GLOBAL ANALYSIS AND PDE ON MANIFOLDS IMI, BAS, SOFIA, 6-8 September 2010

Kähler immersions of homogeneous Kähler manifolds into complex space forms

joint with

Antonio J. Di Scala (Politecnico di Torino)

and

Hideyuki Hishi (Nagoya University)

Aim. Classify all homogeneous Kähler manifolds which admit a Kähler immersion into a given finite or infinite dimensional complex space form.

Kähler manifolds

A Kähler manifold (M,g) is a complex manifold M = (M,J) equipped with a Riemmannian metric g such that the two-form ω on M defined by

$$\omega(X,Y) \stackrel{\text{def}}{=} g(X,JY), X,Y \in \mathfrak{X}(M), \text{ is closed, i.e. } d\omega = 0.$$

The form ω is called the Kähler form associated to the metric g.

On a contractible open set $U \subset M$

$$\omega = \frac{i}{2} \partial \bar{\partial} \Phi = \frac{i}{2} \sum_{j=1}^{n} \frac{\partial^2 \Phi}{\partial z_j \partial \bar{z}_k} dz_j \wedge d\bar{z}_k,$$

where Φ : $U \rightarrow \mathbb{R}$ is a strictly PSH function called a *Kähler* potential for the metric g.

Complex space forms

A complex space form $(S, g_S) = (S, g_S, \omega_S, J_S)$ is a finite or infinite dimensional Kähler manifold of constant holomorphic sectional curvature.

Classification of complex space forms

$$\frac{\text{Complex Euclidean space}}{\ell^2(\mathbb{C}) \text{ iff } \sum_{j=1}^{\infty} |z_j|^2 < \infty } (\mathbb{C}^N, g_0), \ \mathbb{C}^\infty \stackrel{def}{=} \ell^2(\mathbb{C}) \ (z = \{z_j\} \in \mathbb{C}^\infty)$$

$$\omega_0 = \frac{i}{2} \partial \bar{\partial} |z|^2 = \sum_{j=1}^N dz_j \wedge d\bar{z}_j, \ |z|^2 = |z_1|^2 + \dots + |z_N|^2.$$

<u>Complex hyperbolic space</u> ($\mathbb{C}H^N = \{z \in \mathbb{C}^N \mid |z|^2 < 1\}, g_{hyp}$), $\omega_{hyp} = -\frac{i}{2}\partial\bar{\partial}\log(1-|z|^2).$

 $\frac{\text{Complex projective space}}{\text{the chart } U_0 = \{Z_0 \neq 0\}} (\mathbb{C}P^N = \mathbb{C}^{N+1} \setminus \{0\}/z \sim \lambda z, g_{FS}\}.$ In

$$\omega_{FS} = \frac{i}{2} \partial \bar{\partial} \log(1 + |z|^2), \ z_j = \frac{Z_j}{Z_0}, \ j = 1, \dots, N$$

Kähler immersions into complex space forms

Let (M,g) be a Kähler manifold. A <u>Kähler immersion</u> $f: M \to (S,g_S)$ is a holomorphic map (i.e. $df \circ J = J_S \circ df$) which is isometric (i.e. $f^*g_S = g$).

Remark The word *immersion* is redundant.

Remark A Kähler immersion $f : (M,g) \to (S,g_S)$ is symplectic, namely $f^*\omega_S = \omega$. Viceversa a holomorphic and symplectic map $f : M \to S$ is isometric, i.e. $f^*g_S = g$.

Calabi's results on Kähler immersions (Ann. Math. 1953)

Theorem. (Calabi's rigidity) If $f : (M,g) \to (S,g_S)$ is a Kähler immersion then any other Kähler immersion of (M,g) into (S,g_S) is given by $\mathcal{U} \circ f$ where \mathcal{U} is a unitary transformation, i.e. $\mathcal{U} \in$ $Aut(S) \cap Isom(S,g_S)$.

Theorem. (local immersions vs global immersions) A simplyconnected real-analytic Kähler manifold (M,g) admits a Kähler immersion into a given complex space form (S,g_S) iff there exists an open set $U \subset M$ such that $(U,g_{|U})$ can be Kähler immersed into (S,g_S) .

Homogeneous Kähler manifolds: definitions

A homogeneous Kähler manifold (h.K.m.) is a Kähler manifold (M,g) such that the Lie group $G = Aut(M) \cap Isom(M,g)$ acts transitively on M.

Remark. The metric g is not uniquely determined by G. There exist different (neither homothetic or isometric) G-invariant homogeneous metrics.

