Torino, 6 Iuglio 2006
http://arXiv.org/abs/math/0603141

SYMPLECTIC COORDINATES (1)

Let $\left(M^{2 n}, \omega\right)$ be a symplectic manifold and let

$$
\omega_{0}=\sum_{j=1}^{n} d x_{j} \wedge d y_{j}
$$

be the standard symplectic form on $\mathbb{R}^{2 n}$.
Theorem (Darboux): For all $p \in M$ there exist an open set $U_{p} \subset M$ and a diffeomorphism

$$
\psi_{p}: U_{p} \rightarrow \mathbb{R}^{2 n}, \psi_{p}(p)=0
$$

such that $\psi_{p}^{*}\left(\omega_{0}\right)=\omega$.
Question: If $M \cong \mathbb{R}^{2 n}$ can we take $U_{p}=$ M ?

Theorem (Gromov, Inv.Math. 1985): There exist exotic symplectic structures on $\mathbb{R}^{2 n}$.

Corollary: the answer to the previous question is: NO.

SYMPLECTIC COORDINATES (2)

Theorem (McDuff, JDG 1988): Let (M, ω)

 be a Kähler manifold, $\pi_{1}(M)=\{1\}$. Assume that M is complete and $K \leq 0$. Then for all point $p \in M$ there exist a diffeomorphism$$
\psi_{p}: M \rightarrow \mathbb{R}^{2 n}, \psi_{p}(p)=0
$$

satisfying $\psi_{p}^{*}\left(\omega_{0}\right)=\omega$.

Theorem (Ciriza, DGA 1993): Let $T \subset$ M be a complex and totally geodesic submanifold of M passing through p. Then, $\psi_{p}(T)=\mathbb{C}^{k} \subset \mathbb{C}^{n}, \operatorname{dim}_{\mathbb{C}} T=k$.

Question: What can we say when (M, ω) is an Hermitian symmetric space of noncompact type?

THE CASE OF THE DISK (1)

$\mathbb{C} H^{1}=\left\{\left.z \in \mathbb{C}| | z\right|^{2}<1\right\}, \omega=\omega_{\text {hyp }}=$ $\frac{i}{2} \frac{d z \wedge d \bar{z}}{\left(1-|z|^{2}\right)^{2}}$

We look for a map

$$
\psi: \mathbb{C} H^{1} \rightarrow \mathbb{R}^{2}, \psi(0)=0
$$

such that

$$
\psi^{*}\left(\omega_{0}\right)=\omega_{h y p}, \omega_{0}=d x \wedge d y
$$

Assume $\psi(z)=f(r) z, r=|z|^{2}$.
Then $\psi^{*}\left(\omega_{0}\right)=\omega_{\text {hyp }}$ implies

$$
\frac{\partial}{\partial r}\left(f^{2} r\right)=\frac{1}{(1-r)^{2}} \Leftrightarrow f(r)=(1-r)^{-\frac{1}{2}}
$$

Hence

$$
\psi(z)=\frac{z}{\sqrt{1-|z|^{2}}}
$$

THE CASE OF THE DISK (2)

Let $\mathbb{C} P^{1}$ be the one-dimensional complex projective space, (namely the compact dual of $\mathbb{C} H^{1}$) endowed with the Fubini-Study form $\omega_{F S}$. Then we have the natural inclusions

$$
\mathbb{R}^{2} \cong \mathbb{C} \cong U_{0}=\left\{z_{0} \neq 0\right\} \subset \mathbb{C} P^{1}
$$

Then

$$
\left.\omega_{F S}\right|_{U_{0}}=\frac{i}{2} \frac{d z \wedge d \bar{z}}{\left(1+|z|^{2}\right)^{2}}
$$

and it is easily seen that

$$
\psi^{*}\left(\omega_{F S}\right)=\omega_{0},
$$

where ω_{0} is the restriction of ω_{0} to $\mathbb{C} H^{1} \subset$ \mathbb{C}.

