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BALANCED METRICS
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Basic terminology

A polarized manifold (M,L) consists of a compact complex ma-
nifold M together with a very ample holomorphic line bundle
L→M .

Let (M,L) be a polarized manifold. A Kähler metric g on M

such that ωg ∈ c1(L) is said to be polarized by L.

Let g be a Kähler metric on M polarized by L. Then there exists
an hermitian metric h on L such that Ric(h) = ωg. Hence (L, h)
is a positive Hermitian line bundle over M .

A geometric quantization of a Kähler manifold (M,ωg) is a po-
sitive Hermitian line bundle (L, h) over M such that Ric(h) =
ωg.
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Kempf’s distortion function and balanced metrics

Let (M,L) be a polarized manifold, g metric on M polarized by
L and h Herm. metric on L such that Ric(h) = ωg.

Kempf’s distortion function Tg ∈ C∞(M,R+)

Tg(x) =
N∑
j=0

h(sj(x), sj(x)), x ∈M

where {s0, . . . , sN}, N + 1 = dimH0(L), is an o.b. with respect
to:

〈s, t〉h =
∫
M
h(s, t)

ωng

n!
, s, t ∈ H0(L)

Definition (Donaldson. JDG 2001): A polarized metric g on M

is said to be balanced if Tg = const = N+1
V (M), V (M) =

∫
M

ωng
n! .
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Main results on balanced metrics

Theorem (G. Zhang, Comp. Math. ‘96): Let (M,L) be a

polarized manifold. Then there exists a balanced metric g on M

polarized by L ⇔ (M,L) Chow polystable.

Theorem (Donaldson, JDG 2001): Let (M,L) be a polarized

manifold. Let gcscK be a Kähler metric of constant scalar cur-

vature polarized by L. Assume Aut(M,L)
C∗ discrete. Then, for all

m >> 1, there exists a unique balanced metric gm polarized by

Lm and gm
m

C∞−→ gcscK. Moreover, if gm is a sequence of balanced

metrics polarized by Lm such that gm
m

C∞−→ g∞ then g∞ is cscK.
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Corollary: Let (M,L) be a polarized manifold, gcscK polarized

by L and Aut(M,L)
C∗ discrete. Then (M,L) is asymptotically Chow

(poly)stable.

Corollary: Let (M,L) be a polarized manifold, gcscK polarized

by L and Aut(M,L)
C∗ discrete. Then gcscK is unique in c1(L).
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What happens without the assumption on Aut(M,L)

Theorem (C. Arezzo – L. , Comm. Math. Phys. 2004): Let

(M,L) be a polarized manifold and g and g̃ be two balanced

metrics polarized by L. Then there exists F ∈ Aut(M,L) such

that F ∗g̃ = g.

Theorem (A. Della Vedova – F. Zuddas, Trans. AMS, 2011):

Let M = Blp1,...,p4CP2 (four points in the same line except one).

Then there exists a polarization L of M and gcscK polarized by

L such that (M,Lm) is not Chow polystable for m >> 1.

Theorem (X. Chen – G. Tian, Publ.Math.IHES, 2008): If ωg̃cscK ∼
ωgcscK ⇒ ∃ F ∈ Aut(M) such that F ∗g̃cscK = gcscK.
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Some problems on balanced metrics

Let (M,L) be a polarized manifold.

B(L) = {balanced metrics on M polarized by Lm, m = 1, . . .}

Bc(L) = {equivalence classes of balanced metrics on M}

where two balanced metrics in B(L) are equivalent iff they are
polarized by Lm0 for some m0.

BgB = {mgB ∈ B(L) | m ∈ N}, gB ∈ B(L)

Problem: study #Bc(L) and #BgB.

=⇒?

#BgB =∞ =⇒#Bc(L) =∞ ⇐= (M,L) asynt.Chow pol.
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Balanced metrics and regular quantizations

Definition (M, Cahen, S. Gutt, J. Rawnsley, TRANS. AMS ‘83):

Let (M,L) be a polarized manifold and g be a Kähler metric on M

polarized by L. Then (L, h) is said to be a regular quantization

of (M,ωg = Ric(h)) if mg is balanced ∀m.