Homogeneous bounded domains

Let $\Omega \subset \mathbb{C}^n$, Ω bounded domain endowed with a homogeneous Kähler metric g_{Ω} . Then (Ω, g_{Ω}) is called a *homogeneous bounded domain* (h.b.d.).

If Aut(Ω) acts transitively on $\Omega \subset \mathbb{C}^n$ then (Ω, g_B) is a h.b.d..

Remark. Every bounded symmetric domain (Ω, g_B) (where the geodesic symmetry $\exp_x(v) \mapsto \exp_x(-v), \forall x \in M, v \in T_x M$ is holomorphic and an isometry) is a h.b.d. but there exist (Pyatetskii-Shapiro, 1969) h.b.d. (Ω, g_B) which are not bounded symmetric domains.

Other examples of h.K.m.

<u>Flat h.K.m.</u> $\mathcal{E} = \mathbb{C}^n \times T_1 \times \cdots T_k$ where $T_j = \mathbb{C}^{n_j} / \Lambda_j$ is a complex torus with the flat metric.

<u>Compact simply-connected h.K.m.</u> These are also called Kähler C-spaces or Wang's spaces or rational homogeneous varieties.

<u>Compact h.K.m.</u> $(M,g) = \mathcal{C} \times T_1 \times \cdots T_k$, *C*-space, T_j flat torus.

Products of homogeneous Kähler manifolds The products of h.K.m. is a h.K.m.

Solution of the fundamental conjecture (FC) for h.K.m.

Theorem FC (J. Dorfmeister, K. Nakajima, Acta Math. 1988) A h.K.m. (M,g) is the total space of a holomorphic fiber bundle over a h.b.d. Ω . Moreover the fiber $\mathcal{F} = \mathcal{E} \times \mathcal{C}$ is (with the induced Kähler metric) the Kähler product of a flat homogeneous Kähler manifold \mathcal{E} and a *C*-space \mathcal{C} .

$$\mathcal{F} = \mathcal{E} \times \mathcal{C} \quad \stackrel{\text{K\"ahler}}{\longrightarrow} \quad \begin{array}{c} M \\ \pi \downarrow \\ \Omega \end{array}$$

Remark. Ω is contractible so $M = \Omega \times \mathcal{F}$ as a complex manifold.

Main result on Kähler immersions into \mathbb{C}^N , $N \leq \infty$

Theorem 1.(Di Scala-Hishi-Loi) Let (M,g) be a *n*-dimensional *h.K.m.*. Then:

(a) if (M,g) can be Kähler immersed into \mathbb{C}^N , $N < \infty$, then $(M,g) = \mathbb{C}^n$;

(b) if (M,g) can be Kähler immersed into $\ell^2(\mathbb{C})$, then

$$(M,g) = \mathbb{C}^k \times \mathbb{C}H^{n_1}_{\lambda_1} \times \cdots \times \mathbb{C}H^{n_l}_{\lambda_l},$$

where $k + n_1 + \cdots + n_l = n$, λ_j , $j = 1, \ldots, l$ are positive real numbers and $\mathbb{C}H_{\lambda_j}^{n_j} = (\mathbb{C}H^{n_j}, \lambda_j g_{hyp})$ (hence $\mathbb{C}H_1^n = \mathbb{C}H^n$).

Moreover, in case (a) (resp. (b)) the immersion is given, up to a unitary transformation of \mathbb{C}^N (resp. $\ell^2(\mathbb{C})$), by the linear inclusion $\mathbb{C}^n \hookrightarrow \mathbb{C}^N$ (resp. by (f_0, f_1, \ldots, f_l) , where f_0 the linear inclusion $\mathbb{C}^k \hookrightarrow \ell^2(\mathbb{C})$ and each $f_k : \mathbb{C}H^{n_k} \to \ell^2(\mathbb{C})$ is λ_k times the map

$$z = (z_1, \dots, z_{n_k}) \mapsto (\dots, \sqrt{\frac{(j-1)!}{j!}} z_1^{j_1} \cdots z_{n_k}^{j_{n_k}}, \dots), \qquad (1)$$

where $j = j_1 + \dots + j_{n_k}$ and $j! = j_1! \dots j_{n_k}!$.

Remark. Since a Kähler immersion is minimal, an alternative proof of (a) when $N < \infty$ follows by the work of A. J. Di Scala, Ann. Glob. Anal. Geom. 21 (2002). Assertion (b) is a generalization to arbitrary h.K.m. of the main theorem in A. J. Di Scala, A. Loi, Geom. Dedicata 125 (2007).

