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SYMPLECTIC COORDINATES (1)

Let (M2n, ω) be a symplectic manifold and
let

ω0 =
n∑

j=1

dxj ∧ dyj

be the standard symplectic form on R2n.

Theorem (Darboux): For all p ∈M there
exist an open set Up ⊂M and a diffeomor-
phism

ψp : Up → R2n, ψp(p) = 0

such that ψ∗p(ω0) = ω.

Question: If M ∼= R2n can we take Up =
M?

Theorem (Gromov, Inv.Math. 1985):
There exist exotic symplectic structures on
R2n.
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Corollary: the answer to the previous que-

stion is: NO.
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SYMPLECTIC COORDINATES (2)

Theorem (McDuff, JDG 1988): Let (M,ω)

be a Kähler manifold, π1(M) = {1}. Assu-

me that M is complete and K ≤ 0. Then

for all point p ∈M there exist a diffeomor-

phism

ψp : M → R2n, ψp(p) = 0

satisfying ψ∗p(ω0) = ω.

Theorem (Ciriza, DGA 1993): Let T ⊂
M be a complex and totally geodesic sub-

manifold of M passing through p. Then,

ψp(T ) = Ck ⊂ Cn,dimC T = k.

Question: What can we say when (M,ω)

is an Hermitian symmetric space of noncompact

type?

4



THE CASE OF THE DISK (1)

CH1 = {z ∈ C | |z|2 < 1}, ω = ωhyp =
i
2

dz∧dz̄
(1−|z|2)2

We look for a map

ψ : CH1 → R2, ψ(0) = 0

such that

ψ∗(ω0) = ωhyp, ω0 = dx ∧ dy

Assume ψ(z) = f(r)z, r = |z|2.

Then ψ∗(ω0) = ωhyp implies

∂

∂r
(f2r) =

1

(1− r)2
⇔ f(r) = (1− r)−

1
2

Hence

ψ(z) = z√
1−|z|2
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THE CASE OF THE DISK (2)

Let CP1 be the one-dimensional complex

projective space, (namely the compact dual

of CH1) endowed with the Fubini–Study

form ωFS. Then we have the natural in-

clusions

R2 ∼= C ∼= U0 = {z0 6= 0} ⊂ CP1

Then

ωFS|U0
=

i

2

dz ∧ dz̄
(1 + |z|2)2

and it is easily seen that

ψ∗(ωFS) = ω0,

where ω0 is the restriction of ω0 to CH1 ⊂
C.

Summarizing we have proved a sort of “sym-

plectic duality” between (CH1, ωhyp) and
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(CP1, ωFS), namely there exists a diffeo-

morphism

ψ : CH1 → R2 ∼= C ⊂ CP1

satisfying:

ψ∗(ω0) = ωhyp

ψ∗(ωFS) = ω0

7



BASIC EXAMPLE (1)

Let

DI[n] = {Z ∈Mn(C) | In − ZZ∗ > 0}

be the first Cartan domain equipped with

the hyperbolic form

ωhyp = −
i

2
∂∂̄ log det(In − ZZ∗)

The compact dual of DI[n] is Grassn(C2n)

endowed with the Fubini-Study form

ωFS = P ∗(ωFS).

We have the following inclusions

DI[n] ⊂Mn(C) = Cn
2
⊂ Grassn(C2n)

P=Plucker
↪→ CPN ,

N = ( 2n
n )− 1.
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BASIC EXAMPLE (2)

Theorem 1: The map

Ψ : DI[n]→Mn(C) = Cn
2

defined by

Ψ(Z) = (In − ZZ∗)−
1
2Z

is a diffeomorphism. Its inverse is given by

Ψ−1 : Cn
2
→ DI[n], X 7→ (In +XX∗)−

1
2X.

Moreover, Ψ is a symplectic duality namely,

Ψ∗(ω0) = ωhyp

Ψ∗(ωFS) = ω0

where

ω0 = i
2∂∂̄ tr(ZZ∗)

Here

ωFS =
i

2
∂∂̄ log det(In+ZZ∗), on Cn

2
⊂ Grassn(C2n).
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BASIC EXAMPLE (3)

Proof of Theorem 1:

ωhyp = −
i

2
∂∂̄ log det(In − ZZ∗)

=
i

2
d∂ log det(In−ZZ∗) =

i

2
d∂ tr log(In−ZZ∗)

=
i

2
d tr ∂ log(In−ZZ∗) = −

i

2
d tr[Z∗(In−ZZ∗)−1dZ]

By substituting X = (In − ZZ∗)−
1
2Z one

gets:

ωhyp = −
i

2
d tr[Z∗(In − ZZ∗)−1dZ]

= −
i

2
d tr(X∗dX)+

i

2
d tr{X∗d[(In−ZZ∗)−

1
2]Z}
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Observe now that − i
2d tr(X∗dX) = ω0 and

tr[X∗d(In − ZZ∗)−
1
2Z] = d tr(

C2

2
− logC),

where C = (In − ZZ∗)−
1
2.
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JORDAN TRIPLE SYSTEMS

A Hermitian Jordan triple system is a

pair (M, {, , }), whereM is a complex vec-

tor space and {, , } is a R-trilinear map

{, , } :M×M×M→M, (u, v, w) 7→ {u, v, w}

C-bilinear and simmetric in u and w and

C-antilinear in v and satisfying the Jordan

identity:

{x, y, {u, v, w}} − {u, v, {x, y, w}} =

= {{x, y, u}, v, w} − {u, {v, x, y}, w}.

