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Aim. Classify all homogeneous Kähler manifolds which admit

a Kähler immersion into a given finite or infinite dimensional

complex space form.

2



Kähler manifolds

Let (M, g, ω, J) be a Kähler manifold of complex dimension n.

ω(X,Y ) = g(X, JY ), X,Y ∈ X(M), dω = 0.

The form ω is called the Kähler form associated to the metric g.

On a contractible open set U ⊂M

ω =
i

2
∂∂̄Φ =

i

2

n∑
j=1

∂2Φ

∂zj∂z̄k
dzj ∧ dz̄k,

where Φ : U → R is a strictly PSH function called a Kähler

potential for the metric g.
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Complex space forms

A complex space form (S, gS) = (S, gS, ωS, JS) is a finite or infinite

dimensional Kähler manifold of constant holomorphic sectional

curvature.
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Classification of complex space forms

Euclidean space CN≤∞ := (CN≤∞, g0)

C∞ := `2(C) (z = {zj} ∈ `2(C) iff
∑∞
j=1 |zj|

2 <∞)

ω0 = i
2∂∂̄|z|

2 = i
2
∑N
j=1 dzj ∧ dz̄j, |z|

2 = |z1|2 + · · ·+ |zN |2.

Hyperbolic space CHN≤∞ := ({z ∈ CN | |z|2 < 1}, ghyp)

ωhyp = − i
2∂∂̄ log(1− |z|2).

Projective space CPN≤∞ = (CN+1 \ {0}/z ∼ λz, gFS)

ωFS|U0
= i

2∂∂̄ log(1+|z|2), zj =
Zj
Z0

, j = 1, . . . , N , U0 = {Z0 6= 0}.
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Kähler immersions into complex space forms

Let (M, g, ω, J) be a Kähler manifold. A Kähler immersion

f : (M, g, J)→ (S, gS, JS)

is a holomorphic map (i.e. df ◦ J = JS ◦ df) which is isometric

(i.e. f∗gS = g).

Remark The “starting” manifold M will be always finite dimen-

sional.

Remark A Kähler immersion f : (M, g, J) → (S, gS, JS) is sym-

plectic, i.e. f∗ωS = ω. Viceversa a holomorphic and symplectic

map f : (M,ω, J)→ (S, ωS, JS) is isometric, i.e. f∗gS = g.
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Calabi’s results on Kähler immersions (Ann. Math. 1953)

Theorem (Calabi’s rigidity) If f : (M, g) → (S, gS) is a Kähler

immersion then g is real analytic. Moreover, any other Kähler

immersion of (M, g) into (S, gS) is given by U ◦ f where U is a

unitary transformation, i.e. U ∈ Aut(S) ∩ Isom(S, gS).

Theorem (local immersions vs global immersions) A simply-

connected real-analytic Kähler manifold (M, g) admits a Kähler

immersion into a given complex space form (S, gS) iff there exists

an open set U ⊂ M such that (U, g|U) can be Kähler immersed

into (S, gS).
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Complex space forms into complex space forms

CHn 9 CN<∞,CPN<∞ Cn 9 CHN≤∞,CPN<∞

CPn 9 CHN≤∞,CN≤∞

CHn → `2(C) : z 7→ (. . . ,

√
(|j| − 1)!

j!
zj, . . .), |j| ≥ 1

CHn → CP∞ : z 7→ (. . . ,

√
|j|!
j!

zj, . . .), |j| ≥ 0

Cn → CP∞ : z 7→ (. . . ,

√
1

j!
zj, . . .), |j| ≥ 0

zj = z
j1
1 · · · z

jn
n , |j| = j1 + · · ·+ jn, j! = j1! · · · jn!
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Multiplying ghyp by some constant

Let CHn
λ = (CHn, λghyp), λ > 0, CHn := CHn

1 = (CHn, ghyp)

CHn
λ 9 CN<∞,CPN<∞ CHn

λ → CHN≤∞ ⇔ λ = 1, n ≤ N

CHn
λ → `2(C) : z 7→

√
λ(. . . ,

√
(|j| − 1)!

