München, 20 December 2011

Balanced metrics, TYZ expansion and Szegö kernel

Andrea Loi (University of Cagliari)

BALANCED METRICS

Basic terminology

A polarized manifold (M, L) consists of a compact complex manifold M together with a very ample holomorphic line bundle $L \rightarrow M$.

Let (M, L) be a polarized manifold. A Kähler metric g on M such that $\omega_g \in c_1(L)$ is said to be *polarized by* L.

Let g be a Kähler metric on M polarized by L. Then there exists an hermitian metric h on L such that $Ric(h) = \omega_g$. Hence (L, h)is a *positive Hermitian line bundle* over M.

A geometric quantization of a Kähler manifold (M, ω_g) is a positive Hermitian line bundle (L, h) over M such that $Ric(h) = \omega_g$.

Kempf's distortion function and balanced metrics

Let (M, L) be a polarized manifold, g metric on M polarized by L and h Herm. metric on L such that $Ric(h) = \omega_g$.

Kempf's distortion function $T_g \in C^{\infty}(M, \mathbb{R}^+)$

$$T_g(x) = \sum_{j=0}^N h(s_j(x), s_j(x)), \ x \in M$$

where $\{s_0, \ldots, s_N\}$, $N + 1 = \dim H^0(L)$, is an o.b. with respect to:

$$\langle s,t\rangle_h = \int_M h(s,t) \frac{\omega_g^n}{n!}, \ s,t \in H^0(L)$$

Definition (Donaldson. JDG 2001): A polarized metric g on M is said to be *balanced* if $T_g = const = \frac{N+1}{V(M)}$, $V(M) = \int_M \frac{\omega_g^n}{n!}$.

Main results on balanced metrics

Theorem (G. Zhang, Comp. Math. '96): Let (M, L) be a polarized manifold. Then there exists a balanced metric g on M polarized by $L \Leftrightarrow (M, L)$ Chow polystable.

Theorem (Donaldson, JDG 2001): Let (M, L) be a polarized manifold. Let g_{cscK} be a Kähler metric of constant scalar curvature polarized by L. Assume $\frac{Aut(M,L)}{\mathbb{C}^*}$ discrete. Then, for all m >> 1, there exists a unique balanced metric g_m polarized by L^m and $\frac{g_m}{m} \xrightarrow{C^{\infty}} g_{cscK}$. Moreover, if g_m is a sequence of balanced metrics polarized by L^m such that $\frac{g_m}{m} \xrightarrow{C^{\infty}} g_{\infty}$ then g_{∞} is cscK. **Corollary**: Let (M, L) be a polarized manifold, g_{cscK} polarized by L and $\frac{Aut(M,L)}{\mathbb{C}^*}$ discrete. Then (M, L) is asymptotically Chow (poly)stable.

Corollary: Let (M, L) be a polarized manifold, g_{cscK} polarized by L and $\frac{Aut(M,L)}{\mathbb{C}^*}$ discrete. Then g_{cscK} is unique in $c_1(L)$.

What happens without the assumption on Aut(M, L)

Theorem (C. Arezzo – L., Comm. Math. Phys. 2004): Let (M, L) be a polarized manifold and g and \tilde{g} be two balanced metrics polarized by L. Then there exists $F \in Aut(M, L)$ such that $F^*\tilde{g} = g$.

Theorem (A. Della Vedova – F. Zuddas, Trans. AMS, 2011): Let $M = Bl_{p_1,...,p_4} \mathbb{C}P^2$ (four points in the same line except one). Then there exists a polarization L of M and g_{cscK} polarized by L such that (M, L^m) is not Chow polystable for m >> 1.

Theorem (X. Chen – G. Tian, Publ.Math.IHES, 2008): If $\omega_{\tilde{g}_{cscK}} \sim \omega_{g_{cscK}} \Rightarrow \exists F \in Aut(M)$ such that $F^*\tilde{g}_{cscK} = g_{cscK}$.

Some problems on balanced metrics

Let (M, L) be a polarized manifold.

 $\mathcal{B}(L) = \{ \text{balanced metrics on } M \text{ polarized by } L^m, m = 1, \ldots \}$

 $\mathcal{B}_c(L) = \{ \text{equivalence classes of balanced metrics on } M \}$

where two balanced metrics in $\mathcal{B}(L)$ are equivalent iff they are polarized by L^{m_0} for some m_0 .

$$\mathcal{B}_{g_B} = \{ mg_B \in \mathcal{B}(L) \mid m \in \mathbb{N} \}, \quad g_B \in \mathcal{B}(L)$$

Problem: study $\#\mathcal{B}_c(L)$ and $\#\mathcal{B}_{g_B}$.

