Institut Fourier de Mathématiques 24 Janvier 2012, Grenoble

Kähler immersions of homogeneous Kähler manifolds into complex space forms

Andrea Loi, University of Cagliari, email: loi@unica.it room 128 Institut Fourier (till the 8th of February) **Aim.** Classify all homogeneous Kähler manifolds which admit a Kähler immersion into a given finite or infinite dimensional complex space form.

Kähler manifolds

Let (M, g, ω, J) be a Kähler manifold of complex dimension n.

$$\omega(X,Y) = g(X,JY), X,Y \in \mathfrak{X}(M), d\omega = 0.$$

The form ω is called the Kähler form associated to the metric g.

On a contractible open set $U \subset M$

$$\omega = \frac{i}{2}\partial\bar{\partial}\Phi = \frac{i}{2}\sum_{j=1}^{n}\frac{\partial^{2}\Phi}{\partial z_{j}\partial\bar{z}_{k}}dz_{j}\wedge d\bar{z}_{k},$$

where Φ : $U \rightarrow \mathbb{R}$ is a strictly PSH function called a *Kähler* potential for the metric g.

Complex space forms

A complex space form $(S, g_S) = (S, g_S, \omega_S, J_S)$ is a finite or infinite dimensional Kähler manifold of constant holomorphic sectional curvature.

Classification of complex space forms

Euclidean space $\mathbb{C}^{N \leq \infty} := (\mathbb{C}^{N \leq \infty}, g_0)$ $\mathbb{C}^{\infty} := \ell^2(\mathbb{C}) \ (z = \{z_j\} \in \ell^2(\mathbb{C}) \text{ iff } \sum_{j=1}^{\infty} |z_j|^2 < \infty)$ $\omega_0 = \frac{i}{2} \partial \bar{\partial} |z|^2 = \frac{i}{2} \sum_{j=1}^N dz_j \wedge d\bar{z}_j, \ |z|^2 = |z_1|^2 + \dots + |z_N|^2.$ Hyperbolic space $\mathbb{C}H^{N \leq \infty} := (\{z \in \mathbb{C}^N \mid |z|^2 < 1\}, g_{hup})$ $\omega_{hup} = -\frac{i}{2}\partial\bar{\partial}\log(1-|z|^2).$

Projective space $\mathbb{C}P^{N \leq \infty} = (\mathbb{C}^{N+1} \setminus \{0\}/z \sim \lambda z, g_{FS})$

$$\omega_{FS}|_{U_0} = \frac{i}{2}\partial\bar{\partial}\log(1+|z|^2), \ z_j = \frac{Z_j}{Z_0}, \ j = 1, \dots, N, \ U_0 = \{Z_0 \neq 0\}.$$

Kähler immersions into complex space forms

Let (M, g, ω, J) be a Kähler manifold. A <u>Kähler immersion</u>

 $f: (M, g, J) \to (S, g_S, J_S)$

is a holomorphic map (i.e. $df \circ J = J_S \circ df$) which is isometric (i.e. $f^*g_S = g$).

Remark The "starting" manifold M will be always <u>finite</u> dimensional.

Remark A Kähler immersion $f : (M, g, J) \rightarrow (S, g_S, J_S)$ is symplectic, i.e. $f^*\omega_S = \omega$. Viceversa a holomorphic and symplectic map $f : (M, \omega, J) \rightarrow (S, \omega_S, J_S)$ is isometric, i.e. $f^*g_S = g$.

Calabi's results on Kähler immersions (Ann. Math. 1953)

Theorem (Calabi's rigidity) If $f : (M,g) \rightarrow (S,g_S)$ is a Kähler immersion then g is real analytic. Moreover, any other Kähler immersion of (M,g) into (S,g_S) is given by $\mathcal{U} \circ f$ where \mathcal{U} is a unitary transformation, i.e. $\mathcal{U} \in Aut(S) \cap Isom(S,g_S)$.

