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SYMPLECTIC COORDINATES (1)

Let (M?2" w) be a symplectic manifold and
let

n
wo = Z dxj N\ dy;
=1

be the standard symplectic form on R2".

Theorem (Darboux): For all p € M there
exist an open set Up, C M and a diffeomor-
phism

Yp 1 Up — RQna Yp(p) =0
such that ¢7(wg) = w.

Question: If M = R?" can we take U, =
M??

Theorem (Gromov, Inv.Math. 1985):
T here exist exotic symplectic structures on
R2n,



Corollary: the answer to the previous que-
stion is: NO.



SYMPLECTIC COORDINATES (2)

Theorem (McDuff, JDG 1988): Let (M,w)
be a Kdhler manifold, w{(M) = {1}. Assu-
me that M is complete and K < 0. Then
for all point p € M there exist a diffeomor-
phism

p : M — R?", ¢p(p) =0
satisfying ;(wg) = w.

Theorem (Ciriza, DGA 1993): Let T C
M be a complex and totally geodesic sub-
manifold of M passing through p. Then,
Yp(T) = CF c C*, dimc T = k.

Question: What can we say when (M, w)
IS an Hermitian symmetric space of noncompact
type?




THE CASE OF THE DISK (1)

CH' = {z € C| |27 <1}, w=wpy, =
1 dzAdz
2(1—|2]2)2

We look for a map
¢ CH' — R?,4(0) =0
such that

Y™ (wo) = Whyp, wo = dx A dy
Assume ¥ (z) = f(r)z, r = |z|2.

Then ¥*(wg) = wp,, implies

G =g pe/=0-1
Hence
v = e




THE CASE OF THE DISK (2)

Let CP! be the one-dimensional complex
projective space, (namely the compact dual
of CH1) endowed with the Fubini—Study
form wpg. Then we have the natural in-
clusions

R? = C = Uy = {29 # 0} c CP*!

Then
1t dzANdz

and it is easily seen that

w*(wFS’) — WO,

where wq is the restriction of wg to CH! C
C.

Summarizing we have proved a sort of “sym-
plectic duality” between (CH!,wp,,) and



(CPY,wpg), namely there exists a diffeo-
morphism

w:CH' - R?=C c CP!

satisfying:

Y*(wo) = Whyp

Y*(wrg) = wo




BASIC EXAMPLE (1)

Let
D[[n] = {Z c Mn(@) | In — Z7* > O}

be the first Cartan domain equipped with
the hyperbolic form

T =
Whyp = —568 logdet(l, — ZZ%)

The compact dual of D;[n] is Grass,(C2")
endowed with the Fubini-Study form

wrps = P*(wpg).

We have the following inclusions

P= Plucker

D;[n] € Mp(C) = C™ C Grass,(C2") cph

N=(2")-1.



BASIC EXAMPLE (2)

Theorem 1: The map
W : Di[n] — Mp(C) = C"°
defined by
W(Z) = (I, — ZZ*)"3Z
is a diffeomorphism. Its inverse is given by
w1 5 Din], X o (In+ XX*)"2X,

Moreover, W is a symplectic duality namely,

W*(wp) = Whyp

V*(wprg) = wo

where

wo = %00tr(ZZ*)

Here

Wpg = %aélog det(In,+22%), on cr’ C Grass, (C?™).



BASIC EXAMPLE (3)

Proof of Theorem 1:

1 —
Whyp = —588 logdet(l, — ZZ%)
— %da log det(In—ZZ*) = %d@ triog(In—2Z2*)

— %dtr@log([n—ZZ*) = —%dtr[Z*([n—ZZ*)_le]

1
By substituting X = (I, — ZZ*) 27 one
gets:

i _
Whyp = —Edtr[Z*(In — 772%)"1dz]

_ _%dtr(X*dX)—l—%dtr{X*d[(In—ZZ*)_%]Z}
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Observe now that —4dtr(X*dX) = wp and

2
tr[(X*d(I,, — ZZ*)_%Z] = dtr(% — log C),

1
where C = (I, — ZZ*)™ 2.
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JORDAN TRIPLE SYSTEMS

A Hermitian Jordan triple system is a
pair (M, {, ,}), where M is a complex vec-
tor space and {, ,} is a R-trilinear map

{7 7} F MXMXM _>M7(U7U7w) = {’LL,U,’lU}

C-bilinear and simmetric in v and w and
C-antilinear in v and satisfying the Jordan
identity:

{x,y,{u,v,w}} — {u,v,{z,y,w}} =
— {{xa yau}a v, w} — {U, {U, Z, y},w}

Let u,v € M, and let D(u,v) be the ope-
rator on M defined by

D(u, v)(w)={u, v, w}
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A HJTS is called positive if
(u,v) — tr D(u,v)
IS positive definite.
A HPJTS is called simple if it is not the
product of two non trivial sub-HPJTS.
The quadratic representation
Q: M — End(M)
is defined by
2Q(w)(v) = {u,v,u}, u,v € M.