j!
zj, . . .), |j| ≥ 1

CHn
λ → CP∞ : z 7→ (. . . ,

√
λ(λ+ 1) · · · (λ− 1 + |j|)

j!
zj, . . .), |j| ≥ 0

zj = z
j1
1 · · · z

jn
n , |j| = j1 + · · ·+ jn, j! = j1! · · · jn!
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Multiplying gFS by some constant

CPnλ = (CPn, λgFS), λ > 0, CPn := CPn1 = (CPn, gFS)

CPnλ 9 CN≤∞,CHN≤∞

CPnλ
f−→ CPN≤∞ ⇔ λ = k ∈ Z, Nk := (n+k)!

n!k! − 1 ≤ N

f : CPnk
Vk−→ CPNk tot.geod.−→ CPN , V ∗k gFS = kgFS

CPnk
Vk→ CPNk : [Z] 7−→ [. . . ,

√
|j|!
j!

Zj, . . .], |j| ≥ 0

Zj = Z
j0
0 · · ·Z

jn
n , |j| = j0 + · · ·+ jn, j! = j0! · · · jn!
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Products into complex space forms

Products into the complex hyperbolic space

CHn1 × CHn2 → CHN≤∞ ⇔ n1 = 0 or n2 = 0

Products into the complex projective space

CPn1 × CPn2
Segre→ CP (n1n2+n1+n2), ([Z], [W ]) 7→ [. . . , ZjWk, . . .]

M1 → CPN1≤∞,M2 → CPN2≤∞ ⇒ M1 ×M2 → CPN1N2+N1+N2

Products into the complex Euclidean space

f1 : M1 → CN1≤∞, f2 : M2 → CN2≤∞ ⇒ f1×f2 : M1×M2 → CN1+N2

Remark (reducibility of a Kähler product into CN≤∞)

f : M1 ×M2 → CN ⇒ f = f1 × f2, f1 : M1 → CN1, f2 : M2 → CN2
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Bounded symmetric domains into complex space forms

Theorem (L. , A.J. Di Scala, Geom. Dedicata (2007)) Let Ω ⊂ Cn

be a irreducible bounded symmetric domain equipped with the

Bergman metric gB. Then:

(Ω, gB) 9 CN<∞

(Ω, gB) 9 CHN≤∞

(Ω, gB) 9 CPN<∞

(Ω, gB)→ CP∞

(Ω, gB)→ `2(C) ⇔ (Ω = CHn, gB = (n+ 1)ghyp)
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Homogeneous Kähler manifolds: definitions

A homogeneous Kähler manifold (h.K.m.) is a Kähler manifold

(M, g) such that the Lie group G = Aut(M) ∩ Isom(M, g) acts

transitively on M .

Remark. The metric g is not uniquely determined by G. The-

re exist different (neither homothetic or isometric) G-invariant

homogeneous metrics.
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Homogeneous bounded domains

Let Ω ⊂ Cn, Ω bounded domain endowed with a homogeneous

Kähler metric gΩ. Then (Ω, gΩ) is called a homogeneous boun-

ded domain (h.b.d.).

If Aut(Ω) acts transitively on Ω ⊂ Cn then (Ω, gΩ = gB) is a

h.b.d..

Remark. Every bounded symmetric domain (Ω, gB) is a h.b.d.

but there exist (Pyatetskii-Shapiro, 1969) h.b.d. (Ω, gB) which

are not bounded symmetric domains.
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Other examples of h.K.m.

Flat h.K.m. E = Ck × T1 × · · ·Tl where Tj = Cnj/Λj is a complex

torus with the flat metric.

Compact simply-connected h.K.m. These are also called Kähler

C-spaces or Wang’s spaces or rational homogeneous varieties.

Compact h.K.m. (M, g) = C × T1 × · · ·Tl, C-space, Tj flat torus.

Products of homogeneous Kähler manifolds The products of h.K.m.

is a h.K.m.
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Solution of the fundamental conjecture (FC) for h.K.m.

Theorem FC (J. Dorfmeister, K. Nakajima, Acta Math. 1988) A

h.K.m. (M, g) is the total space of a holomorphic fiber bundle

over a h.b.d. (Ω, gΩ). Moreover the fiber F = E × C is (with the

induced Kähler metric) the Kähler product of a flat homogeneous

Kähler manifold E = Ck × T1 × · · ·Tl and a C-space C.