Theorem (local immersions vs global immersions) A simplyconnected real-analytic Kähler manifold (M,g) admits a Kähler immersion into a given complex space form (S,g_S) iff there exists an open set $U \subset M$ such that $(U,g_{|U})$ can be Kähler immersed into (S,g_S) .

Complex space forms into complex space forms

Multiplying g_{hyp} by some constant

Let
$$\mathbb{C}H_{\lambda}^{n} = (\mathbb{C}H^{n}, \lambda g_{hyp}), \ \lambda > 0, \ \mathbb{C}H^{n} := \mathbb{C}H_{1}^{n} = (\mathbb{C}H^{n}, g_{hyp})$$

$$\mathbb{C}H_{\lambda}^{n} \to \mathbb{C}^{N<\infty}, \mathbb{C}P^{N<\infty}$$

$$\mathbb{C}H_{\lambda}^{n} \to \mathbb{C}H^{N\leq\infty} \Leftrightarrow \lambda = 1, \ n \leq N$$

$$\mathbb{C}H_{\lambda}^{n} \to \ell^{2}(\mathbb{C}) : z \mapsto \sqrt{\lambda}(\dots, \sqrt{\frac{(|j|-1)!}{j!}} \ z^{j}, \dots), \ |j| \geq 1$$

$$\mathbb{C}H_{\lambda}^{n} \to \mathbb{C}P^{\infty} : z \mapsto (\dots, \sqrt{\frac{\lambda(\lambda+1)\cdots(\lambda-1+|j|)}{j!}} \ z^{j}, \dots), \ |j| \geq 0$$

$$z^{j} = z_{1}^{j_{1}} \cdots z_{n}^{j_{n}}, |j| = j_{1} + \cdots + j_{n}, j! = j_{1}! \cdots j_{n}!$$

Multiplying g_{FS} by some constant

 $\mathbb{C}P_{\lambda}^{n} = (\mathbb{C}P^{n}, \lambda g_{FS}), \ \lambda > 0, \ \mathbb{C}P^{n} := \mathbb{C}P_{1}^{n} = (\mathbb{C}P^{n}, g_{FS})$

$$\mathbb{C}P^n_\lambda \nrightarrow \mathbb{C}^{N \leq \infty}, \mathbb{C}H^{N \leq \infty}$$

 $\mathbb{C}P_{\lambda}^{n} \xrightarrow{f} \mathbb{C}P^{N \leq \infty} \Leftrightarrow \lambda = k \in \mathbb{Z}, \ N_{k} := \frac{(n+k)!}{n!k!} - 1 \leq N$ $f : \mathbb{C}P_{k}^{n} \xrightarrow{V_{k}} \mathbb{C}P^{N_{k}} \xrightarrow{tot.geod.} \mathbb{C}P^{N}, \ V_{k}^{*}g_{FS} = kg_{FS}$ $\mathbb{C}P_{k}^{n} \xrightarrow{V_{k}} \mathbb{C}P^{N_{k}} : [Z] \longmapsto [\dots, \sqrt{\frac{|j|!}{j!}} \ Z^{j}, \dots], \ |j| \geq 0$

 $Z^{j} = Z_{0}^{j_{0}} \cdots Z_{n}^{j_{n}}, |j| = j_{0} + \dots + j_{n}, j! = j_{0}! \cdots j_{n}!$ 10