Summarizing we have proved a sort of "symplectic duality" between ($\mathbb{C} H^{1}, \omega_{h y p}$) and
($\mathbb{C} P^{1}, \omega_{F S}$), namely there exists a diffeomorphism

$$
\psi: \mathbb{C} H^{1} \rightarrow \mathbb{R}^{2} \cong \mathbb{C} \subset \mathbb{C} P^{1}
$$

satisfying:

$$
\begin{aligned}
& \psi^{*}\left(\omega_{0}\right)=\omega_{h y p} \\
& \psi^{*}\left(\omega_{F S}\right)=\omega_{0}
\end{aligned}
$$

BASIC EXAMPLE (1)

Let

$$
D_{I}[n]=\left\{Z \in M_{n}(\mathbb{C}) \mid I_{n}-Z Z^{*}>0\right\}
$$

be the first Cartan domain equipped with the hyperbolic form

$$
\omega_{h y p}=-\frac{i}{2} \partial \bar{\partial} \log \operatorname{det}\left(I_{n}-Z Z^{*}\right)
$$

The compact dual of $D_{I}[n]$ is $\operatorname{Grass}_{n}\left(\mathbb{C}^{2 n}\right)$ endowed with the Fubini-Study form

$$
\omega_{F S}=P^{*}\left(\omega_{F S}\right)
$$

We have the following inclusions

$$
\begin{aligned}
& D_{I}[n] \subset M_{n}(\mathbb{C})=\mathbb{C}^{n^{2}} \subset \operatorname{Grass}_{n}\left(\mathbb{C}^{2 n}\right) \stackrel{\text { P=Plucker }}{\hookrightarrow} \mathbb{C} P^{N} \\
& N=\binom{2 n}{n}-1 .
\end{aligned}
$$

BASIC EXAMPLE (2)

Theorem 1: The map

$$
\Psi: D_{I}[n] \rightarrow M_{n}(\mathbb{C})=\mathbb{C}^{n^{2}}
$$

defined by

$$
\Psi(Z)=\left(I_{n}-Z Z^{*}\right)^{-\frac{1}{2}} Z
$$

is a diffeomorphism. Its inverse is given by $\psi^{-1}: \mathbb{C}^{n^{2}} \rightarrow D_{I}[n], X \mapsto\left(I_{n}+X X^{*}\right)^{-\frac{1}{2}} X$.
Moreover, Ψ is a symplectic duality namely,

$$
\Psi^{*}\left(\omega_{0}\right)=\omega_{h y p}
$$

$$
\psi^{*}\left(\omega_{F S}\right)=\omega_{0}
$$

where

$$
\omega_{0}=\frac{i}{2} \partial \bar{\partial} \operatorname{tr}\left(Z Z^{*}\right)
$$

Here
$\omega_{F S}=\frac{i}{2} \partial \bar{\partial} \log \operatorname{det}\left(I_{n}+Z Z^{*}\right)$, on $\mathbb{C}^{n^{2}} \subset \operatorname{Grass}_{n}\left(\mathbb{C}^{2 n}\right)$.

BASIC EXAMPLE (3)

Proof of Theorem 1:

$$
\begin{gathered}
\omega_{h y p}=-\frac{i}{2} \partial \bar{\partial} \log \operatorname{det}\left(I_{n}-Z Z^{*}\right) \\
=\frac{i}{2} d \partial \log \operatorname{det}\left(I_{n}-Z Z^{*}\right)=\frac{i}{2} d \partial \operatorname{tr} \log \left(I_{n}-Z Z^{*}\right) \\
=\frac{i}{2} d \operatorname{tr} \partial \log \left(I_{n}-Z Z^{*}\right)=-\frac{i}{2} d \operatorname{tr}\left[Z^{*}\left(I_{n}-Z Z^{*}\right)^{-1} d Z\right]
\end{gathered}
$$