 \Longrightarrow ?

 $#\mathcal{B}_{g_B} = \infty \implies #\mathcal{B}_c(L) = \infty \iff (M,L)$ asynt. Chow pol.

Balanced metrics and regular quantizations

Definition (M, Cahen, S. Gutt, J. Rawnsley, TRANS. AMS '83): Let (M, L) be a polarized manifold and g be a Kähler metric on Mpolarized by L. Then (L, h) is said to be a <u>regular quantization</u> of $(M, \omega_g = Ric(h))$ if mg is balanced $\forall m$.

 $\#\mathcal{B}_{g_B} = \infty \iff (M, \omega_{g_B})$ reg. quant. $\Rightarrow (M, L)$ asynt. Chow pol. \uparrow

$$(M, g_{hom}), \ \pi_1(M) = 1, \ \omega_{g_{hom}}$$
 integral

A conjecture and two theorems on balanced metrics

Conjecture: Let (M, L) be a polarized manifold. If there exists $g_B \in \mathcal{B}(L)$ such that $\#\mathcal{B}_{g_B} = \infty$ then (M, g_B) is homogeneous and $\pi_1(M) = 1$.

Theorem 1 (C. Arezzo, L., F. Zuddas, Ann. Glob. Anal. Geom. 2011): Let (M, L) be a polarized manifold. Assume $\dim_{\mathbb{C}} M = 1$. If there exists $g_B \in \mathcal{B}(L)$ such that $\#\mathcal{B}_{g_B} = \infty$ then $M = \mathbb{C}P^1$.

Theorem 2 (C. Arezzo, L., F. Zuddas, Ann. Glob. Anal. Geom. 2011): Let M be a toric manifold, dim $M \leq 4$. Let g_{KE} be a KE metric polarized by $L = K^*$. Then $\#\mathcal{B}_c(L) = \infty$. Moreover, there exists $g_B \in \mathcal{B}(L)$ such that $\#\mathcal{B}_{g_B} = \infty$ iff M is either the projective space or the product of projective spaces.

TYZ (TIAN-YAU-ZELDITCH) EXPANSION

Balanced and projectively induced metrics

(M, L) polarized manifold, g polarized by L, $m \in \mathbb{N}^+$, h_m Hermitian metric on L^m such that $Ric(h_m) = m\omega_g$.

Let $\{s_0, \ldots, s_{d_m}\}$, $d_m + 1 = \dim H^0(L^m)$, be an o.b. with respect to

$$\langle s,t\rangle_h = \int_M h_m(s,t) \frac{\omega_g^n}{n!}, s,t \in H^0(L^m),$$

 $\varphi_m : M \to \mathbb{C}P^{d_m} : x \mapsto [s_0(x) : \cdots : s_{d_m}(x)]$ coherent states map

$$\varphi_m^* \omega_{FS} = m \omega_g + \frac{i}{2} \partial \bar{\partial} \log T_{mg}(x)$$

 $T_{mg}(x) = \sum_{j=0}^{d_m} h_m(s_j(x), s_j(x)).$

<u>Therefore</u>: mg is balanced $\Leftrightarrow mg$ is projectively induced by φ_m .

TYZ expansion

Theorem (S. Zelditch, Int. Math. Res. Not. '98): Let (M, L) be a polarized manifold and g polarized by L. Then

$$T_{mg}(x) \sim \sum_{j=0}^{\infty} a_j(x) m^{n-j}, \quad a_0(x) = 1,$$

namely, for all r and k there exists $C_{k,r}$ such that

$$||T_{mg}(x) - \sum_{j=0}^{k} a_j(x)m^{n-j}||_{C^r} \le C_{k,r}m^{n-k-1}.$$

Corollary: (Yau's conjecture proved by G. Tian JDG '90 in the C^2 case) Let (M, L) be polarized manifold and g polarized by L. Then $\frac{\varphi_m^* g_{FS}}{m} \xrightarrow{C^{\infty}} g$.