The Bergman operator
B(u,v) : M — M

IS given by the equation

B(u,v) = Idy — D(u,v) + Q(u)Q(v)
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HPJTS — HSSNT

(Ma{a 7}) — (M,0) = {ue M| B(u,u) >>
O}p, where “>>" means positive definite
w.r.t. (u,v) — tr D(u,v).

The Bergman form wpg,,., of M is defined
as:

WBerg = —%85Iog det B.

We also define (in the irreducible case)

Whyp = —%00 l0g det B(z, 2) |

Remark: In general

1=
Whyp = —588 l0og N(Z, Z),

where N (z, z) is the so called generic norm.
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If M is irreducible, or equivalently M is
simple, det B = NJY.
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HSSNT — HPJTS
(M,O) — (M — TOM7 {7 7})7 where

{u,v,w} = —% (Ro(u,v)w + JRg(u, Jv)w)

(see W. Bertam book LNM 1754 for the
proof and related results)
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THE BASIC EXAMPLE AS HPJTS

Let M = M,(C) with the triple product
{fu,v,w} = wv*w + wv*u, u,v,w € Mp(C)
tr D(u,u) = tr(uu™)

B(u,v)(w) = (In — wo)w(lyp — v*u)

The HSSNT (M, 0) associated to (M, (C),{,,})
is the first Cartan domain

Diln] ={Z € Mn(C) | In— ZZ" > 0}

WRBerg

i
——00logdet(I,, — ZZ*
on ’ g det(ln )

“hyp —
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COMPACTIFICATIONS OF HPJTS

Let (M, wp,,) be an HSSNT and let (M™, wpg)
be its compact dual equipped with the Fubini—
Study form wpg.

More precisely, one has the following inclu-
sions:

Harish—Chand Borel
(M, 0) "EEREE pp = o TES v Y e pN

and we set

wps = BW*(wpg).

Remark: The local expression of wpg re-
stricted to M is given (in the irreducible
case) by

Wpg = %85 log det B(z, —z)
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Theorem 2 (Di Scala—Loi, 2006): The
map

1
Wy M —- M, z+— B(z,z) 4z

satisfies the following properties:

(D) WV, is a diffeomorphism and its in-
verse is given by

1
\U&l M — M, z+— B(z,—z) 4z

(H) the map

W : HSSNT — Dif fo(M, M), M Wy,

is hereditary, i.e.: for all (T,0) — (M,0)
complete, complex and totally geodesic sub-
manifold one has

Vylp=Vrp, Wy(T)=7CM
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(S) WV, is a simplectic duality, i.e.:

\U}kw (wo) = Whyp

W (wps) = wo

where wq is the flat Kahler form on M.

Remark: In the irreducible case

wo = Qi'g('?gF :

where F: M — R,u +— tr D(u,u).
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Remarks on Theorem 3

1.From the point of view of inducing geo-
metric structures as in Gromov's program-
me the importance of property (S) relies
on the existence of a smooth map which
IS @ simultaneous symplectomorphism with
respect to different symplectic structures.

2. Property (H) is exactly the above men-
tioned property observed by Ciriza for the
McDuff map.

3. The map V,; : M — M above was
defined, independently from the authors,
by Guy Roos. He proved the analogous of
(S) for volumes, namely

Wi (wg) = wh,

Wi ((wp)™) = wg
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which follows from (S).

4. Guy Roos has pointed out that (D)
and (S) of Theorem 3 can be proved by

using the spectral decomposition theory of
HPJTS.
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Idea of the proof of (H) in Theorem 3

Proposition 3: Let (M,0) be a HSSNT

and let (M, {, ,}) beits associated HPJTS.
Then there exists a bijection

{(1,0) Cc (M,0)} «— {T C M},
where 7 is the HPJTS associated to T'.