F = E × C Kähler
↪−→ (M, g)

π↓
(Ω, gΩ)

Remark. M
top
= Ω×F as a complex manifold.
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Statements of the main results:

to appear in Asian J. Math.

joint work with A. J. Di Scala – H. Hishi
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Homogeneous Kähler manifolds into CN≤∞

Theorem 1 Let (M, g) be a n-dimensonal h.K.m. which can be

Kähler immersed into CN≤∞. Then

(M, g) = Ck × CHn1
λ1
× · · · × CHnl

λl
,

where CHnr
λr

= (CHnr, λrghyp), r = 1, . . . , l. Moreover, the

immersion is given, up to a unitary transformation of CN by

f0 × f1 × · · · × fl, where f0 is the linear inclusion Ck tot.geod.−→ CN

and each fk : CHnk −→ `2(C) is
√
λk times the map

z = (z1, . . . , znr) 7→ (. . . ,

√√√√(j1 + · · ·+ jnr − 1)!

j1! · · · jnr!
z
j1
1 · · · z

jnr
nr , . . . .
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Homogeneous Kähler manifolds into CHN≤∞

Theorem 2 Let (M, g) be a n-dimensional h.K.m. which can be

Kähler immersed into CHN≤∞. Then, up to a unitary transfor-

mation of CHN ,

(M, g) = CHn tot.geod.−→ CHN .
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Two theorems on h.K.m. into CPN≤∞

Theorem 3 Let (M, g, ω) be a n-dimensional h.K.m. which can

be Kähler immersed into (M, g) into CPN≤∞. Then ω is integral,

π1(M) = 1 and the immersion is injective.

Theorem 4 Let (M, g, ω) be a simply-connected h.K.m. such

that its associated Kähler form ω is integral. Then there exists

m0 ∈ Z such that

(M,m0g)→ CPN .
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Remark on the compact case

When M is compact Theorem 3 and Theorem 4 were proved by

M. Takeuchi (Japan J. Math. 1978) using the theory of semisim-

ple Lie groups and Dynkin diagrams (one can take m0 = 1 in

Theorem 4).

Notice that if a h.K.m. can be Kähler immersed into CPN<∞

then M is a C-space, i.e. is a compact, simply-connected and

homogeneous Kähler manifold.

Viceversa if M ia any compact (not necessarily homogeneous)

Kähler manifold which can be Kähler immersed into CPN≤∞ one

can assume N <∞.
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The case of a bounded symmetric domain (Ω, λgB)

The Wallach set W (Ω) ⊂ R of a irreducible bounded symmetric

domain Ω ⊂ Cn is a subset of R which “looks like”:

0 · · · ·︸ ︷︷ ︸—————————

↑
discrete part of W (Ω)

↑
continuous part of W (Ω)

Important property of the Wallach set: W (Ω) = R (and

hence the discrete part of W (Ω) is empty) if and only if Ω = CHn.
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The Wallach set and Kähler immersions into CP∞

Theorem W (L. – M. Zedda, Math.Ann. 2010) Let (Ω, gB) be a

irreducible bounded symmetric domain. Then (Ω, λgB) can be

Kähler immersed into CP∞ if and only if λγ ∈W (Ω) \ {0}, where

γ > 0 denotes the genus of Ω.
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Two consequences of Theorem W

First consequence: Let (Ω, gB) 6= CHn be a irreducible bounded

symmetric domain. One can find λ > 0 such that λγ /∈W (Ω):

0 · · · · ∗ —————————

↑
λγ /∈W (Ω)

By Theorem W, λgB is not projectively induced and λωB is

integral.

Second consequence: The complex hyperbolic space is the

only irreducible bounded symmetric domain (Ω, gB) where λgB is

projectively induced, for all λ > 0.
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A conjecture and a theorem for hom. bounded domains

Conjecture : Let (M, g) be a simply-connected h.K.m. such

that its associated Kähler form ω is integral. If λg is projectively

induced for all λ ∈ R+ then (M, g) = Ck × CHn1
λ1
× · · · × CHnl

λl
.

