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Aim. Classify all homogeneous Kahler manifolds which admit
a Kahler immersion into a given finite or infinite dimensional
complex space form.



Kahler manifolds

Let (M, g,w,J) be a Kahler manifold of complex dimension n.
w(X,Y)=9(X,JY), X,Y € x(M), dw = 0.

The form w is called the Kahler form associated to the metric g.
On a contractible open set U C M
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where ® : U — R is a strictly PSH function called a Kahler

potential for the metric g.



Complex space forms

A complex space form (S, gg) = (S, 9g,wg, Jg) is a finite or infinite
dimensional Kahler manifold of constant holomorphic sectional
curvature.



Classification of complex space forms

Euclidean space CN=oo .— (CNSOO,QO)

C® :=2(C) (z = {2z} € £2(C) iff 152 || < o0)
wo = 500|212 = 5300 1 dzj A dzj, 22 = 212 4 -+ |22

Hyperbolic space CHV=>® = ({z e CV | |2]? < 1}, Ghyp)

Whyp = —%0910g(1 — |2]2).

Projective space CPV= = (CN+1\ {0}/z ~ Az, gpg)

. — Z )
wrsluy = 500109(1+21%), zj = 7L, j=1,...,N, Up = {Zo # 0}.
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Kahler immersions into complex space forms

Let (M, g,w,J) be a Kahler manifold. A Kadhler immersion

f:(M,g,J) — (S, gs,Js)
is @ holomorphic map (i.e. df o J = Jgodf) which is isometric
(il,e. ffgs =g).

Remark The “starting” manifold M will be always finite dimen-
sional.

Remark A Kahler immersion f : (M,qg,J) — (S,gg,Jg) is sym-
plectic, i.e. f*wg = w. Viceversa a holomorphic and symplectic
map f: (M,w,J) — (S,wg, Jg) is isometric, i.e. ffgg = g.
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Calabi’s results on Kahler immersions (Ann. Math. 1953)

Theorem (Calabi’s rigidity) If f : (M,g) — (S,g9¢g) is a Kahler
immersion then g is real analytic. Moreover, any other Kahler
immersion of (M,g) into (S,gg) is given by U o f where U is a
unitary transformation, i.e. U € Aut(S) NnIsom(S,gg).

Theorem (local immersions vs global immersions) A simply-
connected real-analytic Kahler manifold (M, g) admits a Kahler
immersion into a given complex space form (S, gg) iff there exists
an open set U C M such that (U, g|U) can be Kadhler immersed
into (S, gs).



Complex space forms into complex space forms

CH" - (CN<OO’<CPN<OO

C" —» CHN =00, cpN<e

CP™ —» CHN=% clN<oo

i[— 1) .
CH”—>£2((C):Z+—>(...,\/(|‘7| - ) 2000, 17> 1
J]:

CH" - CP* :z— (...

C*"—=CP*>®:z2— (...

Y

Y

71!

9!
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Z,.00, il >0

—zj,...), 7| > O
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Multiplying g;,,, by some constant

Let CHY = (CH™, Agpyp), A >0, CH" := CH} = (CH", gpp)

CHY} - CN<eo cphN<e CH} — CHN=® & A=1, n<N

CHf\L—%Q((C):z»—>\f>\(...,\/(|j|j_ll)! 2.0, 17| > 1

CHY - CP*™ 1z (..., ,...), |7 >0

\/A<A+1)---(A—1+|j|> y
5!

=2t il =g+ 5 =1t !
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Multiplying grg by some constant

(CP;\I — (CPn,AgFS)a A>0, CP":=CPy = ((Cpn7gFS)

CP} -+ CNsoo cHNS>

cPp LycpVs® o a=kez Ny=0ER 1<

Vi tot.geod.
foCpp =5 cpMe ST PN, Vigps = kgps

I
cpr % CPNk'[Z]|—>[...,q/|| 73,1, 1j] >0
J!

Zj:Zé()'”Z%”, il =jdo+ -+ jn, 7' =jo! - jn!
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Products into complex space forms

Products into the complex hyperbolic space

CH™ x CH™ — CHVS® & n;=0o0r n, =0
Products into the complex projective space

CP™M x CPr2 "¢ cptmnztnitng) (2] (W]) = [...,Z;W, .. ]

My — CPN1=® Ay 5 cPN2S® = My x My — CpN1N2 N1+ N2

Products into the complex Euclidean space

fl : Ml — CNlSOO,fQ : MQ — (CNQSOO = f1><f2 : M1><M2 — (CNl_I_NQ

Remark (reducibility of a Kahler product into CNV=)
fiMyx My—CN = f=f1xfa,f1: M —CNt fp: My — CN2
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Bounded symmetric domains into complex space forms