On the coefficients of TYZ expansion

Theorem (*Z. Lu, Amer. J. Math. 2000*): Each $a_j(x)$ is a polynomial of the curvature of the metric g and of its covariant derivatives. Moreover,

$$\begin{aligned} a_1(x) &= \frac{1}{2}\rho \\ a_2(x) &= \frac{1}{3}\Delta\rho + \frac{1}{24}(|R|^2 - 4|Ric|^2 + 3\rho^2) \\ a_3(x) &= \frac{1}{8}\Delta\Delta\rho + \frac{1}{24}\operatorname{div}\operatorname{div}(R,Ric) - \frac{1}{6}\operatorname{div}\operatorname{div}(\rho Ric) + \\ &+ \frac{1}{48}\Delta(|R|^2 - 4|Ric|^2 + 8\rho^2) + \frac{1}{48}\rho(\rho^2 - 4|Ric|^2 + |R|^2) + \\ &+ \frac{1}{24}(\sigma_3(Ric) - Ric(R,R) - R(Ric,Ric)) \end{aligned}$$

$$\begin{split} |R|^{2} &= \sum_{i,j,k,l=1}^{n} |R_{i\overline{j}k\overline{l}}|^{2} \\ |Ric|^{2} &= \sum_{i,j=1}^{n} |Ric_{i\overline{j}}|^{2} \\ |D'\rho|^{2} &= \sum_{i=1}^{n} |\frac{\partial\rho}{\partial z_{i}}|^{2} \\ |D'Ric|^{2} &= \sum_{i,j,k=1}^{n} |Ric_{i\overline{j},k}|^{2} \\ |D'R|^{2} &= \sum_{i,j,k,l,p=1}^{n} |R_{i\overline{j}k\overline{l},p}|^{2} \\ div div(\rho Ric) &= 2|D'\rho|^{2} + \sum_{i,j=1}^{n} Ric_{i\overline{j}} \frac{\partial^{2}\rho}{\partial \overline{z}_{j}\partial z_{i}} + \rho \Delta\rho \\ div div(R, Ric) &= -\sum_{i,j=1}^{n} Ric_{i\overline{j}} \frac{\partial^{2}\rho}{\partial \overline{z}_{j}\partial z_{i}} - 2|D'Ric|^{2} \\ + \sum_{i,j,k,l=1}^{n} R_{j\overline{i}l\overline{k}}R_{i\overline{j},k\overline{l}} - R(Ric, Ric) - \sigma_{3}(Ric) \\ R(Ric, Ric) &= \sum_{i,j,k,l=1}^{n} R_{i\overline{j}k\overline{l}}Ric_{j\overline{i}}Ric_{l\overline{k}} \\ Ric(R, R) &= \sum_{i,j,k,l,p,q=1}^{n} Ric_{i\overline{j}}R_{j\overline{k}p\overline{q}}R_{k\overline{i}q\overline{p}} \\ \sigma_{3}(Ric) &= \sum_{i,j,k=1}^{n} Ric_{i\overline{j}}Ric_{j\overline{k}}Ric_{k\overline{i}}, \end{split}$$

where ",p" is the covariant derivative in the direction $\frac{\partial}{\partial z_p}$.

The proof Theorem 1 and 2

Lemma 1: Let (M, L) be a polarized manifold and g polarized by L. Let $\mathcal{B}_g = \{mg \text{ is balanced } | m \in \mathbb{N}\}$. If $\#\mathcal{B}_g = \infty$ then the coefficients $a_j(x)$ of $T_{mg}(x) \sim \sum_{j=0}^{\infty} a_j(x)m^{n-j}$ are constants for all j = 0, 1, ...

proof: Let $\{m_s\}_{s=1,2,...}$ be an unbounded sequence such that $T_{m_sg}(x) = T_{m_s}$. We know that $a_0 = 1$. Assume that $a_j(x) = a_j$, for j = 0, ..., k - 1. Then,

$$|T_{s,k,n} - a_k(x)m_s^{n-k}| \le C_k m_s^{n-k-1}, \quad T_{s,k,n} = T_{m_s} - \sum_{j=0}^{k-1} a_j m_s^{n-j}$$

for some constants C_k .

