Firenze (7.04.2022)

Kähler-Einstein metrics and Kähler-Ricci solitons induced by complex space forms

Andrea Loi, University of Cagliari

Aim of the talk: provide an overview of the main results on Kähler immersions of Kähler manifolds into complex space forms in the Kähler-Einstein and Kähler-Ricci solitons case.

Advertising for the book: L., M. Zedda, *Kähler immersions of Kähler manifolds into complex space forms.*, Lectures Notes of the Unione Matematica Italiana, Springer 2018.

- 0. Kähler manifolds and complex space forms
- 1. The work of Calabi
- 2. The Kähler-Einstein case
- 3. The Kähler-Ricci soliton case (Theorem KRS)
- 4. When the ambient space is infinite dimensional
- 5. The Ricci flat case
- 6. On the proof of Theorem KRS

0. Kähler manifolds and complex space forms

A Kähler manifold is a pair (M, ω) where M is a complex manifold and $\omega \in \Omega^2(M)$ (the Kähler form) such that for any $p \in M$ there exists a neighborhood $U \subset M$ of p equipped with complex coordinates z_1, \ldots, z_n , $n = \dim_{\mathbb{C}} M$, and $\Phi : U \to \mathbb{R}$ (a Kähler potential) such that

$$\omega_{|U} = \frac{i}{2} \partial \bar{\partial} \Phi = \frac{i}{2} \sum_{\alpha,\beta=1}^{n} g_{\alpha\bar{\beta}} dz_{\alpha} \wedge d\bar{z}_{\beta}$$

$$g_{\alpha\overline{\beta}} := \{ \frac{\partial^2 \Phi}{\partial z_{\alpha} \partial \overline{z}_{\beta}} \}, \ \overline{g_{\alpha\overline{\beta}}} = g_{\beta\overline{\alpha}}, \ g_{\alpha\overline{\beta}} >> 0$$

If $\Phi : U \to \mathbb{R}$ and $\tilde{\Phi} : U \to \mathbb{R}$ are two Kähler potential for a Kähler metric g then

$$\tilde{\Phi} = \Phi + h + \bar{h}, \ h \in Hol(U).$$

Given a Kähler manifold (M, ω) we can associate a Riemannian metric g (the Kähler metric) on M by

$$g_{|U} = -\operatorname{Real}\{\sum_{\alpha,\beta=1}^{n} \frac{\partial^2 \Phi}{\partial z_{\alpha} \partial \overline{z}_{\beta}} dz_{\alpha} \otimes d\overline{z}_{\beta}\}.$$

 $(M,\omega) \longleftrightarrow (M,g)$

A complex space form (S, g_c) is a Kähler manifold with constant holomorphic sectional curvature 2c. If S is assumed to be complete and simply-connected one has:

Complex Euclidean space (\mathbb{C}^N, g_0)

$$\omega_0 = \frac{i}{2} \partial \bar{\partial} |z|^2 = \frac{i}{2} \sum_{j=1}^N dz_j \wedge d\bar{z}_j, \ |z|^2 = |z_1|^2 + \dots + |z_N|^2.$$

Complex hyperbolic space ($\mathbb{C}H^N := \{z \in \mathbb{C}^N \mid |z|^2 < 1\}, g_c$), c < 0

$$\omega_c = \frac{i}{c} \partial \bar{\partial} \log(1 - |z|^2).$$

Complex projective space ($\mathbb{C}P^N = \mathbb{C}^{N+1} \setminus \{0\}/z \sim \lambda z, g_c$), c > 0

$$\omega_c|_{U_0} = \frac{i}{c}\partial\bar{\partial}\log(1+|z|^2), \ z_j = \frac{Z_j}{Z_0}, \ j = 1, \dots, N, \ U_0 = \{Z_0 \neq 0\}.$$

1. The work of E. Calabi, Ann. Math. 1953

Let (M,g) be a real analytic Kähler manifold. Then in a neighborhood U of $p \in M$ one can find a Kähler potential (Calabi's diastasis function) $D_p^g : U \to \mathbb{R}$ characterized by the fact that in every complex coordinates $\{z_1, \ldots, z_n\}$ centered at p

$$D_p^g(z,\bar{z}) = \sum_{|j|,|k|\ge 0} a_{jk} z^j \bar{z}^k,$$

with $a_{j0} = a_{0j} = 0$ for all multi-indices j.