Theorem (L., A.J. Di Scala, Geom. Dedicata (2007)) Let Q2 C C"*
be a irreducible bounded symmetric domain equipped with the
Bergman metric gg. Then:

(Q,gp) » CN<®
(Q,g95) - CHNS>
(Q,9p) » CPN<>

(2,95) — CP*®

(2,9p) = €2(C) & (Q=CH", gg = (n+ L)gn,p)
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Homogeneous Kahler manifolds: definitions

A homogeneous Kahler manifold (h.K.m.) is a Kahler manifold

(M, g) such that the Lie group G = Aut(M) NnIsom(M,g) acts
transitively on M.

Remark. The metric g is not uniquely determined by G. The-

re exist different (neither homothetic or isometric) G-invariant
homogeneous metrics.
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Homogeneous bounded domains

Let Q2 C C"*, Q2 bounded domain endowed with a homogeneous
Kahler metric go. Then (£2,90) is called a homogeneous boun-
ded domain (h.b.d.).

If Aut(S2) acts transitively on 2 C C" then (2,90 = gp) is a
h.b.d..

Remark. Every bounded symmetric domain (£2,gg) is a h.b.d.
but there exist (Pyatetskii-Shapiro, 1969) h.b.d. (2,g9g) which
are not bounded symmetric domains.
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Other examples of h.K.m.

Flat h.K.m. € = CF x Ty x ---T; where T; = C" /\; is a complex
torus with the flat metric.

Compact simply-connected h.K.m. These are also called Kahler
C-spaces or Wang's spaces or rational homogeneous varieties.

Compact h.K.m. (M,qg) =C x Ty x ---T;, C-space, T flat torus.

Products of homogeneous Kahler manifolds The products of h.K.m.
is a h.K.m.
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Solution of the fundamental conjecture (FC) for h.K.m.

Theorem FC (J. Dorfmeister, K. Nakajima, Acta Math. 1988) A
h.K.m. (M,g) is the total space of a holomorphic fiber bundle
over a h.b.d. (£2,90). Moreover the fiber F = & x C is (with the
induced Kahler metric) the Kahler product of a flat homogeneous
Kshler manifold £ =CF x Ty x ---T; and a C-space C.

F=exc " ()
T
(£2,90)

t
Remark. M 20 X F as a complex manifold.
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Statements of the main results:
to appear in Asian J. Math.

joint work with A. J. Di Scala — H. Hishi
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Homogeneous Kahler manifolds into CN=

Theorem 1 Let (M, g) be a n-dimensonal h.K.m. which can be
Kahler immersed into CY=°, Then

(M, g) = CF x (CH;:Lll X - X CH;L;,

where CHZ{“ = (CH™, A\rghyp), v = 1,...,1. Moreover, the

immersion is given, up to a unitary transformation of C¥ by
. . . . tot.geod.

fo X f1 X --- X f;, where fg is the linear inclusion Ck "“2Z5% N

and each f; : CH™ — (2(C) is /A times the map

(14 +Jjn, — 1)! v

. . 1 an,....
jat-- - dn!

Z:(ZL”.’ZW)I_)(.”’J
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Homogeneous Kahler manifolds into CHV<>

Theorem 2 Let (M, g) be a n-dimensional h.K.m. which can be
Kahler immersed into CHV=, Then, up to a unitary transfor-
mation of CHY,

(M,g) =CH" tot-geod. ~prN .
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Two theorems on h.K.m. into CpPVN=®

Theorem 3 Let (M, g,w) be a n-dimensional h.K.m. which can
be Kihler immersed into (M, g) into CPN=®_  Then w is integral,
w1 (M) =1 and the immersion is injective.

Theorem 4 Let (M,g,w) be a simply-connected h.K.m. such
that its associated Kahler form w is integral. Then there exists
mo € Z such that

(M, mgg) — CPN,
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Remark on the compact case

When M is compact Theorem 3 and Theorem 4 were proved by
M. Takeuchi (Japan J. Math. 1978) using the theory of semisim-
ple Lie groups and Dynkin diagrams (one can take mg = 1 in
Theorem 4).

Notice that if a h.K.m. can be Kihler immersed into CPN<o®
then M is a C-space, i.e. is a compact, simply-connected and
homogeneous Kahler manifold.