By substituting $X=\left(I_{n}-Z Z^{*}\right)^{-\frac{1}{2}} Z$ one gets:

$$
\begin{gathered}
\omega_{h y p}=-\frac{i}{2} d \operatorname{tr}\left[Z^{*}\left(I_{n}-Z Z^{*}\right)^{-1} d Z\right] \\
=-\frac{i}{2} d \operatorname{tr}\left(X^{*} d X\right)+\frac{i}{2} d \operatorname{tr}\left\{X^{*} d\left[\left(I_{n}-Z Z^{*}\right)^{-\frac{1}{2}}\right] Z\right\}
\end{gathered}
$$

Observe now that $-\frac{i}{2} d \operatorname{tr}\left(X^{*} d X\right)=\omega_{0}$ and

$$
\begin{aligned}
& \operatorname{tr}\left[X^{*} d\left(I_{n}-Z Z^{*}\right)^{-\frac{1}{2}} Z\right]=d \operatorname{tr}\left(\frac{C^{2}}{2}-\log C\right), \\
& \text { where } C=\left(I_{n}-Z Z^{*}\right)^{-\frac{1}{2}}
\end{aligned}
$$

JORDAN TRIPLE SYSTEMS

A Hermitian Jordan triple system is a pair ($\mathcal{M},\{,$,$\}), where \mathcal{M}$ is a complex vector space and $\{,$,$\} is a \mathbb{R}$-trilinear map
$\{,\}:, \mathcal{M} \times \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M},(u, v, w) \mapsto\{u, v, w\}$
\mathbb{C}-bilinear and simmetric in u and w and \mathbb{C}-antilinear in v and satisfying the Jordan identity:

$$
\begin{aligned}
& \{x, y,\{u, v, w\}\}-\{u, v,\{x, y, w\}\}= \\
& =\{\{x, y, u\}, v, w\}-\{u,\{v, x, y\}, w\} .
\end{aligned}
$$

Let $u, v \in \mathcal{M}$, and let $D(u, v)$ be the operator on \mathcal{M} defined by

$$
D(u, v)(w)=\{u, v, w\}
$$

A HJTS is called positive if

$$
(u, v) \mapsto \operatorname{tr} D(u, v)
$$

is positive definite.
A HPJTS is called simple if it is not the product of two non trivial sub-HPJTS.

The quadratic representation

$$
Q: \mathcal{M} \rightarrow \operatorname{End}(\mathcal{M})
$$

is defined by

$$
2 Q(u)(v)=\{u, v, u\}, u, v \in \mathcal{M}
$$

The Bergman operator

$$
B(u, v): \mathcal{M} \rightarrow \mathcal{M}
$$

is given by the equation

$$
B(u, v)=I d_{\mathcal{M}}-D(u, v)+Q(u) Q(v)
$$

HPJTS \longrightarrow HSSNT

$(\mathcal{M},\{,\},) \longrightarrow(M, 0)=\{u \in \mathcal{M} \mid B(u, u) \gg$ $0\}_{0}$, where " \gg " means positive definite w.r.t. $(u, v) \mapsto \operatorname{tr} D(u, v)$.

The Bergman form $\omega_{\text {Berg }}$ of M is defined as:

$$
\omega_{B e r g}=-\frac{i}{2} \partial \bar{\partial} \log \operatorname{det} B .
$$

We also define (in the irreducible case)

$$
\omega_{\text {hyp }}=-\frac{i}{2} \partial \bar{\partial} \log \operatorname{det} B(z, z) \text {. }
$$

Remark: In general

$$
\omega_{\text {hyp }}=-\frac{i}{2} \partial \bar{\partial} \log \mathcal{N}(z, z)
$$

where $\mathcal{N}(z, z)$ is the so called generic norm.

If M is irreducible, or equivalently \mathcal{M} is simple, $\operatorname{det} B=\mathcal{N}^{g}$.