Then $|m_s^{k-n}T_{s,k,n}-a_k(x)| \leq C_k m_s^{-1}$ and if $s \to \infty$ then $m_s^{k-n}T_{s,k,n} \to a_k(x)$ and hence a_k is costant. \Box

The proof of Theorem 1

Theorem 1 (*C. Arezzo, L. , F. Zuddas, Ann. Glob. Anal. Geom. 2011):* Let (M, L) be a polarized manifold. Assume $\dim_{\mathbb{C}} M = 1$. If there exists $g_B \in \mathcal{B}(L)$ such that $\#\mathcal{B}_{g_B} = \infty$ then $M = \mathbb{C}P^1$.

proof:

If
$$\#\mathcal{B}_{g_B} = \infty \stackrel{Lemmal}{\Longrightarrow} a_j^B (T_{mg_B}(x) \sim \sum_{j=0}^{\infty} a_j^B(x)m^{n-j})$$
 are constants for all $j = 0, 1, ...$

In particular $a_1^B = \rho_B/2$ is constant $\stackrel{Calabi,Ann.Math.'53}{\Longrightarrow} M = \mathbb{C}P^1$ and $g_B = m_0 g_{FS}$. \Box **Lemma 2**: Let (M, L) be a polarized manifold and $g = g_{cscK}$ polarized by L. Assume that mg is not proj. induced $\forall m$. Then $\#\mathcal{B}_{g_B} < \infty$ for all $g_B \in \mathcal{B}(L)$.

proof: Let $g_B \in \mathcal{B}(L)$ (g_B balanced and $g_B \in c_1(L^{m_0})$ for some m_0).

If $\#\mathcal{B}_{g_B} = \infty \xrightarrow{\text{Lemma 1}} a_j^B (T_{mg_B}(x) \sim \sum_{j=0}^{\infty} a_j^B(x)m^{n-j})$ are constants for all $j = 0, 1, \ldots$

In particular $a_1^B = \rho_B/2$ is constant and hence (by Chen–Tian theorem) there exists $F \in Aut(M)$ such that $F^*g_B = m_0g$.

This implies that $m_0 g$ is proj. induced in contrast with the assumptions. \Box

Remark: There exist g_{cscK} polarized by L such that all the coefficients of TYZ are costants but mg is not projectively induced for all m (e.g. hyperbolic metrics, flat metrics on abelian varieties).

Sketch of the proof of Theorem 2

Theorem 2 (C. Arezzo, L., F. Zuddas, Ann. Glob. Anal. Geom. 2011): Let M be a toric manifold, dim $M \leq 4$. Let g_{KE} be a KE metric polarized by $L = K^*$. Then $\#\mathcal{B}_c(L) = \infty$. Moreover, there exists $g_B \in \mathcal{B}(L)$ such that $\#\mathcal{B}_{g_B} = \infty$ iff M is either the projective space or the product of projective spaces.

idea of the proof:

 $#\mathcal{B}_c(L) = \infty$ follows by the fact that symmetric toric manifolds $(M, L = K^*)$ are asympt. Chow polystable.

<u>Hard part</u>: $m_0 g_{KE}$ is proj. induced for some m_0 iff M is either the projective space or the product of projective spaces. Conclusion follows by Lemma 2. \Box

Conjecture: Every KE submanifold of $\mathbb{C}P^N$ is homogeneous.

Remark: There exist non homogeneous and complete KE submanifolds of $\mathbb{C}P^{\infty}$ (L., M. Zedda, Math. Ann. 2011)

SZEGÖ KERNEL

The unit disk bundle and the circle bundle in L^*

Let (L,h) be a positive Hermitian line bundle over a compact Kähler manifold (M,g) of complex dimension n, such that $Ric(h) = \omega_g$. Consider the negative Hermitian line bundle (L^*,h^*) over (M,g) dual to (L,h).

Let $D \subset L^*$ be the <u>unit disk bundle</u> over M, i.e.

$$D = \{v \in L^* \mid \rho(v) = 1 - h^*(v, v) > 0\}$$

The condition $Ric(h) = \omega_g$ implies that D is strongly pseudoconvex domain in L^{*} with smooth boundary (Grauert, '50).