Theorem 5 Let (Ω, gΩ) be a h.b.d. If (Ω, λgΩ) can be Kähler

immersed into CP∞ for all λ > 0, then (Ω, gΩ) = CHn1
λ1
× · · · ×

CHnl
λl

.

Ingredients for the proof. Unitary representation of semisimple

Lie groups; reproducing kernels of weighted Bergman spaces.
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Sketch of the proofs of Theorem 1, 2, 3, 4
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Sketch of the proof of Theorem 1 (based on Theorem 5)

(M, g)
f→ CN≤∞ we want to prove that: (M, g) = Ck × CHn1

λ1
×

· · · × CHnl
λl

and f = f0 × f1 × · · · × fl.

1. Theorem FC + maximum principle

F = Ck × 6T1 × · · · 6Tl × 6C
Kähler
↪−→ (M, g) → CN≤∞

π↓
(Ω, gΩ)

2. Riemannian geometry + homogeneity ⇒

(M, g)
Kähler

= Ck × (Ω, gΩ) ⇒ (Ω, λgΩ)→ CN≤∞, ∀λ > 0.

27



3. S. Bochner (Bull.Amer.Math.Soc., 1947) ⇒ (Ω, λgΩ)→ CP∞, ∀λ.

4. Theorem 5 ⇒ (Ω, gΩ) = CHn1
λ1
× · · · × CHnl

λl
⇒ (M, g) = Ck ×

CHn1
λ1
× · · · × CHnl

λl
.

5. The fact that the immersion f is, up to a unitary tran-

sformation of CN , of the form f = f0 × f1 × · · · × fl follows by

the reducibility of a Kähler product into CN≤∞ and by Calabi’s

rigidity theorem.

�
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Sketch of the proof of Theorem 2 (based on Theorem 1)

If (M, g)→ CHN≤∞ we want to prove that

(M, g) = CHn tot.geod.−→ CHN .

1. (M, g)→ CHN≤∞ ⇒ (M, g)→ `2(C).

2. Theorem 1 ⇒ (M, g) = Ck×CHn1
λ1
×· · ·×CHnl

λl
⇒M = CHn. �
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Sketch of the proof of Theorem 3

Let f : (M, g, ω)→ CPN≤∞ be a Kähler immersion.

The integrality of ω = f∗ωFS is immediate since ωFS is integral.

Th. FC⇒
F = Ck × 6T1 × · · · 6Tl × C

Kähler
↪−→ (M, g) → CPN≤∞

π↓
(Ω, gΩ)

⇒ M
top
= Ω× Cn × C is simply-connected.

Calabi’s rigidity ⇒ f ◦ g = Ug ◦ f , ∀g ∈ G = Aut(M) ∩ Isom(M, g)
⇒ f(M) is a h.K.m. ⇒ f(M) ⊂ CPN is simply-connected.

f : M → f(M) is a local isometry ⇒ f is a covering map ⇒ f is
injective. �
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Sketch of the proof of Theorem 4

Let (M, g, ω) be a simply-connected h.K.m. with ω integral we

want to show that (M,m0g)→ CPN≤∞, for some m0 ∈ Z.

1. Let L be a holomorphic line bundle with c1(L) = [ω] and

consider the Hilbert space

Hm = {s ∈ H0(L) |
∫
M
hm(s, s)

ωn

n!
<∞}

where hm is an Hermitian metric on Lm such that Ric(hm) = mω.

2. There exists m0 ∈ Z such that Hm0 6= {0} (J. Rosenberg, M.

Vergne, J. of Functional Analysis (1984));
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3. the base point free condition is satisfied:

for all x ∈ M there exists s ∈ Hm0 such that s(x) 6= 0 (homoge-

neity and π1(M) = 1);

4. the “Kodaira map”

ϕm0 : M → CP dm0, x 7→ [s0(x), . . . , sdm0
(x)]

with respect to an orthonormal basis {s0, . . . , sdm0
} of Hm0 is a

Kähler immersion (homogeneity and π1(M) = 1).

�
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