#BgB =∞ ⇐ (M,ωgB) reg. quant. ⇒ (M,L) asynt. Chow pol.

⇑

(M, ghom), π1(M) = 1, ωghom integral

9



A conjecture and two theorems on balanced metrics

Conjecture: Let (M,L) be a polarized manifold. If there exists
gB ∈ B(L) such that #BgB = ∞ then (M, gB) is homogeneous
and π1(M) = 1.

Theorem 1 (C. Arezzo, L. , F. Zuddas, Ann. Glob. Anal.
Geom. 2011): Let (M,L) be a polarized manifold. Assume
dimCM = 1. If there exists gB ∈ B(L) such that #BgB =∞ then
M = CP1.

Theorem 2 (C. Arezzo, L. , F. Zuddas, Ann. Glob. Anal.
Geom. 2011): Let M be a toric manifold, dimM ≤ 4. Let
gKE be a KE metric polarized by L = K∗. Then #Bc(L) = ∞.
Moreover, there exists gB ∈ B(L) such that #BgB = ∞ iff M is
either the projective space or the product of projective spaces.
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TYZ (TIAN–YAU–ZELDITCH) EXPANSION
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Balanced and projectively induced metrics

(M,L) polarized manifold, g polarized by L, m ∈ N+, hm Hermi-
tian metric on Lm such that Ric(hm) = mωg.

Let {s0, . . . , sdm}, dm + 1 = dimH0(Lm), be an o.b. with respect
to

〈s, t〉h =
∫
M
hm(s, t)

ωng

n!
, s, t ∈ H0(Lm),

ϕm : M → CP dm : x 7→ [s0(x) : · · · : sdm(x)] coherent states map

ϕ∗mωFS = mωg + i
2∂∂̄ logTmg(x)

Tmg(x) =
∑dm
j=0 hm(sj(x), sj(x)).

Therefore: mg is balanced ⇔ mg is projectively induced by ϕm.
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TYZ expansion

Theorem (S. Zelditch, Int. Math. Res. Not. ‘98): Let (M,L)

be a polarized manifold and g polarized by L. Then

Tmg(x) ∼
∞∑
j=0

aj(x)mn−j, a0(x) = 1,

namely, for all r and k there exists Ck,r such that

||Tmg(x)−
k∑

j=0

aj(x)mn−j||Cr ≤ Ck,rmn−k−1.

Corollary: (Yau’s conjecture proved by G. Tian JDG ‘90 in the

C2 case) Let (M,L) be polarized manifold and g polarized by L.

Then ϕ∗mgFS
m

C∞−→ g.
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On the coefficients of TYZ expansion

Theorem (Z. Lu, Amer. J. Math. 2000): Each aj(x) is a

polynomial of the curvature of the metric g and of its covariant

derivatives. Moreover,

a1(x) = 1
2ρ

a2(x) = 1
3∆ρ+ 1

24(|R|2 − 4|Ric|2 + 3ρ2)

a3(x) = 1
8∆∆ρ+ 1

24 div div(R,Ric)− 1
6 div div(ρRic)+

+ 1
48∆(|R|2 − 4|Ric|2 + 8ρ2) + 1

48ρ(ρ2 − 4|Ric|2 + |R|2)+

+ 1
24(σ3(Ric)−Ric(R,R)−R(Ric,Ric))

14



|R|2 =
∑n
i,j,k,l=1 |Rījkl̄|

2

|Ric|2 =
∑n
i,j=1 |Ricīj|

2

|D′ρ|2 =
∑n
i=1 |

∂ρ
∂zi
|2

|D′Ric|2 =
∑n
i,j,k=1 |Ricīj,k|

2

|D′R|2 =
∑n
i,j,k,l,p=1 |Rījkl̄,p|

2

div div(ρRic) = 2|D′ρ|2 +
∑n
i,j=1Ricīj

∂2ρ
∂z̄j∂zi

+ ρ∆ρ

div div(R,Ric) = −
∑n
i,j=1Ricīj

∂2ρ
∂z̄j∂zi

− 2|D′Ric|2

+
∑n
i,j,k,l=1Rj̄ilk̄Rīj,kl̄ −R(Ric,Ric)− σ3(Ric)