Definition A Kähler immersion of a Kähler manifold (M,g) into a complex space form (S,g_c) is a holomorphic map $f : M \to S$ which is isometric, i.e. $f^*g_c = g$.

Theorem (hereditary property of the diastasis) if $f: M \to S$ is a Kähler immersion from a Kähler manifold (M,g) into a complex space form (S, g_c) then $D_p^g = \varphi^*(D_{\varphi(p)}^{g_c})$, for all $p \in M$.

Theorem 1 (*rigidity*) Given two Kähler immersions f_1 and f_2 from a Kähler manifold (M,g) into a complex space form (S,g_c) there exists $\mathcal{U} \in \operatorname{Aut}(S) \cap \operatorname{Isom}(S,g_S)$ such that $f_2 = \mathcal{U} \circ f_1$.

Theorem 2 (extension) A simply-connected Kähler manifold (M,g) admits a Kähler immersion into a complex space form (S,g_c) iff there exists an open set $U \subset M$ such that $(U,g_{|U})$ can be Kähler immersed into (S,g_c) .

Theorem 3 If there exists a Kähler immersion of an open subset of a complex space form (S, g_c) into a complex space form $(\tilde{S}, g_{\tilde{c}})$ then $sign(c) = sign(\tilde{c})$.

2. The Kähler-Einstein (KE) case

Theorem (B. Smyth, Ann. Math. 1967) A compact KE manifold of complex dimension n which admits a Kähler embedding into $(\mathbb{C}P^{n+1}, g_c)$ is totally geodesic or the complex quadric $Q = \{Z_0^2 + \dots + Z_{n+1}^2 = 0\}.$

Theorem (S. S. Chern, J. Diff. Geom. 1967) A KE manifold of complex dimension n which admits a Kähler immersion into $(\mathbb{C}P^{n+1}, g_c)$ is totally geodesic or an open subset of the complex quadric. **Theorem** (K. Tsukada, Math. Ann. 1986) A KE manifold of complex dimension n which admits a Kähler immersion into $(\mathbb{C}P^{n+2}, g_c)$ is totally geodesic or an open subset of the complex quadric.

Theorem (J. Hano, Math. Ann. 1975) Let $M \subset \mathbb{C}P^N$ be a compact complete intersection. If the restriction of g_c to M is Einstein then M is totally geodesic or the complex quadric.

Theorem (D. Hulin, Journal of Geom. Anal. 2000) A compact KE manifold which admits a Kähler embedding into $(\mathbb{C}P^N, g_c)$ has positive scalar curvature.

Open problem: Drop the compactness assumption and injectivity assumption.

Theorem (G. Manno, F. Salis, NY Journal of Math. 2022) Let g be a rotation invariant KE metric^{*} on a complex surface M. If (M,g) admits a Kähler immersion into $(\mathbb{C}P^n, g_c)$, is an open subset of either $(\mathbb{C}P^2, qg_c)$ or $(\mathbb{C}P^1 \times \mathbb{C}P^1, q(g_c \oplus g_c)), q \in \mathbb{Z}^+$.

Conjecture A: A KE manifold which admits a Kähler immersion into $(\mathbb{C}P^N, g_c)$ is an open subset of a compact and simply-connected homogeneous Kähler manifold and the immersion is an embedding.

Theorem (M. Umehara, Tohoku Math. J., 1987) If a KE manifold (M,g) admits a Kähler immersion into a complex space form (S,g_c) with $c \leq 0$ then g is a complex space form (and the immersion is a totally geodesic).

*A Kähler metric g is rotation invariant if it admits a Kähler potential Φ : $U \to \mathbb{R}$ which depends only on $|z_1|^2, |z_2|^2, \ldots, |z_n|^2$.

3. The Kähler-Ricci solitons (KRS) case

Theorem KRS (-, Mossa, PAMS 2021) Let (g, X) be a KRS[†] on complex manifold M. If (M,g) can be Kähler immersed into a complex space form (S,g_c) then g is KE. Moreover, its Einstein constant is a rational multiple of c.

Remark There are no topological assumptions and the immersion is not required to be injective.

Remark The theorem is valid also when the ambient space is an indefinite complex space form.

 $^{\dagger}Ric_g = \lambda g + L_X g$, where X is the real part of a holomorphic vector field.

Corollary Let (g, X) be a KRS on a complex manifold M. A Kähler immersion of (M, g) into a complex space form of non-positive holomorphic sectional curvature is totally geodesic.

