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Aim. Classify all homogeneous Kähler manifolds which admit

a Kähler immersion into a given finite or infinite dimensional

complex space form.

2



Kähler manifolds

A Kähler manifold (M, g) is a complex manifold M = (M,J)
equipped with a Riemmannian metric g such that the two-form
ω on M defined by

ω(X,Y )
def
= g(X, JY ), X,Y ∈ X(M), is closed, i.e. dω = 0.

The form ω is called the Kähler form associated to the metric g.

On a contractible open set U ⊂M

ω =
i

2
∂∂̄Φ =

i

2

n∑
j=1

∂2Φ

∂zj∂z̄k
dzj ∧ dz̄k,

where Φ : U → R is a strictly PSH function called a Kähler
potential for the metric g.
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Complex space forms

A complex space form (S, gS) = (S, gS, ωS, JS) is a finite or infinite

dimensional Kähler manifold of constant holomorphic sectional

curvature.
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Classification of complex space forms

Complex Euclidean space (CN , g0), C∞
def
= `2(C) (z = {zj} ∈

`2(C) iff
∑∞
j=1 |zj|

2 <∞)

ω0 = i
2∂∂̄|z|

2 =
∑N
j=1 dzj ∧ dz̄j, |z|

2 = |z1|2 + · · ·+ |zN |2.

Complex hyperbolic space (CHN = {z ∈ CN | |z|2 < 1}, ghyp),

ωhyp = − i
2∂∂̄ log(1− |z|2).

Complex projective space (CPN = CN+1 \ {0}/z ∼ λz, gFS). In
the chart U0 = {Z0 6= 0}

ωFS = i
2∂∂̄ log(1 + |z|2), zj =

Zj
Z0

, j = 1, . . . , N .
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Kähler immersions into complex space forms

Let (M, g) be a Kähler manifold. A Kähler immersion f : M →
(S, gS) is a holomorphic map (i.e. df ◦ J = JS ◦ df) which is

isometric (i.e. f∗gS = g).

Remark The word immersion is redundant.

Remark A Kähler immersion f : (M, g) → (S, gS) is symplectic,

namely f∗ωS = ω. Viceversa a holomorphic and symplectic map

f : M → S is isometric, i.e. f∗gS = g.
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Calabi’s results on Kähler immersions (Ann. Math. 1953)

Theorem. (Calabi’s rigidity) If f : (M, g) → (S, gS) is a Kähler

immersion then any other Kähler immersion of (M, g) into (S, gS)

is given by U ◦ f where U is a unitary transformation, i.e. U ∈
Aut(S) ∩ Isom(S, gS).

Theorem. (local immersions vs global immersions) A simply-

connected real-analytic Kähler manifold (M, g) admits a Kähler

immersion into a given complex space form (S, gS) iff there exists

an open set U ⊂ M such that (U, g|U) can be Kähler immersed

into (S, gS).
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Homogeneous Kähler manifolds: definitions

A homogeneous Kähler manifold (h.K.m.) is a Kähler manifold

(M, g) such that the Lie group G = Aut(M) ∩ Isom(M, g) acts

transitively on M .

Remark. The metric g is not uniquely determined by G. The-

re exist different (neither homothetic or isometric) G-invariant

homogeneous metrics.
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Homogeneous bounded domains

Let Ω ⊂ Cn, Ω bounded domain endowed with a homogeneous

Kähler metric gΩ. Then (Ω, gΩ) is called a homogeneous boun-

ded domain (h.b.d.).

If Aut(Ω) acts transitively on Ω ⊂ Cn then (Ω, gB) is a h.b.d..

Remark. Every bounded symmetric domain (Ω, gB) (where the

geodesic symmetry expx(v) 7→ expx(−v), ∀x ∈M, v ∈ TxM is holo-

morphic and an isometry) is a h.b.d. but there exist (Pyatetskii-

Shapiro, 1969) h.b.d. (Ω, gB) which are not bounded symmetric

domains.
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Other examples of h.K.m.

Flat h.K.m. E = Cn × T1 × · · ·Tk where Tj = Cnj/Λj is a complex

torus with the flat metric.

Compact simply-connected h.K.m. These are also called Kähler

C-spaces or Wang’s spaces or rational homogeneous varieties.