Let $X = \partial D = \{v \in L^* \mid \rho(v) = 0\}$ be the <u>unit circle bundle</u>

The Szegö kernel of the disk bundle

Consider the separable Hilbert space $\mathcal{H}^2(D)$ consisting of holomorphic functions $f: D \to \mathbb{C}$, $f \in C^0(\overline{D})$, such that

$$\int_X |f|^2 d\mu < \infty, \quad d\mu = \alpha \wedge (d\alpha)^n, \ \alpha = -i\partial \rho_{|X} = i\bar{\partial}\rho_{|X}$$

Let $\{f_j\}_{j=1,...}$ be an orthonormal basis of $\mathcal{H}^2(D)$, i.e.

$$\int_X f_j \bar{f}_k d\mu = \delta_{jk}.$$

The Szegö kernel is defined by:

$$\mathcal{S}(v) = \sum_{j=1}^{+\infty} f_j(v) \overline{f_j(v)}, \ v \in D.$$

Szegö kernel and Kempf's distortion function

Theorem (S. Zelditch, Int. Math. Res. Not. '98) $\mathcal{H}^{2}(D) = \bigoplus_{m=0}^{+\infty} \mathcal{H}^{2}_{m}(D)$ $\mathcal{H}^{2}_{m}(D) = \{f \in \mathcal{H}^{2}(D) \mid f(\lambda v) = \lambda^{m} f(v), \ \lambda \in S^{1}\}$ The map $s \in H^{0}(L^{m}) \mapsto \widehat{s} \in \mathcal{H}^{2}_{m}(D)$ given by: $\widehat{s}(v) = v^{\otimes m}(s(x)), \ x = \pi(v), \ \pi : L^{*} \to M.$ is an isometry between $H^{0}(L^{m})$ and $\mathcal{H}^{2}_{m}(D)$. Moreover:

$$\mathcal{S}_m(v) = \sum_{j=0}^{d_m} \widehat{s}_j(v) \overline{\widehat{s}_j(v)} = \sum_{j=0}^{d_m} h_m(s_j(x), s_j(x)) = T_{mg}(x), \ v \in X$$

The log term of the Szegö kernel

Theorem (*C. Fefferman, BULL. AMS '83):* There exist $a, b \in C^{\infty}(\overline{D})$, $a \neq 0$ on $X = \partial D$ such that:

$$\mathcal{S}(v) = a(v)\rho(v)^{-n-1} + b(v)\log\rho(v), \ v \in D$$

where $\rho(v) = 1 - h^*(v, v)$ is the defining function of D.

Definition: One says that the log term of the Szegö kernel of the disk bundle $D \subset L^*$ vanishes if b = 0.

On the vanishing of the log term of the Szegö kernel

Theorem (G. Tian – Z Lu, Duke 2004): Let (M, L) be a polarized manifold and g be a Kähler metric on M polarized by L. Let h be an Hermitian product on L such that $\omega_g = Ric(h)$. If the log term of the Szegö kernel of $D = \{v \in L^* \mid h^*(v, v) < 1\}$ vanishes then $a_k = 0$ for k > n. $(T_{mg}(x) \sim \sum_{j=0}^{\infty} a_j(x)m^{n-j})$

The case of $\mathbb{C}P^n$

Example: $(L = O(1), h_{FS}) \rightarrow (\mathbb{C}P^n, \omega_{FS}), Ric(h_{FS}) = \omega_{FS},$

$$D = \{ v \in L^* = O(-1) \mid h^*_{FS}(v, v) < 1 \}$$

 $X = \partial D = S^{2n+1} \to \mathbb{C}P^n$ Hopf fibration.

One can prove that the log term of the Szegö kernel of D vanishes.

A conjecture for $\mathbb{C}P^n$

Conjecture: (G. Tian – Z. Lu, 2004): Let h be an Hermitian metric on $L = O(1) \rightarrow \mathbb{C}P^n$ such that $Ric(h) = \omega \sim \omega_{FS}$. Assume that the log term of the Szegö kernel of $D = \{v \in L^* = O(-1) \mid h^*(v,v) < 1\}$ vanishes then there exists $F \in Aut(\mathbb{C}P^n)$ such that $F^*\omega = \omega_{FS}$.

The conjecture of Lu and Tian holds true for $\mathbb{C}P^1$

Theorem (G. Tian – Z. Lu, Duke 2004): Let h be an Hermitian metric on $L = O(1) \rightarrow \mathbb{C}P^1$ such that $Ric(h) = \omega \sim \omega_{FS}$. Assume that the log term of the Szegö kernel of

 $D = \{v \in L^* = O(-1) \mid h^*(v, v) < 1\}$ vanishes

then there exists $F \in Aut(\mathbb{C}P^1)$ such that $F^*\omega = \omega_{FS}$.