Theorem KRS extends the following:

Theorem (Bedulli and Gori, PAMS 2014) A KRS on a compact Kähler submanifold $M \subset \mathbb{C}P^N$ which is a complete intersection is KE (and hence by Hano's theorem is the quadric or a complex projective space totally geodesically embedded in $\mathbb{C}P^N$).

4. Kähler immersions into (S^{∞}, g_c)

Theorem (Calabi, Ann. Math. 1953) If there exist a Kähler immersion of an open subset of a complex space form (S, g_c) into an infinite dimensional complex space form $(\tilde{S}^{\infty}, g_{\tilde{c}})$ then $c \leq \tilde{c}$.

Example (Calabi's embedding):

$$\mathbb{C}^n \to \mathbb{C}P^\infty : z \mapsto (\dots, \sqrt{\frac{1}{j!}} \ z^j, \dots), \ |j| \ge 0$$
$$z^j = z_1^{j_1} \cdots z_n^{j_n} \ |j| = j_1 + \dots + j_n, \ j! = j_1! \cdots j_n!$$

Theorem (-, M. Zedda, Math. Ann. 2010) *There exist continuous families of complete and nonhomogeneous KE manifolds which can be Kähler embedded into infinite dimensional complex projective space.*

Open question: *does there exist complete and nonhomogeneous KE manifolds Kähler immersed into non-elliptic infinite dimensional complex space forms?*

Theorem (-, F. Salis, F. Zuddas, Pacific J. Math. 2022) *There* exist continuous families of non trivial (radial[‡]) KRS which can be Kähler embedded into any infinite dimensional complex space form.

[‡]A Kähler metric g is radial if it admits a Kähler potential $\Phi : U \to \mathbb{R}$ which depends only on $|z_1|^2 + |z_2|^2 + \cdots + |z_n|^2$.

5. The Ricci flat case

Definition: A Kähler metric g on a complex manifold M is projectively induced if (M,g) can be Kähler immersed into a finite or infinite dimensional complex projective space.

Conjecture B: A Ricci flat projectively induced Kähler metric is flat.

The Taub-NUT metrics

The Taub-NUT metrics is the family of Kähler metrics g_m on \mathbb{C}^2 whose associated Kähler forms are given by

$$\omega_m = \frac{i}{2} \partial \bar{\partial} \left[u^2 + v^2 + m(u^4 + v^4) \right], \ m \ge 0,$$

where $|z_1| = e^{m(u^2 - v^2)}u$, $|z_2| = e^{m(v^2 - u^2)}v$. For m = 0, g_0 is flat metric and for $m \neq 0$, g_m is Ricci flat (not flat) and complete (C. LeBrun, Proceedings of Symposia in Pure Mathematics, 1991).

Theorem (-, M. Zedda, F. Zuddas, Ann. Global Anal. Geom. 2012) For $m > \frac{1}{2}$ the Kähler metric g_m on \mathbb{C}^2 is not projectively induced.

Open problem: Show that g_m is projectively induced iff m = 0.

The Eguchi–Hanson metric

Let g_{EH} be the Ricci flat and complete Kähler metric on $\widehat{\mathbb{C}}^2$ (the blow-up of \mathbb{C}^2 at the origin) given in $\widehat{\mathbb{C}}^2 \setminus E = \mathbb{C}^2 \setminus \{0\}$ (*E* exceptional divisor) by the potential

$$\Phi(x) = \sqrt{x^2 + 1} + \log x - \log(1 + \sqrt{x^2 + 1}), \ x = |z_1|^2 + |z_2|^2$$

Theorem (-, F. Salis, F. Zuddas, MZ 2018) *The Eguchi-Hanson metric* g_{EH} *is not projectively induced.*

Theorem (-, M. Zedda, F. Zuddas, Tohoku Math. J. 2020) The Eguchi-Hanson metric λg_{EH} is not projectively induced for all $\lambda > 0$.