Main result on Kähler immersions into $\mathbb{C}H^N$, $N \leq \infty$

Theorem 2.(Di Scala-Hishi-Loi) Let (M,g) be a *n*-dimensional *h.K.m.* If (M,g) can be Kähler immersed into $\mathbb{C}H^N$, $N \leq \infty$, then, up to a unitary transformation of $\mathbb{C}H^N$,

$$(M,g) = \mathbb{C}H^n \hookrightarrow \mathbb{C}H^N.$$

Sketch of the proof. $(M,g) \to \mathbb{C}H^N$, $N \leq \infty \Rightarrow (M,g) \to \ell^2(\mathbb{C})$.

Theorem 1
$$\Rightarrow$$
 $(M,g) = \mathbb{C}^k \times \mathbb{C}H^{n_1}_{\lambda_1} \times \cdots \times \mathbb{C}H^{n_l}_{\lambda_l}$.

By using the fact that $\mathbb{C}^k \not\rightarrow \mathbb{C}H^N$, $N \leq \infty$, the irreducibility of a Kähler immersion into $\mathbb{C}H^N$ and Calabi's rigidity theorem it follows that $(M,g) = \mathbb{C}H^n \hookrightarrow \mathbb{C}H^N$. \Box

Known results about immersions into $\mathbb{C}P^N$ with $N < \infty$

Theorem.(Takeuchi (Japan J. Math. 1978)) Let (M,g) be a h.K.m. which can be Kähler immersed into a <u>finite</u> dimensional complex projective space. Then M is compact, ω is integral $([\omega]_{dR} \in H^2(M,\mathbb{Z}))$, the immersion is injective and can be described in terms of the representation of semisimple Lie groups.

Remark. Viceversa if (M,g) is a compact Kähler manifold (not necessarily homogeneous) which can be Kähler immersed into a complex projective space $\mathbb{C}P^N$ one can assume $N < \infty$.

Moral. By Takeuchi's theorem and this remark, it remains to treat the case of noncompact h.K.m. which can be Kähler immersed into $\mathbb{C}P^{\infty}$.

First result on Kähler immersions into $\mathbb{C}P^\infty$

Theorem 3.(Di Scala-Hishi-Loi) Let (M,g) be a h.K.m. which can be Kähler immersed into $\mathbb{C}P^{\infty}$. Then ω is integral, M is simply-connected and the immersion is injective.

Sketch of the proof of Theorem 3

Let $f: (M,g) \to \mathbb{C}P^{\infty}$ be a Kähler immersion.

The integrality of $\omega = f^* \omega_{FS}$ is immediate since ω_{FS} is integral.

Theorem $\mathsf{FC} \Rightarrow \mathcal{E} \hookrightarrow \mathcal{E} \times C = \mathcal{F} \hookrightarrow M \to \mathbb{C}P^{\infty} \xrightarrow{T = \mathbb{C}^n / \Lambda \nrightarrow CP^{\infty}} \overset{T = \mathbb{C}^n / \Lambda \nrightarrow CP^{\infty}}{\Longrightarrow}$ $\mathcal{E} = \mathbb{C}^n \times C \Rightarrow M = \Omega \times \mathbb{C}^n \times C$ is simply-connected. Calabi's rigidity theorem $\Rightarrow f \circ g = \mathcal{U}_g \circ f, \forall g \in G \Rightarrow f(M)$ is a h.K.m. $\Rightarrow f(M) \subset \mathbb{C}P^{\infty}$ is simply-connected.

 $f: M \to f(M)$ is a local isometry $\Rightarrow f$ is a covering map $\Rightarrow f$ is injective. \Box

Second result on Kähler immersions into $\mathbb{C}P^{\infty}$

Theorem 4. (Di Scala-Hishi-Loi) Let (Ω, g_{Ω}) be a h.b.d. Then there exists $\lambda_0 \in \mathbb{R}^+$ such that $(\Omega, \lambda_0 g_{\Omega})$ can be Kähler immersed into $\mathbb{C}P^{\infty}$. Moreover, if $(\Omega, \lambda g_{\Omega})$ can be Kähler immersed into $\mathbb{C}P^{\infty}$ for all $\lambda > 0$, then $(\Omega, g_{\Omega}) = \mathbb{C}H_{\lambda_1}^{n_1} \times \cdots \times \mathbb{C}H_{\lambda_l}^{n_l}$.

Ingredients for the proof. Unitary representation of semisimple Lie groups; reproducing kernels of weighted Bergman spaces.