proof:

$$a_2(x) = \frac{1}{3}\Delta\rho + \frac{1}{24}(|R|^2 - 4|Ric|^2 + 3\rho^2) = \frac{1}{3}\Delta\rho = 0 \Rightarrow \rho = const.\Box$$

The conjecture of Lu and Tian holds true locally

Theorem (G. Tian – Z. Lu, Duke 2004): There exists $\epsilon = \epsilon(n)$ such that if h is an Hermitian metric on $L = O(1) \rightarrow \mathbb{C}P^n$ such that:

1.
$$\|\frac{h}{h_{FS}} - 1\|_{C^{2n+4}} < \epsilon;$$

2. the log term of the Szegö kernel of

$$D = \{ v \in L^* = O(-1) \mid h^*(v, v) < 1 \}$$

vanishes;

then there exists $F \in Aut(\mathbb{C}P^n)$ such that $F^*\omega = \omega_{FS}$, $\omega = Ric(h)$.

Theorem 3 (D. Uccheddu, 2011) Let $M = \mathbb{C}P^2$ and $\omega_{\alpha} = f_{\alpha}^* \omega_{FS}$ be the Kähler form on $\mathbb{C}P^2$ obtained as the pull-back of ω_{FS} on $\mathbb{C}P^5$ via the map:

 $f_{\alpha}: \mathbb{C}P^2 \to \mathbb{C}P^5 : [Z_0, Z_1, Z_2] \mapsto [Z_0^2, Z_1^2, Z_2^2, \alpha Z_0 Z_1, \alpha Z_0 Z_2, \alpha Z_1 Z_2].$ Let h_{α} be the Hermitian metric on O(2) such that

 $Ric(h_{\alpha}) = \omega_{\alpha} \sim 2\omega_{FS}.$

Assume that the log term of the disk bundle

 $D_{\alpha} = \{v \in O(2) \mid h_{\alpha}(v,v) < 1\}$

vanishes. Then $|\alpha|^2 = 2$, i.e. $\omega_{\alpha} = 2\omega_{FS}$.

Some problems on the Szegö kernel of the disk bundle

1. Classify the Kähler manifolds where $a_k = 0$, for k > n. Is it true that the Szegö kernel of the disk bundle $D \subset L^*$ associated to such manifolds has vanishing log term?

Remark: For all $k \ge 1$ the equation (for ω and f fixed) $a_k(\omega + \frac{i}{2}\partial\bar{\partial}\varphi) = f$ is an elliptic PDE (Tian – Lu, 2004).

2. Find examples of Kähler manifolds different from the projective space whose Szegö kernel of the disk bundle $D \subset L^*$ has vanishing log term.

3. Is it true that the vanishing of the log term of the disk bundle $D \subset L^*$ implies some topological restrictions on $X = \partial D$, e.g. X is homeomorphic to S^{2n+1} ?

Ramadanov's conjecture

Conjecture: (*I.P. Ramadanov, C. R. Acad.Bulgare Sci.1981*) Let D be a bounded strongly pseudoconvex domain of \mathbb{C}^n with smooth boundary. If the log term of the Bergman kernel of Dvanishes then D is biholomorphic to the ball.

The work of M. Engliš on problems 2 and 3

Theorem: (M. Engliš, G. Zhang, Math.Z. 2010) Let (M,g)be a Hermitian symmetric space of compact type of complex dimension n. Assume ω_g integral and let (L,h) be the Hermitian line bundle such that $Ric(h) = \omega_g$. Then the log term of the Szegö kernel of the disk bundle $D \subset L^*$ vanishes. Moreover $X = \partial D$ is homeomorphic to S^{2n+1} iff $M = \mathbb{C}P^n$.

Regular quantizations and Szegö kernel

Theorem 4: (C. Arezzo, L., F. Zuddas, 2011) Let g be a Kähler metric on M polarized by L. If (L,h) is a regular quantization of (M, ω_g) , $Ric(h) = \omega_g$, then the log term of the disk bundle $D = \{v \in L^* \mid h^*(v, v) < 1\}$ vanishes.

Corollary: Let (M,g) be a homogeneous compact and simplyconnected Kähler manifold of complex dimension n. Assume ω_g integral and let (L,h) be the Hermitian line bundle such that $Ric(h) = \omega_g$. Then the log terrn of the Szegö kernel of the disk bundle $D \subset L^*$ vanishes. Moreover $X = \partial D$ is homeomorphic to S^{2n+1} iff $M = \mathbb{C}P^n$.