6. On the proof of Theorem KRS

Let M be a complex manifold and $p \in M$. Define $\widehat{\mathcal{O}}_p = \left\{ \alpha = (\alpha_1, \dots, \alpha_m) \mid \alpha_j \in \mathcal{O}_p, \alpha_j(p) = 0, \forall j = 1, \dots, m, m \ge 1 \right\}.$ Let $\alpha \in \widehat{\mathcal{O}}_p$ and $\ell \in \mathbb{N}$ such that $\ell \le |\alpha| := m$. Let

$$\langle \alpha, \alpha \rangle_{\ell}(z) = \sum_{j=1}^{\ell} |\alpha_j(z)|^2 - \sum_{k=\ell+1}^{|\alpha|} |\alpha_k(z)|^2.$$

The Umehara algebra is defined by

$$\Lambda_p = \left\{ h + \bar{h} + \langle \alpha, \alpha \rangle_{\ell} \mid h \in \mathcal{O}_p, \ \alpha \in \widehat{\mathcal{O}}_p, \ \ell \le |\alpha| \right\}$$

Consider the \mathbb{R} -algebra $\tilde{\Lambda}_p \subset \Lambda_p$ is defined by:

$$\tilde{\Lambda}_p = \left\{ a + \langle \alpha, \alpha \rangle_{\ell} \mid a \in \mathbb{R}, \ \alpha \in \widehat{\mathcal{O}}_p, \ \ell \le |\alpha| \right\}.$$

Remark Notice that the germ of the real part of a nonconstant holomorphic function $h \in \mathcal{O}_p$ belongs to Λ_p but not to $\tilde{\Lambda}_p$.

Let K_p (resp. \tilde{K}_p) be the field of fractions of Λ_p (resp. $\tilde{\Lambda}_p$).

Definition A real analytic function defined on a neighborhood U of a point p of a complex manifold M is of diastasis-type if in one (and hence any) coordinate system $\{z_1, \ldots, z_n\}$ centered at p its expansion in z and \overline{z} does not contains non constant purely holomorphic or anti-holomorphic terms (i.e. of the form z^j or \overline{z}^j with j > 0).

Remark A function $f \in \Lambda_p$ (resp. K_p) belong to $\tilde{\Lambda}_p$ (resp. \tilde{K}_p) iff f is of diastasis-type.

Fundamental Lemma (-, Mossa, PAMS 2021) Let μ be a real number and $g \in \tilde{K}_p$. Then

 $e^{g} \not\in \tilde{\Lambda}^{\mu}_{p} \tilde{K}_{p} \setminus \mathbb{R}$ where $\tilde{\Lambda}^{\mu}_{p} \tilde{K}_{p} = \left\{ f^{\mu}h \mid f \in \tilde{\Lambda}_{p}, \ h \in \tilde{K}_{p} \right\}.$

This lemma extends the following

Theorem (Cheng, Di Scala, Yuan, Int. J. Math. 2021) Let $f \in \tilde{\Lambda}_p$ then

 $e^f \not\in \tilde{K}_p \setminus \mathbb{R}.$

Moreover, if $f^{\alpha} \in \tilde{K}_p \setminus \mathbb{R}$ then $\alpha \in \mathbb{Q}$.

Lemma (Umehara, Tokyo J. Math. 1986) Let M be an ndimensional complex manifold, $p \in M$ and $f \in \Lambda_p$. Then

$$f^{n+1} \det \left[\frac{\partial^2 \log f}{\partial z_{\alpha} \partial \overline{z}_{\beta}} \right] \in \Lambda_p.$$

Sketch of the Proof of Theorem KRS

Theorem KRS (-, Mossa, PAMS 2021) Let (g, X) be a KRS on complex manifold M. If (M,g) can be Kähler immersed into a complex space form (S,g_c) then g is KE. Moreover, its Einstein constant is a rational multiple of c.

Step 1. (Umehara's algebra and Kähler immersions) Let $p \in M$ and let D_p^g be the Calabi's diastasis. Then

$$D_p^g = \sum_{i=1}^N |\varphi_i|^2 \in \tilde{\Lambda}_p, \text{ if } c = 0$$
(1)

$$e^{\frac{c}{2}D_p^g} = 1 + \frac{c}{|c|} \sum_{i=1}^N |\varphi_i|_s^2 \in \tilde{\Lambda}_p, \text{ if } c \neq 0,$$

$$(2)$$

$$\det\left[\frac{\partial^2 D_p^g}{\partial z_a \partial \bar{z}_\beta}\right] \in \tilde{K}_p, \forall c.$$
(3)

The proof of (3) for $c \neq 0$ follows by Umehara's lemma applied to

$$f = e^{\frac{c}{2}D_p^g} = 1 + \frac{c}{|c|} \sum_{i=1}^N |\varphi_i|_s^2 \in \tilde{\Lambda}_p.$$