HSSNT \longrightarrow HPJTS
$(M, 0) \longrightarrow\left(\mathcal{M}=T_{0} M,\{,\},\right)$, where
$\{u, v, w\}=-\frac{1}{2}\left(R_{0}(u, v) w+J R_{0}(u, J v) w\right)$
(see W. Bertam book LNM 1754 for the proof and related results)

THE BASIC EXAMPLE AS HPJTS

Let $\mathcal{M}=M_{n}(\mathbb{C})$ with the triple product

$$
\begin{gathered}
\{u, v, w\}=u v^{*} w+w v^{*} u, u, v, w \in M_{n}(\mathbb{C}) \\
\operatorname{tr} D(u, u)=\operatorname{tr}\left(u u^{*}\right) \\
B(u, v)(w)=\left(I_{n}-u v^{*}\right) w\left(I_{n}-v^{*} u\right)
\end{gathered}
$$

The $\operatorname{HSSNT}(M, 0)$ associated to $\left(M_{n}(\mathbb{C}),\{,\},\right)$ is the first Cartan domain

$$
\begin{gathered}
D_{I}[n]=\left\{Z \in M_{n}(\mathbb{C}) \mid I_{n}-Z Z^{*}>0\right\} \\
\omega_{h y p}=\frac{\omega_{\text {Berg }}}{2 n}=-\frac{i}{2} \partial \bar{\partial} \log \operatorname{det}\left(I_{n}-Z Z^{*}\right)
\end{gathered}
$$

COMPACTIFICATIONS OF HPJTS

Let $\left(M, \omega_{h y p}\right)$ be an HSSNT and let $\left(M^{*}, \omega_{F S}\right)$ be its compact dual equipped with the FubiniStudy form $\omega_{F S}$.

More precisely, one has the following inclusions:
$(M, 0) \xrightarrow{\text { Harish-Chandra }} \mathcal{M}=T_{0} M \stackrel{\text { Borel }}{C} M^{*} \xrightarrow{B W} \mathbb{C} P^{N}$
and we set

$$
\omega_{F S}=\mathrm{BW}^{*}\left(\omega_{F S}\right)
$$

Remark: The local expression of $\omega_{F S}$ restricted to \mathcal{M} is given (in the irreducible case) by

$$
\omega_{F S}=\frac{i}{2} \partial \bar{\partial} \log \operatorname{det} B(z,-z)
$$

Theorem 2 (Di Scala-Loi, 2006): The

 map$$
\Psi_{M}: M \rightarrow \mathcal{M}, z \mapsto B(z, z)^{-\frac{1}{4}} z
$$

satisfies the following properties:
(D) Ψ_{M} is a diffeomorphism and its inverse is given by

$$
\Psi_{M}^{-1}: \mathcal{M} \rightarrow M, z \mapsto B(z,-z)^{-\frac{1}{4} z}
$$

(H) the map

$$
\Psi: H S S N T \rightarrow \operatorname{Diff}_{0}(M, \mathcal{M}), \quad M \mapsto \Psi_{M}
$$

is hereditary, i.e.: for all $(T, 0) \stackrel{i}{\hookrightarrow}(M, 0)$ complete, complex and totally geodesic submanifold one has

$$
\left.\Psi_{M}\right|_{T}=\Psi_{T}, \quad \Psi_{M}(T)=\mathcal{T} \subset \mathcal{M}
$$

(S) Ψ_{M} is a simplectic duality, i.e.:

$$
\Psi_{M}^{*}\left(\omega_{0}\right)=\omega_{h y p}
$$

$$
\Psi_{M}^{*}\left(\omega_{F S}\right)=\omega_{0}
$$

where ω_{0} is the flat Kähler form on \mathcal{M}.

Remark: In the irreducible case

$$
\omega_{0}=\frac{i}{2 g} \partial \bar{\partial} F
$$

where $F: \mathcal{M} \rightarrow \mathbb{R}, u \mapsto \operatorname{tr} D(u, u)$.