Products into complex space forms

Products into the complex hyperbolic space $\mathbb{C}H^{n_1} \times \mathbb{C}H^{n_2} \to \mathbb{C}H^{N \leq \infty} \Leftrightarrow n_1 = 0 \text{ or } n_2 = 0$ Products into the complex projective space $\mathbb{C}P^{n_1} \times \mathbb{C}P^{n_2} \xrightarrow{Segre} \mathbb{C}P^{(n_1n_2+n_1+n_2)}, \quad ([Z], [W]) \mapsto [\dots, Z_jW_k, \dots]$ $M_1 \to \mathbb{C}P^{N_1 \leq \infty}, M_2 \to \mathbb{C}P^{N_2 \leq \infty} \Rightarrow M_1 \times M_2 \to \mathbb{C}P^{N_1N_2+N_1+N_2}$ Products into the complex Euclidean space $f_1 : M_1 \to \mathbb{C}^{N_1 \leq \infty}, f_2 : M_2 \to \mathbb{C}^{N_2 \leq \infty} \Rightarrow f_1 \times f_2 : M_1 \times M_2 \to \mathbb{C}^{N_1+N_2}$

Remark (reducibility of a Kähler product into $\mathbb{C}^{N \leq \infty}$) $f: M_1 \times M_2 \to \mathbb{C}^N \Rightarrow f = f_1 \times f_2, f_1: M_1 \to \mathbb{C}^{N_1}, f_2: M_2 \to \mathbb{C}^{N_2}$

Bounded symmetric domains into complex space forms

Theorem (L., A.J. Di Scala, Geom. Dedicata (2007)) Let $\Omega \subset \mathbb{C}^n$ be a irreducible bounded symmetric domain equipped with the Bergman metric g_B . Then:

 $\begin{aligned} (\Omega, g_B) &\nrightarrow \mathbb{C}^{N < \infty} \\ (\Omega, g_B) &\nrightarrow \mathbb{C}H^{N \le \infty} \\ (\Omega, g_B) &\nrightarrow \mathbb{C}P^{N < \infty} \\ (\Omega, g_B) & \rightarrow \mathbb{C}P^{\infty} \end{aligned}$ $(\Omega, g_B) &\to \mathbb{C}P^{\infty} \end{aligned}$ $(\Omega, g_B) &\to \ell^2(\mathbb{C}) \iff (\Omega = \mathbb{C}H^n, \ g_B = (n+1)g_{hup}) \end{aligned}$

Homogeneous Kähler manifolds: definitions

A homogeneous Kähler manifold (h.K.m.) is a Kähler manifold (M,g) such that the Lie group $G = Aut(M) \cap Isom(M,g)$ acts transitively on M.

Remark. The metric g is not uniquely determined by G. There exist different (neither homothetic or isometric) G-invariant homogeneous metrics.

Homogeneous bounded domains

Let $\Omega \subset \mathbb{C}^n$, Ω bounded domain endowed with a homogeneous Kähler metric g_{Ω} . Then (Ω, g_{Ω}) is called a homogeneous bounded domain (h.b.d.).

If $Aut(\Omega)$ acts transitively on $\Omega \subset \mathbb{C}^n$ then $(\Omega, g_\Omega = g_B)$ is a *h.b.d.*.

Remark. Every bounded symmetric domain (Ω, g_B) is a h.b.d. but there exist (Pyatetskii-Shapiro, 1969) h.b.d. (Ω, g_B) which are not bounded symmetric domains.

Other examples of h.K.m.

<u>Flat h.K.m.</u> $\mathcal{E} = \mathbb{C}^k \times T_1 \times \cdots T_l$ where $T_j = \mathbb{C}^{n_j} / \Lambda_j$ is a complex torus with the flat metric.

<u>Compact simply-connected h.K.m.</u> These are also called Kähler C-spaces or Wang's spaces or rational homogeneous varieties.

<u>Compact h.K.m.</u> $(M,g) = \mathcal{C} \times T_1 \times \cdots T_l$, C-space, T_j flat torus.

Products of homogeneous Kähler manifolds The products of h.K.m. is a h.K.m.

Solution of the fundamental conjecture (FC) for h.K.m.

Theorem FC (*J. Dorfmeister, K. Nakajima, Acta Math. 1988*) A h.K.m. (M,g) is the total space of a holomorphic fiber bundle over a h.b.d. (Ω, g_{Ω}) . Moreover the fiber $\mathcal{F} = \mathcal{E} \times \mathcal{C}$ is (with the induced Kähler metric) the Kähler product of a flat homogeneous Kähler manifold $\mathcal{E} = \mathbb{C}^k \times T_1 \times \cdots T_l$ and a *C*-space \mathcal{C} .