Indeed

$$f^{n+1} \det \left[\frac{\partial^2 \log f}{\partial z_\alpha \partial \overline{z}_\beta} \right] = \left(\frac{c}{2} \right)^n e^{(n+1)\frac{c}{2}D_p^g} \det \left[\frac{\partial^2 D_p^g}{\partial z_a \partial \overline{z}_\beta} \right] \in \tilde{\Lambda}_p,$$

Step 2. (KRS equation in terms of Calabi's diastasis function) In local complex coordinates $\{z_1, \ldots, z_n\}$ in a neighborhood U of a point $p \in M$ where the diastasis D_p^g for the metric g is defined one has

$$X = \sum_{j=1}^{n} \left(f_j \frac{\partial}{\partial z_j} + \bar{f}_j \frac{\partial}{\partial \bar{z}_j} \right)$$

for some holomorphic functions $f_j, j = 1, \ldots, n$, on U. Hence

$$L_X \omega = \frac{i}{2} \partial \bar{\partial} f_X. \tag{4}$$

where ω is the Kähler form associated to g and

$$f_X = \sum_{j=1}^n f_j \frac{\partial D_p^g}{\partial z_j} + \bar{f}_j \frac{\partial D_p^g}{\partial \bar{z}_j}.$$
 (5)

The KRS equation can be written on U as

$$\rho_{\omega} = -i\partial\bar{\partial}\log\det\left[\frac{\partial^2 D_p^g}{\partial z_a \partial\bar{z}_\beta}\right] = \lambda\omega + L_X\omega = \lambda\frac{i}{2}\partial\bar{\partial}D_p^g + \frac{i}{2}\partial\bar{\partial}f_X$$

where ρ_{ω} the Ricci form of ω .

Thus the local expression of the KRS equation is

$$\det\left[\frac{\partial^2 D_p^g}{\partial z_a \partial \bar{z}_\beta}\right] = e^{-\frac{\lambda}{2}D_p^g - \frac{f_X}{2} + h + \bar{h}},\tag{6}$$

for a holomorphic function h on U.

Final step. We treat the two cases c = 0 and $c \neq 0$ separately.

If c = 0, we get by (1) and (5) that

$$\xi := -\frac{\lambda}{2}D_p^g - \frac{f_X}{2} + h + \overline{h} \in \Lambda_p.$$

Now (3) with c = 0 gives

$$e^{\xi} = \det\left[\frac{\partial^2 D_p^g}{\partial z_a \partial \overline{z}_{\beta}}\right] \in \tilde{K}_p.$$

In particular e^{ξ} and so ξ is of diastasis-type. Then $\xi \in \tilde{\Lambda}_p$.

By the fundamental lemma (with $\mu = 0$)

$$e^{\xi} = \det\left[\frac{\partial^2 D_p^g}{\partial z_a \partial \overline{z}_{\beta}}
ight] = cost,$$

Hence

$$\rho_{\omega} = -i\partial\bar{\partial}\log\det\left[\frac{\partial^2 D_p^g}{\partial z_a\partial\bar{z}_{\beta}}\right] = 0$$

and so g is Ricci flat.

If $c \neq 0$ we get by (2) and (5) that

$$\eta := -\frac{f_X}{2} + h + \bar{h} \in K_p.$$

By (2), (3) and (6) one deduces that

$$e^{\eta} = \left[e^{\frac{c}{2}D_p^g}\right]^{\frac{\lambda}{c}} \det\left[\frac{\partial^2 D_p^g}{\partial z_a \partial \overline{z}_{\beta}}\right] \in \tilde{\Lambda}_p^{\mu} \tilde{K}_p, \ \mu = \frac{\lambda}{c}.$$
 (7)

In particular e^{η} and so η is of diastasis-type. Then $\eta \in \tilde{K}_p$.

By the fundamental lemma $\eta = cost$. So f_X is the real part of a holomorphic function and hence

$$\rho_{\omega} = \lambda \omega + L_X \omega = \lambda \omega + \frac{i}{2} \partial \bar{\partial} f_X = \lambda \omega$$

and so g is KE with Einstein constant λ .

Finally, $\frac{\lambda}{c}$ is forced to be rational by the last part of the theorem of Cheng-Di Scala-Yuan.

Thank you for your attention!