Let u, v ∈ M, and let D(u, v) be the ope-

rator on M defined by

D(u, v)(w)={u, v, w}

12



A HJTS is called positive if

(u, v) 7→ trD(u, v)

is positive definite.

A HPJTS is called simple if it is not the

product of two non trivial sub-HPJTS.

The quadratic representation

Q :M→ End(M)

is defined by

2Q(u)(v) = {u, v, u}, u, v ∈M.

The Bergman operator

B(u, v) :M→M

is given by the equation

B(u, v) = IdM −D(u, v) +Q(u)Q(v)
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HPJTS −→ HSSNT

(M, {, , }) −→ (M,0) = {u ∈M | B(u, u) >>

0}0, where “>>” means positive definite

w.r.t. (u, v) 7→ trD(u, v).

The Bergman form ωBerg of M is defined

as:

ωBerg = −
i

2
∂∂̄ log detB.

We also define (in the irreducible case)

ωhyp = − i
2∂∂̄ log detB(z, z) .

Remark: In general

ωhyp = −
i

2
∂∂̄ logN (z, z),

where N (z, z) is the so called generic norm.
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If M is irreducible, or equivalently M is

simple, detB = N g.
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HSSNT −→ HPJTS

(M,0) −→ (M = T0M, {, , }), where

{u, v, w} = −1
2 (R0(u, v)w+ JR0(u, Jv)w)

(see W. Bertam book LNM 1754 for the

proof and related results)
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THE BASIC EXAMPLE AS HPJTS

Let M = Mn(C) with the triple product

{u, v, w} = uv∗w+ wv∗u, u, v, w ∈Mn(C)

trD(u, u) = tr(uu∗)

B(u, v)(w) = (In − uv∗)w(In − v∗u)

The HSSNT (M,0) associated to (Mn(C), {, , })
is the first Cartan domain

DI[n] = {Z ∈Mn(C) | In − ZZ∗ > 0}

ωhyp =
ωBerg

2n
= −

i

2
∂∂̄ log det(In − ZZ∗)
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COMPACTIFICATIONS OF HPJTS

Let (M,ωhyp) be an HSSNT and let (M∗, ωFS)
be its compact dual equipped with the Fubini–

Study form ωFS.

More precisely, one has the following inclu-

sions:

(M,0)
Harish−Chandra

⊂ M = T0M
Borel
⊂ M∗

BW
↪→ CPN

and we set

ωFS = BW∗(ωFS).

Remark: The local expression of ωFS re-

stricted to M is given (in the irreducible

case) by

ωFS = i
2∂∂̄ log detB(z,−z)

18



Theorem 2 (Di Scala–Loi, 2006): The

map

ΨM : M →M, z 7→ B(z, z)−
1
4z

satisfies the following properties:

(D) ΨM is a diffeomorphism and its in-

verse is given by

Ψ−1
M :M→M, z 7→ B(z,−z)−

1
4z

(H) the map

Ψ : HSSNT → Diff0(M,M), M 7→ ΨM

is hereditary, i.e.: for all (T,0)
i
↪→ (M,0)

complete, complex and totally geodesic sub-

manifold one has

ΨM |T = ΨT , ΨM(T ) = T ⊂M
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(S) ΨM is a simplectic duality, i.e.:

Ψ∗M(ω0) = ωhyp

Ψ∗M(ωFS) = ω0

where ω0 is the flat Kähler form on M.

Remark: In the irreducible case

ω0 = i
2g∂∂̄F ,

where F :M→ R, u 7→ trD(u, u).
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Remarks on Theorem 3

1.From the point of view of inducing geo-

metric structures as in Gromov’s program-

me the importance of property (S) relies

on the existence of a smooth map which

is a simultaneous symplectomorphism with

respect to different symplectic structures.

2. Property (H) is exactly the above men-

tioned property observed by Ciriza for the

McDuff map.

3. The map ΨM : M → M above was

defined, independently from the authors,

by Guy Roos. He proved the analogous of

(S) for volumes, namely

Ψ∗M(ωn0) = ωnB,

Ψ∗M((ω∗B)n) = ωn0
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which follows from (S).

4. Guy Roos has pointed out that (D)

and (S) of Theorem 3 can be proved by

using the spectral decomposition theory of

HPJTS.

22



Idea of the proof of (H) in Theorem 3

Proposition 3: Let (M,0) be a HSSNT

and let (M, {, , }) be its associated HPJTS.

Then there exists a bijection

{(T,0) ⊂ (M,0)} ←→ {T ⊂M},

where T is the HPJTS associated to T .