R(Ric,Ric) =
∑n
i,j,k,l=1Rījkl̄Ricj̄iRiclk̄

Ric(R,R) =
∑n
i,j,k,l,p,q=1RicījRjk̄pq̄Rk̄iqp̄

σ3(Ric) =
∑n
i,j,k=1RicījRicjk̄Rick̄i,

where “ ,p” is the covariant derivative in the direction ∂
∂zp

.
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The proof Theorem 1 and 2
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Lemma 1: Let (M,L) be a polarized manifold and g polarized

by L. Let Bg = {mg is balanced | m ∈ N}. If #Bg = ∞ then the

coefficients aj(x) of Tmg(x) ∼
∑∞
j=0 aj(x)mn−j are constants for

all j = 0,1, . . ..

proof: Let {ms}s=1,2,... be an unbounded sequence such that

Tmsg(x) = Tms. We know that a0 = 1. Assume that aj(x) = aj,

for j = 0, . . . , k − 1. Then,

|Ts,k,n − ak(x)mn−k
s | ≤ Ckmn−k−1

s , Ts,k,n = Tms −
k−1∑
j=0

ajm
n−j
s

for some constants Ck.

Then |mk−n
s Ts,k,n−ak(x)| ≤ Ckm−1

s and if s→∞ then mk−n
s Ts,k,n →

ak(x) and hence ak is costant. �
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The proof of Theorem 1

Theorem 1 (C. Arezzo, L. , F. Zuddas, Ann. Glob. Anal.

Geom. 2011): Let (M,L) be a polarized manifold. Assume

dimCM = 1. If there exists gB ∈ B(L) such that #BgB =∞ then

M = CP1.

proof:

If #BgB = ∞ Lemma1
=⇒ aBj (TmgB(x) ∼

∑∞
j=0 a

B
j (x)mn−j) are con-

stants for all j = 0,1, . . .

In particular aB1 = ρB/2 is constant
Calabi,Ann.Math.‘53

=⇒ M = CP1

and gB = m0gFS. �
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Lemma 2: Let (M,L) be a polarized manifold and g = gcscK
polarized by L. Assume that mg is not proj. induced ∀m. Then

#BgB <∞ for all gB ∈ B(L).

proof: Let gB ∈ B(L) (gB balanced and gB ∈ c1(Lm0) for some

m0).

If #BgB = ∞ Lemma 1
=⇒ aBj (TmgB(x) ∼

∑∞
j=0 a

B
j (x)mn−j) are

constants for all j = 0,1, . . ..

In particular aB1 = ρB/2 is constant and hence (by Chen–Tian

theorem) there exists F ∈ Aut(M) such that F ∗gB = m0g.

This implies that m0g is proj. induced in contrast with the

assumptions. �
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Remark: There exist gcscK polarized by L such that all the coeffi-

cients of TYZ are costants but mg is not projectively induced for

all m (e.g. hyperbolic metrics, flat metrics on abelian varieties).
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Sketch of the proof of Theorem 2

Theorem 2 (C. Arezzo, L. , F. Zuddas, Ann. Glob. Anal.
Geom. 2011): Let M be a toric manifold, dimM ≤ 4. Let
gKE be a KE metric polarized by L = K∗. Then #Bc(L) = ∞.
Moreover, there exists gB ∈ B(L) such that #BgB = ∞ iff M is
either the projective space or the product of projective spaces.

idea of the proof:

#Bc(L) =∞ follows by the fact that symmetric toric manifolds
(M,L = K∗) are asympt. Chow polystable.

Hard part: m0gKE is proj. induced for some m0 iff M is either the
projective space or the product of projective spaces. Conclusion
follows by Lemma 2. �
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Conjecture: Every KE submanifold of CPN is homogeneous.