Remarks on Theorem 3

1. From the point of view of inducing geometric structures as in Gromov's programme the importance of property (S) relies on the existence of a smooth map which is a simultaneous symplectomorphism with respect to different symplectic structures.
2. Property (H) is exactly the above mentioned property observed by Ciriza for the McDuff map.
3. The $\operatorname{map} \Psi_{M}: M \rightarrow \mathcal{M}$ above was defined, independently from the authors, by Guy Roos. He proved the analogous of (S) for volumes, namely

$$
\begin{gathered}
\Psi_{M}^{*}\left(\omega_{0}^{n}\right)=\omega_{B}^{n}, \\
\Psi_{M}^{*}\left(\left(\omega_{B}^{*}\right)^{n}\right)=\omega_{0}^{n}
\end{gathered}
$$

which follows from (S).
4. Guy Roos has pointed out that (D) and (S) of Theorem 3 can be proved by using the spectral decomposition theory of HPJTS.

Idea of the proof of (H) in Theorem 3

Proposition 3: Let $(M, 0)$ be a HSSNT and let $(\mathcal{M},\{,\}$,$) be its associated HPJTS.$ Then there exists a bijection

$$
\{(T, 0) \subset(M, 0)\} \longleftrightarrow\{\mathcal{T} \subset \mathcal{M}\}
$$

where \mathcal{T} is the HPJTS associated to T.

Property (H) follows by Proposition 3 combined with:

$$
\{u, v, w\}=-\frac{1}{2}\left(R_{0}(u, v) w+J R_{0}(u, J v) w\right)
$$

Proofs of (D) e (S) for classical HSSNT

The proofs of (D) and (S) for classical $(C, 0) \in H S S N T$ are obtained combined (H) with the following

Proposition 4: Every classical HSSNT ($C, 0$) admits a Kähler embedding into ($D_{I}[s], 0$), for s sufficiently large.

JORDAN ALGEBRAS

A complex Jordan algebra is a complex vector space \mathcal{A} endowed with a bilinear and symmetric product (non associative)

$$
\circ: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}, \quad(a, b) \mapsto a \circ b
$$

such that:

$$
a \circ\left(a^{2} \circ b\right)=a^{2} \circ(a \circ b), \forall a, b \in \mathcal{A},
$$

dove $a^{2}=a \circ a$.

Example:

$$
\mathcal{A}=M_{n}(\mathbb{C}), u \circ v=\frac{u v+v u}{2}, u, v \in M_{n}(\mathbb{C}) .
$$

JORDAN ALGEBRAS AND HPJTS (1)

Let (M, $\{$, , $\}$) be a HPJTS.

Assume that \mathcal{M} admits a Jordan structure - (i.e. (\mathcal{M}, \circ) is a Jordan algebra) such that:
$\{u, v, w\}=2((u \circ \bar{v}) \circ w+(w \circ \bar{v}) \circ u-(u \circ w) \circ \bar{v})$,
Then, the HSSNT $(M, 0)$ associated to \mathcal{M} is called of tube type.

Example: $\left\{Z \in M_{m, n}(\mathbb{C}) \mid I_{m}-Z Z^{*}>0\right\}$ is not of tube type.

Example: $D_{I}[n]=\left\{Z \in M_{n}(\mathbb{C}) \mid I_{n}-\right.$ $\left.Z Z^{*}>0\right\}$ is of tube type.

JORDAN ALGEBRAS AND HPJTS (2)

We have the following result

Lemma 5: Let $(M, 0)$ be a HSSNT and let \mathcal{M} be its associated HPJTS. Then there exists a HSSNT ($\widetilde{M}, 0)$ such that:
(i) $(M, 0) \hookrightarrow(\widetilde{M}, 0)$ (complex and tot. geod.)
(ii) The HPJTS $\widetilde{\mathcal{M}}$ associated to ($\widetilde{M}, 0$) arises from a Jordan algebra (equivalently ($\tilde{M}, 0$) is of tube type).

Corollary 6: Let M be HSSNT, $p \in M$, $a, b \in T_{p} M, a, b \neq 0$ and let $\pi=\operatorname{span}_{\mathbb{C}}(a, b) \subset$ $T_{p} M$. Then there exists a classical $C \hookrightarrow M$ passing through p such that $\pi \subset T_{p} C$.

