)|C (3.12)

hence we can affirm that the set

S = (σ ∩ C), ∀σ ⊂ F (3.13)
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is rare, and definitely, T , by definition of ψ, it has been as fine as we needed.

After all these considerations, we come back now at the statement of theo-

rem 3.2 and consider the case n > m.

At this point Brouwer considered a continuous injection

υ : [−1, 1]n → Q ⊂ Rm, (3.14)

where Q is a cube that contains a rare image Q ′ of the n-cube [−1, 1]n by

the map υ. But if exists another continuous injection

ϕ : Q → [−1, 1]n, (3.15)

the composition ϕ ◦ υ, go against the theorem.

In the other case, if n < m, he considered another continuous injection

ξ : [−1, 1]m → Q ′ ⊂ Rn, (3.16)

where Q ′ is a cube that contains a rare image Q of the n-cube [−1, 1]m by

the map ξ.

But if exists a continuous injection

ζ : Q → [−1, 1]n, (3.17)

the composition ζ ◦ ξ goes again against the theorem.
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3.4 Nods of standard proof: homological ap-

proach

Premise To proceed now, we have to precise that all the next part is based

on Homology theory, which is a very important part of Algebraic Topology.

Just to introduce and explain the preliminary notions that we are going to

use it will be necessary to do a specific course and handle these concepts

should be a very good competence.

Unfortunately, we could not bridge this gap, but we retained to report the

structure of the proof, to show to the reader how the modern technique of

solving this mathematical theorem is.

Proof of the invariance of dimension theorem.

So we assume that all discernment that we are to treat, are familiar and

clear. After this small premise, we can start.

Suppose there exists homeomorphism f between two non-empty spaces

X ⊂ Rn and Y ⊂ Rm, and let x be a point of X.

From this point x, we build the homology groups

Hi(X,X \ {x}), where i ∈ N (3.18)

and because for definition of X, it is open, we can use the following

Theorem 3.3 (Excision Theorem). Let U ⊂ A ⊂ X be subspaces such

that the closure Ū of U lies in the interior Å of A. Then the inclusion

(X \ U,A \ U)→ (X,A) (3.19)

induces isomorphisms on relative homology groups:

Hn(X \ U,A \ U)
∼=→ Hn(X,A) where n ≥ 0. (3.20)
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to find the

Hi(X,X \ {x}) ∼= Hi(Rn,Rn \ {x}). (3.21)

From

(Rn,Rn \ {x}) (3.22)

we look for the associated long right sequence, to gain

Hi(Rn,Rn \ {x}) (3.23)

that is isomorphic to

H̃i(Rn \ {x}). (3.24)

We know the topological fact that, if we make a hole in a sphere, it deflates

to a sphere of lower dimension, so 3.24 contracts to the sphere Sn−1.

Remembering the important property of homology, or rather that preserves

homotopy type, then we have found

Hi(X,X \ {x}) ∼= Hi(S
n−1) (3.25)

Recalling that homology groups provides the invariance of dimension of

spheres, by properties of homology we can prove that

Hi(S
n−1) = 0, if i 6= 0, n− 1 (3.26)

and Z diversely.

Doing the same work on Y , if X and Y are homeomorphic, then we will will

find isomorphic homology groups for every i ∈ N.

Precisely,

Z ∼= Hm−1(S
m−1) ∼= Hm−1(Y, Y−{f(x)}) ∼= Hm−1(X,X−{x}) ∼= Hm−1(S

n−1).

(3.27)

Then m = 1 which implies n = 0, 1 as n ≤ m, or m = n. But if n = 0, we

have m = n.

So we can extend the result for all m,n.
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3.5 Into topological proof

We start this section enunciating and demonstrating the following

Theorem 3.4 (Brouwer invariance of domain theorem).

Let f : Bn → Rn be a continuous and injective map. Hence f(0) ∈ int(f(Bn)).

The Invariance of Dimension Theorem will be deduced as a corollary of

the previous one.

Before starting the proof, we need some preliminary conditions: first we have

to show that the translation and the rescaling are invariants.

Let p ∈ U , we need to point out that f(0) ∈ int(f(U)) and let p ∈ B, where

B is the closed unitary ball of Rn.

Therefore exists a homeomorphism φ such that φ(B) = Bn.

So proving that f(0) ∈ int(f(U)) is the same of establishing that

(f ◦ φ−1)(0) ∈ int(f ◦ φ−1)(Bn). (3.28)

Now we consider the map f̃ : Bn → Rn and let f : Bn → f(Bn) ⊆ Rn.

The last one is an homeomorphism4 between compact and Hausdorff spaces,

then the map

f−1 : f(B)n ⊂ Rn → Bn

is continuous too.

In addition to this, we recall the

Theorem 3.5 (Tietze extension theorem). The topological space X is

normal if and only if, for all closed subsets C of X, every continuous function

h : C → R

can be extended to a continuous function

H : X → R.
4because of the Closed map Lemma. See [Lee], An introduction to smooth manifolds,

page 610, for more explanations.
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And we are going to use it to extend f−1 with G : Rn → Bn: this map

has a zero on f(Bn) by construction.

Before proceeding is necessary to argue the following

Lemma 1 (Lemma of stability of a zero).