Property (H) follows by Proposition 3 com-

bined with:

{u, v, w} = −1
2 (R0(u, v)w+ JR0(u, Jv)w)
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Proofs of (D) e (S) for classical HSSNT

The proofs of (D) and (S) for classical

(C,0) ∈ HSSNT are obtained combined

(H) with the following

Proposition 4: Every classical HSSNT (C,0)

admits a Kähler embedding into (DI[s],0),

for s sufficiently large.
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JORDAN ALGEBRAS

A complex Jordan algebra is a complex vec-

tor space A endowed with a bilinear and

symmetric product (non associative)

◦ : A×A → A, (a, b) 7→ a ◦ b

such that:

a ◦ (a2 ◦ b) = a2 ◦ (a ◦ b), ∀a, b ∈ A,

dove a2 = a ◦ a.

Example:

A = Mn(C), u ◦ v =
uv+ vu

2
, u, v ∈Mn(C).
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JORDAN ALGEBRAS AND HPJTS (1)

Let (M, { , , }) be a HPJTS.

Assume that M admits a Jordan structure

◦ (i.e. (M, ◦) is a Jordan algebra) such

that:

{u, v, w} = 2((u ◦ v̄) ◦ w+ (w ◦ v̄) ◦ u− (u ◦ w) ◦ v̄) ,

Then, the HSSNT (M,0) associated to M
is called of tube type.

Example: {Z ∈ Mm,n(C) | Im − ZZ∗ > 0}
is not of tube type.

Example: DI[n] = {Z ∈ Mn(C) | In −
ZZ∗ > 0} is of tube type.
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JORDAN ALGEBRAS AND HPJTS (2)

We have the following result

Lemma 5: Let (M,0) be a HSSNT and

letM be its associated HPJTS. Then there

exists a HSSNT (M̃,0) such that:

(i) (M,0) ↪→ (M̃,0) (complex and tot. geod.)

(ii) The HPJTS M̃ associated to (M̃,0)

arises from a Jordan algebra (equivalently

(M̃,0) is of tube type).

Corollary 6: Let M be HSSNT, p ∈ M ,

a, b ∈ TpM , a, b 6= 0 and let π = spanC(a, b) ⊂
TpM . Then there exists a classical C ↪→M

passing through p such that π ⊂ TpC.

Proof: Let assume that p = 0 ∈ M . Let Aab ⊂ M̃
be the Jordan subalgebra of M̃ spanned by a and b.

27



By a theorem of Jacobson-Shirsov the HSSNT as-

sociated to Aab is of classical type. Thus by (i)

of the previous lemma the HSSNT C ↪→ M ↪→
M̃ associated to the HPJTS Aab ∩ M ⊂ M is as

required.
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Ideas of the proofs of (D) and (S) in the general case (1)

1. First of all one has to prove that Ψ∗M(ω0)

and Ψ∗M(ωFS) are of type (1,1).

2. Second, one can use Corollary 6 com-

bined with the hereditary property (H) to

reduce to the classical case (where we have

already proved properties (D) and (S)).
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Proof of Ψ∗M(ω0) = ωB under the assumption

Ψ∗M(ω0) is of type (1,1) (1)

Notice that

ωΨM
= Ψ∗M(ω0) = ωB

is equivalent to

(ωΨM
)p(u, Ju) = (ωhyp)p(u, Ju),

(ωΨM
)p(Ju, Jv) = (ωhyp)p(Ju, Jv),

for all p ∈ M , u, v ∈ TpM , where J denotes

the almost complex structure of M evalua-

ted at the point p. The second equation

is precisely our assumption that Ψ∗M(ω0) is

of type (1,1).
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Proof of Ψ∗M(ω0) = ωB under the assumption

Ψ∗M(ω0) is of type (1,1) (2)

Thus it remains to prove

(ωΨM
)p(u, Ju) = (ωhyp)p(u, Ju),

Fix p ∈M and u ∈ TpM . Consider the com-

plex line L = spanC(u) ⊂ TpM and a clas-

sical complex and totally geodesic subma-

nifold (C,0) ↪→ (M,0) such that L ⊂ TpC

(whose existence is guaranteed by Corolla-

ry 6). If we denote by ωhyp,C and ω0,C the

hyperbolic form on C and the flat Kähler

form on C (the HPJTS associated to C)

we get:

(ωΨM
)p(u, Ju) = (Ψ∗C(ω0,C))p(u, Ju) =

= (ωhyp,C)p(u, Ju) = (ωhyp)p(u, Ju)
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A result on the Bergman metric

As a byproduct of the previous proof one

gets the following characterization of the

Bergman metric on HSSNT.

Theorem: Let (M,0) be a HSSNT equip-

ped with its Bergman form ωBerg,M . Let

ω be a two form of type (1,1) on M . As-

sume that the restriction of ω to all clas-

sical complex and totally geodesically sub-

manifolds (C,0) (passing through the ori-

gin) equals the Bergman form of C. Then

ω = ωBerg,M .
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