Compact h.K.m. (M, g) = C × T1 × · · ·Tk, C-space, Tj flat torus.

Products of homogeneous Kähler manifolds The products of h.K.m.

is a h.K.m.
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Solution of the fundamental conjecture (FC) for h.K.m.

Theorem FC (J. Dorfmeister, K. Nakajima, Acta Math. 1988) A

h.K.m. (M, g) is the total space of a holomorphic fiber bundle

over a h.b.d. Ω. Moreover the fiber F = E×C is (with the induced

Kähler metric) the Kähler product of a flat homogeneous Kähler

manifold E and a C-space C.

F = E × C Kähler
↪−→ M

π↓
Ω

Remark. Ω is contractible so M = Ω×F as a complex manifold.
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Main result on Kähler immersions into CN, N ≤ ∞

Theorem 1.(Di Scala-Hishi-Loi) Let (M, g) be a n-dimensonal

h.K.m.. Then:

(a) if (M, g) can be Kähler immersed into CN , N < ∞, then

(M, g) = Cn;

(b) if (M, g) can be Kähler immersed into `2(C), then

(M, g) = Ck × CHn1
λ1
× · · · × CHnl

λl
,

where k + n1 + · · · + nl = n, λj, j = 1, . . . , l are positive real

numbers and CHnj
λj

= (CHnj , λjghyp)(hence CHn
1 = CHn).

12



Moreover, in case (a) (resp. (b)) the immersion is given, up

to a unitary transformation of CN (resp. `2(C)), by the linear

inclusion Cn ↪→ CN (resp. by (f0, f1, . . . , fl), where f0 the linear

inclusion Ck ↪→ `2(C) and each fk : CHnk → `2(C) is λk times the

map

z = (z1, . . . , znk) 7→ (. . . ,

√
(j − 1)!

j!
z
j1
1 · · · z

jnk
nk , . . .), (1)

where j = j1 + · · ·+ jnk and j! = j1! · · · jnk!.

Remark. Since a Kähler immersion is minimal, an alternative

proof of (a) when N <∞ follows by the work of A. J. Di Scala,

Ann. Glob. Anal. Geom. 21 (2002). Assertion (b) is a generalization

to arbitrary h.K.m. of the main theorem in A. J. Di Scala, A.

Loi, Geom. Dedicata 125 (2007).
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Main result on Kähler immersions into CHN, N ≤ ∞

Theorem 2.(Di Scala-Hishi-Loi) Let (M, g) be a n-dimensional

h.K.m. If (M, g) can be Kähler immersed into CHN , N ≤ ∞,

then, up to a unitary transformation of CHN ,

(M, g) = CHn ↪→ CHN .

Sketch of the proof. (M, g)→ CHN , N ≤ ∞ ⇒ (M, g)→ `2(C).

Theorem 1 ⇒ (M, g) = Ck × CHn1
λ1
× · · · × CHnl

λl
.

By using the fact that Ck 9 CHN , N ≤ ∞, the irreducibility of

a Kähler immersion into CHN and Calabi’s rigidity theorem it

follows that (M, g) = CHn ↪→ CHN .�
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Known results about immersions into CPN with N <∞

Theorem.(Takeuchi (Japan J. Math. 1978)) Let (M, g) be a h.K.m.

which can be Kähler immersed into a finite dimensional complex

projective space. Then M is compact, ω is integral ([ω]dR ∈
H2(M,Z)), the immersion is injective and can be described in

terms of the representation of semisimple Lie groups.

Remark. Viceversa if (M, g) is a compact Kähler manifold (not

necessarily homogeneous) which can be Kähler immersed into a

complex projective space CPN one can assume N <∞.

Moral. By Takeuchi’s theorem and this remark, it remains to

treat the case of noncompact h.K.m. which can be Kähler

immersed into CP∞.
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First result on Kähler immersions into CP∞

Theorem 3.(Di Scala-Hishi-Loi) Let (M, g) be a h.K.m. which

can be Kähler immersed into CP∞. Then ω is integral, M is

simply-connected and the immersion is injective.

Sketch of the proof of Theorem 3

Let f : (M, g)→ CP∞ be a Kähler immersion.

The integrality of ω = f∗ωFS is immediate since ωFS is integral.