Property (H) follows by Proposition 3 com-
bined with:

{u,v,w} = —% (Ro(u,v)w + JRo(u, Jv)w)
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Proofs of (D) e (S) for classical HSSNT

The proofs of (D) and (S) for classical
(C,0) € HSSNT are obtained combined
(H) with the following

Proposition 4: Every classical HSSNT (C, 0)
admits a Kahler embedding into (Dy[s],0),
for s sufficiently large.
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JORDAN ALGEBRAS

A complex Jordan algebra is a complex vec-
tor space A endowed with a bilinear and
symmetric product (non associative)

o AxA— A, (a,b)+—aob
such that:

ao(a?ob) =a’o(aob),Va,be A,

dove a2 = a0 a.

Example:

uv + vu

A= Mp,(C), uov = , u,v € Myp(C).
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JORDAN ALGEBRAS AND HPJTS (1)
Let (M,{, ,}) bea HPJTS.

Assume that M admits a Jordan structure

o (i.,e. (M,o0) is a Jordan algebra) such
that:

{u,v,w} =2 ((uov)ow+ (wowv)ou— (uow)ov),

Then, the HSSNT (M, 0) associated to M
is called of tube type.

Example: {Z € My n(C) | Iy, — ZZ* > 0}
IS not of tube type.

Example: Dj[n] = {Z € M,(C) | I, —
ZZ* > 0} is of tube type.
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JORDAN ALGEBRAS AND HPJTS (2)
We have the following result

Lemma 5: Let (M,0) be a HSSNT and
let M be its associated HPJTS. Then there
exists a HSSNT (M,0) such that:

(i) (M,0) — (M, 0) (complex and tot. geod.)

(i) The HPJTS M associated to (M,0)
arises from a Jordan algebra (equivalently
(M, 0) is of tube type).

Corollary 6: Let M be HSSNT, p € M,
a,b € TpyM, a,b7# 0 and let # = spang(a,b) C
TpM. Then there exists a classical ' — M
passing through p such that = C T,C.

Proof: Let assume that p =0¢€ M. Let A, C M
be the Jordan subalgebra of M spanned by a and b.
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By a theorem of Jacobson-Shirsov the HSSNT as-
sociated to A, is of classical type. Thus by (i)
of the previous lemma the HSSNT C — M —
M associated to the HPJTS Ap "M C M is as

required.
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leas of the proofs of (D) and (S) in the general case (!

1. First of all one has to prove that W73, (wo)
and W3} (wrg) are of type (1,1).

2. Second, one can use Corollary 6 com-
bined with the hereditary property (H) to
reduce to the classical case (where we have
already proved properties (D) and (S)).
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Proof of W7} (wg) = wp under the assumption
Wi, (wo) is of type (1,1) (1)

Notice that

wy,, = WV (wo) = wp

IS equivalent to
(ww,)p(u, Ju) = (Whyp)p(u, Ju),

(ww,)p(Ju, Jv) = (Whyp)p(Ju, Jv),

for all pe M, u,v € TyM, where J denotes
the almost complex structure of M evalua-
ted at the point p. The second equation
is precisely our assumption that W3, (wp) is
of type (1,1).
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Proof of W3 (wg) = wp under the assumption
Wi (wo) is of type (1,1) (2)

Thus it remains to prove

(wwrydp(u, Ju) = (Whyp)p(u, Ju),

Fixpe M and u € TpM. Consider the com-
plex line £ = spanc(u) C TpM and a clas-
sical complex and totally geodesic subma-
nifold (C,0) — (M,0) such that £ C T,,C
(whose existence is guaranteed by Corolla-
ry 6). If we denote by wy,,, c and wg ¢ the
hyperbolic form on C and the flat Kahler
form on C (the HPJTS associated to C)
we get:

(W p(u, Ju) = (We(woe))p(u, Ju) =

— (whyp,C)p(ua Ju) = (whyp)p(ua Ju)
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A result on the Bergman metric

As a byproduct of the previous proof one
gets the following characterization of the
Bergman metric on HSSNT.

Theorem: Let (M,0) be a HSSNT equip-
ped with its Bergman form wpgeqq s Let
w be a two form of type (1,1) on M. As-
sume that the restriction of w to all clas-
sical complex and totally geodesically sub-
manifolds (C,0) (passing through the ori-
gin) equals the Bergman form of C. Then

W = WRBerg,M
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