Remark. $M \stackrel{top}{=} \Omega \times \mathcal{F}$ as a complex manifold.

Statements of the main results:

to appear in Asian J. Math.

joint work with A. J. Di Scala – H. Hishi

Homogeneous Kähler manifolds into $\mathbb{C}^{N\leq\infty}$

Theorem 1 Let (M,g) be a *n*-dimensional h.K.m. which can be Kähler immersed into $\mathbb{C}^{N \leq \infty}$. Then

$$(M,g) = \mathbb{C}^k \times \mathbb{C}H^{n_1}_{\lambda_1} \times \cdots \times \mathbb{C}H^{n_l}_{\lambda_l},$$

where $\mathbb{C}H_{\lambda_r}^{n_r} = (\mathbb{C}H^{n_r}, \lambda_r g_{hyp}), r = 1, \ldots, l.$ Moreover, the immersion is given, up to a unitary transformation of \mathbb{C}^N by $f_0 \times f_1 \times \cdots \times f_l$, where f_0 is the linear inclusion $\mathbb{C}^k \xrightarrow{tot.geod.} \mathbb{C}^N$ and each $f_k : \mathbb{C}H^{n_k} \longrightarrow \ell^2(\mathbb{C})$ is $\sqrt{\lambda_k}$ times the map

$$z = (z_1, \dots, z_{n_r}) \mapsto (\dots, \sqrt{\frac{(j_1 + \dots + j_{n_r} - 1)!}{j_1! \cdots j_{n_r}!}} z_1^{j_1} \cdots z_{n_r}^{j_{n_r}}, \dots$$

Homogeneous Kähler manifolds into $\mathbb{C}H^{N\leq\infty}$

Theorem 2 Let (M,g) be a *n*-dimensional h.K.m. which can be Kähler immersed into $\mathbb{C}H^{N\leq\infty}$. Then, up to a unitary transformation of $\mathbb{C}H^N$,

 $(M,g) = \mathbb{C}H^n \xrightarrow{tot.geod.} \mathbb{C}H^N.$

Two theorems on h.K.m. into $\mathbb{C}P^{N\leq\infty}$

Theorem 3 Let (M, g, ω) be a *n*-dimensional h.K.m. which can be Kähler immersed into (M, g) into $\mathbb{C}P^{N \leq \infty}$. Then ω is integral, $\pi_1(M) = 1$ and the immersion is injective.

Theorem 4 Let (M, g, ω) be a simply-connected h.K.m. such that its associated Kähler form ω is integral. Then there exists $m_0 \in \mathbb{Z}$ such that

 $(M, m_0 g) \to \mathbb{C}P^N.$

Remark on the compact case

When M is compact Theorem 3 and Theorem 4 were proved by M. Takeuchi (Japan J. Math. 1978) using the theory of semisimple Lie groups and Dynkin diagrams (one can take $m_0 = 1$ in Theorem 4).

Notice that if a h.K.m. can be Kähler immersed into $\mathbb{C}P^{N<\infty}$ then M is a C-space, i.e. is a compact, simply-connected and homogeneous Kähler manifold.

Viceversa if M ia any compact (not necessarily homogeneous) Kähler manifold which can be Kähler immersed into $\mathbb{C}P^{N\leq\infty}$ one can assume $N<\infty$.

The case of a bounded symmetric domain $(\Omega, \lambda g_B)$

The Wallach set $W(\Omega) \subset \mathbb{R}$ of a irreducible bounded symmetric domain $\Omega \subset \mathbb{C}^n$ is a subset of \mathbb{R} which "looks like":

Important property of the Wallach set: $W(\Omega) = \mathbb{R}$ (and hence the discrete part of $W(\Omega)$ is empty) if and only if $\Omega = \mathbb{C}H^n$.