Theorem FC ⇒ E ↪→ E × C = F ↪→ M → CP∞
T=Cn/Λ9CP∞

=⇒
E = Cn × C ⇒ M = Ω× Cn × C is simply-connected.
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Calabi’s rigidity theorem ⇒ f ◦ g = Ug ◦ f , ∀g ∈ G ⇒ f(M) is a

h.K.m. ⇒ f(M) ⊂ CP∞ is simply-connected.

f : M → f(M) is a local isometry ⇒ f is a covering map ⇒ f is

injective.�
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Second result on Kähler immersions into CP∞

Theorem 4.(Di Scala-Hishi-Loi) Let (Ω, gΩ) be a h.b.d. Then

there exists λ0 ∈ R+ such that (Ω, λ0gΩ) can be Kähler immersed

into CP∞. Moreover, if (Ω, λgΩ) can be Kähler immersed into

CP∞ for all λ > 0, then (Ω, gΩ) = CHn1
λ1
× · · · × CHnl

λl
.

Ingredients for the proof. Unitary representation of semisimple

Lie groups; reproducing kernels of weighted Bergman spaces.
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Sketch of the proof of Theorem 1 (based on Theorem 4)

Assume that (M, g) can be Kähler immersed into CN , N ≤ ∞,

we need to prove that: (M, g) = Ck × CHn1
λ1
× · · · × CHnl

λl
.

Calabi’s rigidity + Riemannian geometry⇒ (M, g) = Ck×(Ω, gΩ).

⇒ (Ω, gΩ) can be Kähler immersed into CN , N ≤ ∞.

it follows by a result of S. Bochner (Bull.Amer.Math.Soc., 1947)

that, for all λ > 0, (Ω, λgΩ) can be Kähler immersed into CP∞.

Theorem 4 ⇒ (Ω, gΩ) = CHn1
λ1
× · · · × CHnl

λl
⇒ (M, g) = Ck ×

CHn1
λ1
× · · · × CHnl

λl
. �
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Integral forms and Kähler immersions into CP∞

Question. If (M, g) is a h.K.m. such that ω is integral. Is it true

that (M, g) can be Kähler immersed into CPN for some N ≤ ∞?
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The Wallach set of a bounded symmetric domain

The Wallach set W (Ω) ⊂ R of a bounded symmetric domain

Ω ⊂ Cn is a subset of R which “looks like ”:

0 · · · ·︸ ︷︷ ︸—————————

↑
discrete part of W (Ω)

Important property of the Wallach set: W (Ω) = R (and

hence the discrete part of W (Ω) is empty) iff and only if Ω =

CHn.
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The Wallach set and immersions into CP∞

Theorem W.(Loi-Zedda, Math.Ann., 2010) Let (Ω, gB) be a boun-

ded symmetric domain. Then (Ω, λgB) can be Kähler immersed

into CP∞ if and only if λγ ∈ W (Ω) \ {0}, where γ > 0 denotes

the genus of Ω.
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Three consequences of Theorem W

First consequence: (negative answer to the previous question)

Let (Ω, gB) 6= CHn be a bounded symmetric domain. Thus one

can find λ > 0 such that λγ /∈W (Ω):

0 · · · · ∗ —————————

↑
λγ /∈W (Ω)

By Theorem W, λgB is not projectively induced (and λωB is

integral since Ω is contractible).

Second consequence: The complex hyperbolic space is the on-

ly bounded symmetric domains (Ω, gB) where λgB is projectively

induced, for all λ > 0.
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Third consequence: Let (Ω, gB) be a bounded symmetric do-

main. Then, for λ > 0 suffciently large, λgB is projectively

induced.
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Two conjectures

Conjecture 1: Let (M, g) be a simply-connected h.K.m. such

that its associated Kähler form ω is integral. Then there exists

λ0 ∈ R+ such that λ0g is projectively induced.

Remark. The integrality of ω in the conjecture is important

since there exist simply-connected h.K.m. (M, g) such that λω

is not integral for any λ ∈ R+ (and hence, a fortiori, λg is not

projectively induced). Take, for example, (M, g) = (CP1, gFS) ×
(CP1,

√
2gFS).

Conjecture 2: Let (M, g) be a simply-connected h.K.m. such

that its associated Kähler form ω is integral. If λg is projectively

induced for all λ ∈ R+ then (M, g) = Ck × CHn1
λ1
× · · · × CHnl

λl
.
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