Let G̃ : f(Bn)→ Rn a continuous map that satisfy the condition

‖G(y)− G̃(y)‖ ≤ 1, ∀ y ∈ f(Bn). (3.29)

Therefore G̃ has a zero, that is there exists y ∈ f(Bn) such that G̃(y) = 0.

Proof (of the Lemma).

Let H be the map such that

x 7→ x− G̃(f(x))

and consider the extension G of the map f−1 as we has defined it before.

So we can say that

x 7→ (f−1 ◦ f)(x)− G̃(f(x))

applying the Tietze extension theorem first

x 7→ (G ◦ f)(x)− G̃(f(x)) = G(f(x))− G̃(f(x)).

We know that for construction, ∀y ∈ f(Bn) and from the properties of the

norm

0 ≤ ‖G(y)− G̃(y)‖ ≤ 1.

So we can consider two cases:

(I) G(y) = G̃(y)⇒ ‖G(y)− G̃(y)‖ = 0⇒ G = G̃

(II) G̃(y) = 0⇒ ‖G(y)‖ ≤ 1⇒ G = f−1.

In the second case G(y) ∈ Bn, then all points such that G̃(y) = 0 stay on

the same circle and, therefore exists one zero of the map.  

Finally we can start to prove theorem 3.4.
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Proof (of Brouwer invariance of domain theorem).

We suppose a contradiction, that is

f(0) /∈ f(Bn) (3.30)

Let ε be as small as we need, thus for the continuity of the map G we affirm

that

‖G(y)‖ ≤ 0, 1⇔ ∀y ∈ Rn, ‖y − f(0)‖ ≤ 2ε. (3.31)

In other way the condition 3.30 implies

∃ c ∈ Rn, c /∈ f(Bn) s.t. ‖c− f(0)‖ < ε. (3.32)

Translating c in 0 we obtain that

‖f(0)‖ < ε

and consequently we have a new continuity condition

‖G(y)‖ ≤ 0, 1⇔ ∀y ∈ Rn, s.t. ‖y‖ ≤ ε. (3.33)

Let’s regard now the set

Σ
def
= Σ1 ∪ Σ2

where

Σ1
def
= { y ∈ f(Bn) | ‖y‖ ≥ ε } and Σ2

def
= { y ∈ f(Bn) | ‖y‖ = ε } .

This set is compact as it has built and the point f(0) /∈ Σ because

‖f(0)‖ < ε.

Now we define the map

Φ : f(Bn) → Σ

y 7→ Φ(y)
def
=

[
max

(
ε

‖y‖
, 1

)]
· y

which is well defined5.

5Φ is called ”pushing map” because bring the point far from 0.
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The restriction on Σ1 of the map G does not reach zero and because of

the compactness of Σ1 we say it is confined by a positive number δ and let

δ < 0, 1.

Recalling the Weierstrass approximation theorem for polynomials6, we can

affirm that exists a polynomial

P (y) : Rn → Rn

such that

‖P (y)−G(y)‖ < δ ∀y ∈ Σ.

P (y) is non-zero on Σ1 as it has built, but what happens on Σ2?

A polynomial is a smooth map and the Lebesgue measure7 of Σ2 is zero; both

imply that the Lebesgue measure of the set P (Σ2) is zero too.

So without losing general case we can suppose P = constant and then P

does not set to zero on Σ2 because it lies on an hyper-surface which can not

be influenced by a perturbation.

Let’s consider now the continuous function8 G̃
def
= P (Φ(y)). Remembering

the limitations of Σ1 we can apply the theorem 1.1 again

‖G(y)− G̃(y)‖ < δ and ‖y‖ > ε⇔ y ∈ f(Bn).

But supposing y /∈ f(Bn) we have

‖y‖ ≤ ε

hence

‖G(y)‖ ≤ 0, 1

and from the definition of Φ

‖G(Φ(y))‖ ≤ 0, 1

6theorem 1.1.
7for explanation see [Meisters]
8this map is non-zero for the definition of Φ.



3.5 Into topological proof 32

that can let us say

‖G(y)‖ = ‖G(Φ(y))‖.

Applying another time the theorem 1.1 and because of triangular inequality9

‖a‖ − ‖b‖ ≤ ‖a− b‖ ≤ ‖a+ b‖ ≤ ‖a‖+ ‖b‖,

we can affirm that

‖G(y)− G̃(y)‖ ≤ 0, 2 + δ ≤ 0, 3 for ∀ y /∈ f(Bn).

Because of G̃(y) 9 0 for construction, we conclude that the Lemma of sta-

bility of a zero is not preserved and obviously must be y ∈ f(Bn). �

Now that the theorem 3.4 has been proved, we can go on the final steps

of our path.

Theorem 3.6 (Invariance of dimension theorem). 10

There is no continuous one-to-one map

f : Rn → Rm (3.34)

for m < n.

Proof (of Invariance of dimension theorem).

Let us take an embedding

ι : Rm → Rn

(x1, . . . , xm) 7→ ι(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0),

and then we define the map

η
def
= ι ◦ f. (3.35)

For construction of η(Rn), it is a boundary subset of Rn, but because of

theorem 3.4 is an open subset of Rn too. And obviously, this is impossible,

so finally we found the result we were looking for. �

9property 1.2
10[Kulpa]
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