The Wallach set and Kähler immersions into $\mathbb{C}P^\infty$

Theorem W (L. – M. Zedda, Math.Ann. 2010) Let (Ω, g_B) be a irreducible bounded symmetric domain. Then $(\Omega, \lambda g_B)$ can be Kähler immersed into $\mathbb{C}P^{\infty}$ if and only if $\lambda \gamma \in W(\Omega) \setminus \{0\}$, where $\gamma > 0$ denotes the genus of Ω .

Two consequences of Theorem W

First consequence: Let $(\Omega, g_B) \neq \mathbb{C}H^n$ be a irreducible bounded symmetric domain. One can find $\lambda > 0$ such that $\lambda \gamma \notin W(\Omega)$:

By Theorem W, λg_B is not projectively induced and $\lambda \omega_B$ is integral.

Second consequence: The complex hyperbolic space is the only irreducible bounded symmetric domain (Ω, g_B) where λg_B is projectively induced, for all $\lambda > 0$.

A conjecture and a theorem for hom. bounded domains

Conjecture : Let (M,g) be a simply-connected h.K.m. such that its associated Kähler form ω is integral. If λg is projectively induced for all $\lambda \in \mathbb{R}^+$ then $(M,g) = \mathbb{C}^k \times \mathbb{C}H^{n_1}_{\lambda_1} \times \cdots \times \mathbb{C}H^{n_l}_{\lambda_l}$.

Theorem 5 Let (Ω, g_{Ω}) be a h.b.d. If $(\Omega, \lambda g_{\Omega})$ can be Kähler immersed into $\mathbb{C}P^{\infty}$ for all $\lambda > 0$, then $(\Omega, g_{\Omega}) = \mathbb{C}H_{\lambda_1}^{n_1} \times \cdots \times \mathbb{C}H_{\lambda_l}^{n_l}$.

Ingredients for the proof. Unitary representation of semisimple Lie groups; reproducing kernels of weighted Bergman spaces.

Sketch of the proofs of Theorem 1, 2, 3, 4

Sketch of the proof of Theorem 1 (based on Theorem 5)

 $(M,g) \xrightarrow{f} \mathbb{C}^{N \leq \infty}$ we want to prove that: $(M,g) = \mathbb{C}^k \times \mathbb{C}H_{\lambda_1}^{n_1} \times \cdots \times \mathbb{C}H_{\lambda_l}^{n_l}$ and $f = f_0 \times f_1 \times \cdots \times f_l$.

1. Theorem FC + maximum principle

$$\mathcal{F} = \mathbb{C}^k \times \mathcal{T}_1 \times \cdots \mathcal{T}_l \times \mathscr{O} \xrightarrow{\text{Kähler}} (M, g) \to \mathbb{C}^{N \le \infty}$$
$$\begin{array}{c} \pi \downarrow \\ (\Omega, g_\Omega) \end{array}$$

2. Riemannian geometry + homogeneity \Rightarrow

$$(M,g) \stackrel{\text{K\"ahler}}{=} \mathbb{C}^k \times (\Omega, g_{\Omega}) \Rightarrow (\Omega, \lambda g_{\Omega}) \to \mathbb{C}^{N \leq \infty}, \ \forall \lambda > 0.$$

3. S. Bochner (Bull.Amer.Math.Soc., 1947) $\Rightarrow (\Omega, \lambda g_{\Omega}) \rightarrow \mathbb{C}P^{\infty}, \forall \lambda$.

4. Theorem 5 \Rightarrow $(\Omega, g_{\Omega}) = \mathbb{C}H_{\lambda_1}^{n_1} \times \cdots \times \mathbb{C}H_{\lambda_l}^{n_l} \Rightarrow (M, g) = \mathbb{C}^k \times \mathbb{C}H_{\lambda_1}^{n_1} \times \cdots \times \mathbb{C}H_{\lambda_l}^{n_l}$.