Remark: There exist non homogeneous and complete KE sub-

manifolds of CP∞ (L., M. Zedda, Math. Ann. 2011)
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SZEGÖ KERNEL
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The unit disk bundle and the circle bundle in L∗

Let (L, h) be a positive Hermitian line bundle over a compact

Kähler manifold (M, g) of complex dimension n, such that Ric(h) =

ωg. Consider the negative Hermitian line bundle (L∗, h∗) over

(M, g) dual to (L, h).

Let D ⊂ L∗ be the unit disk bundle over M , i.e.

D = {v ∈ L∗ | ρ(v) = 1− h∗(v, v) > 0}

The condition Ric(h) = ωg implies that D is strongly pseudocon-

vex domain in L∗ with smooth boundary (Grauert, ‘50).

Let X = ∂D = {v ∈ L∗ | ρ(v) = 0} be the unit circle bundle
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The Szegö kernel of the disk bundle

Consider the separable Hilbert space H2(D) consisting of holo-

morphic functions f : D → C, f ∈ C0(D̄), such that∫
X
|f |2dµ <∞, dµ = α ∧ (dα)n, α = −i∂ρ|X = i∂̄ρ|X

Let {fj}j=1,... be an orthonormal basis of H2(D), i.e.∫
X
fjf̄kdµ = δjk.

The Szegö kernel is defined by:

S(v) =
+∞∑
j=1

fj(v)fj(v), v ∈ D.
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Szegö kernel and Kempf’s distortion function

Theorem (S. Zelditch, Int. Math. Res. Not. ‘98)

H2(D) = ⊕+∞
m=0H

2
m(D)

H2
m(D) = {f ∈ H2(D) | f(λv) = λmf(v), λ ∈ S1}

The map s ∈ H0(Lm) 7→ ŝ ∈ H2
m(D) given by:

ŝ(v) = v⊗m(s(x)), x = π(v), π : L∗ →M.

is an isometry between H0(Lm) and H2
m(D). Moreover:

Sm(v) =
∑dm
j=0 ŝj(v)ŝj(v) =

∑dm
j=0 hm(sj(x), sj(x)) = Tmg(x), v ∈ X
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The log term of the Szegö kernel

Theorem (C. Fefferman, BULL. AMS ‘83): There exist a, b ∈
C∞(D̄), a 6= 0 on X = ∂D such that:

S(v) = a(v)ρ(v)−n−1 + b(v) log ρ(v), v ∈ D

where ρ(v) = 1− h∗(v, v) is the defining function of D.

Definition: One says that the log term of the Szegö kernel of

the disk bundle D ⊂ L∗ vanishes if b = 0.
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On the vanishing of the log term of the Szegö kernel

Theorem (G. Tian – Z Lu, Duke 2004): Let (M,L) be a po-

larized manifold and g be a Kähler metric on M polarized by L.

Let h be an Hermitian product on L such that ωg = Ric(h). If

the log term of the Szegö kernel of D = {v ∈ L∗ | h∗(v, v) < 1}
vanishes then ak = 0 for k > n. (Tmg(x) ∼

∑∞
j=0 aj(x)mn−j)
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The case of CPn

Example: (L = O(1), hFS)→ (CPn, ωFS), Ric(hFS) = ωFS,

D = {v ∈ L∗ = O(−1) | h∗FS(v, v) < 1}

X = ∂D = S2n+1 → CPn Hopf fibration.

One can prove that the log term of the Szegö kernel of D

vanishes.
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A conjecture for CPn

Conjecture: (G. Tian – Z. Lu, 2004): Let h be an Hermitian

metric on L = O(1) → CPn such that Ric(h) = ω ∼ ωFS. As-

sume that the log term of the Szegö kernel of D = {v ∈ L∗ =

O(−1) | h∗(v, v) < 1} vanishes then there exists F ∈ Aut(CPn)

such that F ∗ω = ωFS.
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The conjecture of Lu and Tian holds true for CP1