Proof: Let assume that $p=0 \in M$. Let $\mathcal{A}_{a b} \subset \widetilde{\mathcal{M}}$ be the Jordan subalgebra of $\widetilde{\mathcal{M}}$ spanned by a and b.

By a theorem of Jacobson-Shirsov the HSSNT associated to $\mathcal{A}_{a b}$ is of classical type. Thus by (i) of the previous lemma the HSSNT $C \hookrightarrow M \hookrightarrow$ \widetilde{M} associated to the HPJTS $\mathcal{A}_{a b} \cap \mathcal{M} \subset \mathcal{M}$ is as required.
eas of the proofs of (D) and (S) in the general case (1

1. First of all one has to prove that $\Psi_{M}^{*}\left(\omega_{0}\right)$ and $\Psi_{M}^{*}\left(\omega_{F S}\right)$ are of type $(1,1)$.
2. Second, one can use Corollary 6 combined with the hereditary property (H) to reduce to the classical case (where we have already proved properties (D) and (S)).

Proof of $\Psi_{M}^{*}\left(\omega_{0}\right)=\omega_{B}$ under the assumption $\psi_{M}^{*}\left(\omega_{0}\right)$ is of type (1,1) (1)

Notice that

$$
\omega \Psi_{M}=\Psi_{M}^{*}\left(\omega_{0}\right)=\omega_{B}
$$

is equivalent to

$$
\begin{aligned}
\left(\omega_{\Psi_{M}}\right)_{p}(u, J u) & =\left(\omega_{h y p}\right)_{p}(u, J u) \\
\left(\omega_{\Psi_{M}}\right)_{p}(J u, J v) & =\left(\omega_{h y p}\right)_{p}(J u, J v)
\end{aligned}
$$

for all $p \in M, u, v \in T_{p} M$, where J denotes the almost complex structure of M evaluated at the point p. The second equation is precisely our assumption that $\psi_{M}^{*}\left(\omega_{0}\right)$ is of type $(1,1)$.

Proof of $\Psi_{M}^{*}\left(\omega_{0}\right)=\omega_{B}$ under the assumption $\psi_{M}^{*}\left(\omega_{0}\right)$ is of type $(1,1)$ (2)

Thus it remains to prove

$$
\left(\omega_{\Psi_{M}}\right)_{p}(u, J u)=\left(\omega_{h y p}\right)_{p}(u, J u),
$$

Fix $p \in M$ and $u \in T_{p} M$. Consider the complex line $\mathcal{L}=\operatorname{span}_{\mathbb{C}}(u) \subset T_{p} M$ and a classical complex and totally geodesic submanifold $(C, 0) \hookrightarrow(M, 0)$ such that $\mathcal{L} \subset T_{p} C$ (whose existence is guaranteed by Corollary 6). If we denote by $\omega_{h y p, C}$ and $\omega_{0, \mathcal{C}}$ the hyperbolic form on C and the flat Kähler form on \mathcal{C} (the HPJTS associated to C) we get:

$$
\begin{aligned}
& \left(\omega_{\Psi_{M}}\right)_{p}(u, J u)=\left(\Psi_{C}^{*}\left(\omega_{0, \mathcal{C}}\right)\right)_{p}(u, J u)= \\
& =\left(\omega_{h y p, C}\right)_{p}(u, J u)=\left(\omega_{h y p}\right)_{p}(u, J u)
\end{aligned}
$$

A result on the Bergman metric

As a byproduct of the previous proof one gets the following characterization of the Bergman metric on HSSNT.

Theorem: Let $(M, 0)$ be a HSSNT equipped with its Bergman form $\omega_{\text {Berg, } M}$. Let ω be a two form of type $(1,1)$ on M. Assume that the restriction of ω to all classical complex and totally geodesically submanifolds ($C, 0$) (passing through the origin) equals the Bergman form of C. Then $\omega=\omega_{B e r g}, M$.