5. The fact that the immersion f is, up to a unitary transformation of \mathbb{C}^N , of the form $f = f_0 \times f_1 \times \cdots \times f_l$ follows by the reducibility of a Kähler product into $\mathbb{C}^{N \leq \infty}$ and by Calabi's rigidity theorem.

Sketch of the proof of Theorem 2 (based on Theorem 1)

If $(M,g) \to \mathbb{C}H^{N \leq \infty}$ we want to prove that

$$(M,g) = \mathbb{C}H^n \xrightarrow{tot.geod.} \mathbb{C}H^N.$$

1.
$$(M,g) \to \mathbb{C}H^{N \leq \infty} \Rightarrow (M,g) \to \ell^2(\mathbb{C}).$$

2. Theorem 1 \Rightarrow $(M,g) = \mathbb{C}^k \times \mathbb{C}H^{n_1}_{\lambda_1} \times \cdots \times \mathbb{C}H^{n_l}_{\lambda_l} \Rightarrow M = \mathbb{C}H^n$. \Box

Sketch of the proof of Theorem 3

Let $f: (M, g, \omega) \to \mathbb{C}P^{N \leq \infty}$ be a Kähler immersion.

The integrality of $\omega = f^* \omega_{FS}$ is immediate since ω_{FS} is integral.

Th. FC
$$\Rightarrow \begin{array}{c} \mathcal{F} = \mathbb{C}^k \times \mathcal{T}_1 \times \cdots \mathcal{T}_l \times C & \stackrel{\text{K\"ahler}}{\longrightarrow} & (M,g) & \rightarrow \mathbb{C}P^{N \leq \infty} \\ \pi \downarrow \\ (\Omega, g_{\Omega}) \end{array}$$

 $\Rightarrow M \stackrel{lop}{=} \Omega \times \mathbb{C}^n \times C$ is simply-connected.

Calabi's rigidity $\Rightarrow f \circ g = \mathcal{U}_g \circ f$, $\forall g \in G = \operatorname{Aut}(M) \cap \operatorname{Isom}(M, g)$ $\Rightarrow f(M)$ is a h.K.m. $\Rightarrow f(M) \subset \mathbb{C}P^N$ is simply-connected.

 $f: M \to f(M)$ is a local isometry $\Rightarrow f$ is a covering map $\Rightarrow f$ is injective. \Box

Sketch of the proof of Theorem 4

Let (M, g, ω) be a simply-connected h.K.m. with ω integral we want to show that $(M, m_0 g) \to \mathbb{C}P^{N \leq \infty}$, for some $m_0 \in \mathbb{Z}$.

1. Let L be a holomorphic line bundle with $c_1(L) = [\omega]$ and consider the Hilbert space

$$\mathcal{H}_m = \{s \in H^0(L) \mid \int_M h_m(s,s) \frac{\omega^n}{n!} < \infty\}$$

where h_m is an Hermitian metric on L^m such that $\operatorname{Ric}(h_m) = m\omega$.

2. There exists $m_0 \in \mathbb{Z}$ such that $\mathcal{H}_{m_0} \neq \{0\}$ (J. Rosenberg, M. Vergne, J. of Functional Analysis (1984));

3. the *base point free condition* is satisfied:

for all $x \in M$ there exists $s \in \mathcal{H}_{m_0}$ such that $s(x) \neq 0$ (homogeneity and $\pi_1(M) = 1$);

4. the "Kodaira map"

$$\varphi_{m_0}: M \to \mathbb{C}P^{d_{m_0}}, x \mapsto [s_0(x), \dots, s_{d_{m_0}}(x)]$$

with respect to an orthonormal basis $\{s_0, \ldots, s_{d_{m_0}}\}$ of \mathcal{H}_{m_0} is a Kähler immersion (homogeneity and $\pi_1(M) = 1$).