Theorem (G. Tian – Z. Lu, Duke 2004): Let h be an Hermitian

metric on L = O(1)→ CP1 such that Ric(h) = ω ∼ ωFS. Assume

that the log term of the Szegö kernel of

D = {v ∈ L∗ = O(−1) | h∗(v, v) < 1} vanishes

then there exists F ∈ Aut(CP1) such that F ∗ω = ωFS.

proof:

a2(x) =
1

3
∆ρ+

1

24
(|R|2−4|Ric|2+3ρ2) =

1

3
∆ρ = 0⇒ ρ = const.�
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The conjecture of Lu and Tian holds true locally

Theorem (G. Tian – Z. Lu, Duke 2004): There exists ε = ε(n)

such that if h is an Hermitian metric on L = O(1) → CPn such

that:

1. ‖ h
hFS
− 1‖C2n+4 < ε;

2. the log term of the Szegö kernel of

D = {v ∈ L∗ = O(−1) | h∗(v, v) < 1}

vanishes;

then there exists F ∈ Aut(CPn) such that F ∗ω = ωFS, ω =

Ric(h).
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Theorem 3 (D. Uccheddu, 2011) Let M = CP2 and ωα = f∗αωFS
be the Kähler form on CP2 obtained as the pull-back of ωFS on

CP5 via the map:

fα : CP2 → CP5 : [Z0, Z1, Z2] 7→ [Z2
0 , Z

2
1 , Z

2
2 , αZ0Z1, αZ0Z2, αZ1Z2].

Let hα be the Hermitian metric on O(2) such that

Ric(hα) = ωα ∼ 2ωFS.

Assume that the log term of the disk bundle

Dα = {v ∈ O(2) | hα(v, v) < 1}

vanishes.Then |α|2 = 2, i.e. ωα = 2ωFS.
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Some problems on the Szegö kernel of the disk bundle

1. Classify the Kähler manifolds where ak = 0, for k > n. Is it
true that the Szegö kernel of the disk bundle D ⊂ L∗ associated
to such manifolds has vanishing log term?

Remark: For all k ≥ 1 the equation (for ω and f fixed) ak(ω+
i
2∂∂̄ϕ) = f is an elliptic PDE (Tian – Lu, 2004).

2. Find examples of Kähler manifolds different from the projec-
tive space whose Szegö kernel of the disk bundle D ⊂ L∗ has
vanishing log term.

3. Is it true that the vanishing of the log term of the disk bundle
D ⊂ L∗ implies some topological restrictions on X = ∂D, e.g. X
is homeomorphic to S2n+1?
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Ramadanov’s conjecture

Conjecture: (I.P. Ramadanov, C. R. Acad.Bulgare Sci.1981)

Let D be a bounded strongly pseudoconvex domain of Cn with

smooth boundary. If the log term of the Bergman kernel of D

vanishes then D is biholomorphic to the ball.
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The work of M. Englǐs on problems 2 and 3

Theorem: (M. Englǐs, G. Zhang, Math.Z. 2010) Let (M, g)

be a Hermitian symmetric space of compact type of complex

dimension n. Assume ωg integral and let (L, h) be the Hermitian

line bundle such that Ric(h) = ωg. Then the log terrn of the

Szegö kernel of the disk bundle D ⊂ L∗ vanishes. Moreover

X = ∂D is homeomorphic to S2n+1 iff M = CPn.
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Regular quantizations and Szegö kernel

Theorem 4: (C. Arezzo, L., F. Zuddas, 2011) Let g be a Kähler

metric on M polarized by L. If (L, h) is a regular quantization

of (M,ωg), Ric(h) = ωg, then the log term of the disk bundle

D = {v ∈ L∗ | h∗(v, v) < 1} vanishes.

Corollary: Let (M, g) be a homogeneous compact and simply-

connected Kähler manifold of complex dimension n. Assume ωg

integral and let (L, h) be the Hermitian line bundle such that

Ric(h) = ωg. Then the log terrn of the Szegö kernel of the disk

bundle D ⊂ L∗ vanishes. Moreover X = ∂D is homeomorphic to

S2n+1 iff M = CPn.
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