Sketch of the proof of Theorem 1 (based on Theorem 4)

Assume that (M,g) can be Kähler immersed into \mathbb{C}^N , $N \leq \infty$, we need to prove that: $(M,g) = \mathbb{C}^k \times \mathbb{C}H^{n_1}_{\lambda_1} \times \cdots \times \mathbb{C}H^{n_l}_{\lambda_l}$.

Calabi's rigidity + Riemannian geometry $\Rightarrow (M,g) = \mathbb{C}^k \times (\Omega, g_\Omega).$

 $\Rightarrow (\Omega, g_{\Omega})$ can be Kähler immersed into \mathbb{C}^N , $N \leq \infty$.

it follows by a result of S. Bochner (Bull.Amer.Math.Soc., 1947) that, for all $\lambda > 0$, $(\Omega, \lambda g_{\Omega})$ can be Kähler immersed into $\mathbb{C}P^{\infty}$.

Theorem 4
$$\Rightarrow$$
 $(\Omega, g_{\Omega}) = \mathbb{C}H_{\lambda_1}^{n_1} \times \cdots \times \mathbb{C}H_{\lambda_l}^{n_l} \Rightarrow (M, g) = \mathbb{C}^k \times \mathbb{C}H_{\lambda_1}^{n_1} \times \cdots \times \mathbb{C}H_{\lambda_l}^{n_l}$. \Box

Integral forms and Kähler immersions into $\mathbb{C}P^\infty$

Question. If (M,g) is a h.K.m. such that ω is integral. Is it true that (M,g) can be Kähler immersed into $\mathbb{C}P^N$ for some $N \leq \infty$?

The Wallach set of a bounded symmetric domain

The Wallach set $W(\Omega) \subset \mathbb{R}$ of a bounded symmetric domain $\Omega \subset \mathbb{C}^n$ is a subset of \mathbb{R} which "looks like":

discrete part of $W(\Omega)$

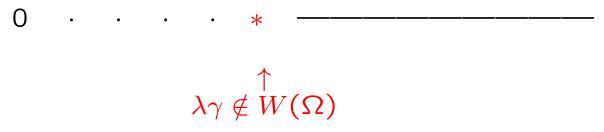
Important property of the Wallach set: $W(\Omega) = \mathbb{R}$ (and hence the discrete part of $W(\Omega)$ is empty) iff and only if $\Omega = \mathbb{C}H^n$.

The Wallach set and immersions into $\mathbb{C}P^\infty$

Theorem W.(Loi-Zedda, Math.Ann., 2010) Let (Ω, g_B) be a bounded symmetric domain. Then $(\Omega, \lambda g_B)$ can be Kähler immersed into $\mathbb{C}P^{\infty}$ if and only if $\lambda \gamma \in W(\Omega) \setminus \{0\}$, where $\gamma > 0$ denotes the genus of Ω .

Three consequences of Theorem W

First consequence: (negative answer to the previous question) Let $(\Omega, g_B) \neq \mathbb{C}H^n$ be a bounded symmetric domain. Thus one can find $\lambda > 0$ such that $\lambda \gamma \notin W(\Omega)$:



By Theorem W, λg_B is not projectively induced (and $\lambda \omega_B$ is integral since Ω is contractible).

Second consequence: The complex hyperbolic space is the only bounded symmetric domains (Ω, g_B) where λg_B is projectively induced, for all $\lambda > 0$. Third consequence: Let (Ω, g_B) be a bounded symmetric domain. Then, for $\lambda > 0$ suffciently large, λg_B is projectively induced.

Two conjectures

Conjecture 1: Let (M,g) be a simply-connected h.K.m. such that its associated Kähler form ω is integral. Then there exists $\lambda_0 \in \mathbb{R}^+$ such that $\lambda_0 g$ is projectively induced.

Remark. The integrality of ω in the conjecture is important since there exist simply-connected h.K.m. (M,g) such that $\lambda \omega$ is not integral for any $\lambda \in \mathbb{R}^+$ (and hence, a fortiori, λg is not projectively induced). Take, for example, $(M,g) = (\mathbb{C}P^1, g_{FS}) \times (\mathbb{C}P^1, \sqrt{2}g_{FS})$.

Conjecture 2: Let (M,g) be a simply-connected h.K.m. such that its associated Kähler form ω is integral. If λg is projectively induced for all $\lambda \in \mathbb{R}^+$ then $(M,g) = \mathbb{C}^k \times \mathbb{C}H^{n_1}_{\lambda_1} \times \cdots \times \mathbb{C}H^{n_l}_{\lambda_l}$.