Viceversa if M ia any compact (not necessarily homogeneous)
Kihler manifold which can be Kahler immersed into CPN=% one
can assume N < oo.
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The case of a bounded symmetric domain (£2, \gp)

The Wallach set W(2) C R of a irreducible bounded symmetric
domain €2 C C"™ is a subset of R which "looks like":

Q . . . oy

T T
discrete part of W(2) continuous part of W (£2)

Important property of the Wallach set: W(Q2) = R (and
hence the discrete part of W () is empty) if and only if Q = CH™.
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The Wallach set and Kahler immersions into CP®

Theorem W (L. — M. Zedda, Math.Ann. 2010) Let (£2,gp) be a
irreducible bounded symmetric domain. Then (2, gg) can be

Kahler immersed into CP*° if and only if Ay € W(2)\ {0}, where
v > 0 denotes the genus of €2.
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Two consequences of Theorem W

First consequence: Let (2,gp) = CH™ be a irreducible bounded
symmetric domain. One can find A > 0 such that Ay & W(2):

"
Ay & W()

By Theorem W, Agp is not projectively induced and Awp is
integral.

Second consequence: The complex hyperbolic space is the
only irreducible bounded symmetric domain (£2,gg) where Agp is
projectively induced, for all A > 0.
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A conjecture and a theorem for hom. bounded domains

Conjecture : Let (M,qg) be a simply-connected h.K.m. such
that its associated Kahler form w is integral. If Ag is projectively
induced for all X € R" then (M,g) = C* x CH\! x -~ x CH,!.

Theorem 5 Let (2,90) be a h.b.d. If (2, \g) can be Kahler
immersed into CP> for all X > 0, then (2, 90) = (CH;’\”ll X oo X

nj
CHAZ -

Ingredients for the proof. Unitary representation of semisimple
Lie groups; reproducing kernels of weighted Bergman spaces.
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Sketch of the proofs of Theorem 1, 2, 3, 4
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Sketch of the proof of Theorem 1 (based on Theorem 5)

(M, g) i> CN=2© we want to prove that: (M,g) = CF x (CHj\lil X
x@H;”‘ll and f = fox f1 XX fj.

1. Theorem FC 4+ maximum principle

F=ChxTix Tix ¢ "0 (M) - N

i
(£2,90)

2. Riemannian geometry 4+ homogeneity =

(M, g) R ko (0, 90) = (2, Aga) — CNS®, A > 0.
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3. S. Bochner (Bull.Amer.Math.Soc., 1947) = (2, Agn) — CP®°, VA.

4. Theorem 5 = (Q,g90) = (CHfll X oo X (CH;’; = (M, qg) = CF x
ni ny

(CH)\1 X e X CH)\Z.

5. The fact that the immersion f is, up to a unitary tran-

sformation of CN, of the form f = fg x f1 x --- x f; follows by

the reducibility of a Kahler product into CN=% and by Calabi's

rigidity theorem.

[]
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Sketch of the proof of Theorem 2 (based on Theorem 1)

If (M,q) — CHN=° we want to prove that
(M, g) = CH™ "“S959% ¢,
1. (M, g) - CHN=>® = (M, g) — ¢2(C).

2. Theorem 1 = (M, g) = CFk x CH;”ll X oo X @Hj(“ll = M = CH". O
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Sketch of the proof of Theorem 3

Let f:(M,g,w) — CPN=® pe a Kihler immersion.

The integrality of w = ffwpg is immediate since wpg is integral.

F=CkxTyx---T1xC Kanier (M,q) — CPN=o0

Th. FC = Tl

(£2,90)

t
= M 2 Q x C" x C is simply-connected.

Calabi’s rigidity = fog=Ugo f, Vg € G = Aut(M) NnIsom(M, g)
= f(M) is a h.K.m. = f(M) c CPY is simply-connected.

f: M — f(M) is a local isometry = f is a covering map = f is
injective. [
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Sketch of the proof of Theorem 4

Let (M, g,w) be a simply-connected h.K.m. with w integral we
want to show that (M, mqgg) — CPV= for some mg € Z.

1. Let L be a holomorphic line bundle with ¢1(L) = [w] and
consider the Hilbert space

n

Hm = {s € HO(L) | /M hm(s,s)% < oo}

where h,, is an Hermitian metric on L™ such that Ric(hy,) = mw.

2. There exists mg € Z such that Hm, #= {0} (J. Rosenberg, M.
Vergne, J. of Functional Analysis (1984));
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3. the base point free condition is satisfied:

for all x € M there exists s € Hmy such that s(xz) # 0 (homoge-
neity and m1(M) = 1);

4. the "Kodaira map”

omo . M — CPYmo, z s [sg(z),. .., Sdmg ()]

with respect to an orthonormal basis {so,...,sdmo} of Hmgy IS a
Kahler immersion (homogeneity and w1 (M) = 1).

[]

32



