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Aim of the talk: provide an overview of the main results on

Kähler immersions of Kähler manifolds into complex space forms

in the Kähler-Einstein and Kähler-Ricci solitons case.

Advertising for the book: L., M. Zedda, Kähler immersions of

Kähler manifolds into complex space forms., Lectures Notes of

the Unione Matematica Italiana, Springer 2018.
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0. Kähler manifolds and complex space forms

A Kähler manifold is a pair (M,ω) where M is a complex manifold

and ω ∈ Ω2(M) (the Kähler form) such that for any p ∈ M

there exists a neighborhood U ⊂ M of p equipped with complex

coordinates z1, . . . , zn, n = dimCM , and Φ : U → R (a Kähler

potential) such that

ω|U =
i

2
∂∂̄Φ =

i

2

n∑
α,β=1

gαβ̄dzα ∧ dz̄β

gαβ̄ := {
∂2Φ

∂zα∂z̄β
}, gαβ̄ = gβᾱ, gαβ̄ >> 0



If Φ : U → R and Φ̃ : U → R are two Kähler potential for a Kähler

metric g then

Φ̃ = Φ + h+ h̄, h ∈ Hol(U).

Given a Kähler manifold (M,ω) we can associate a Riemannian

metric g (the Kähler metric) on M by

g|U = −Real{
n∑

α,β=1

∂2Φ

∂zα∂z̄β
dzα ⊗ dz̄β}.

(M,ω)←→ (M, g)



A complex space form (S, gc) is a Kähler manifold with con-

stant holomorphic sectional curvature 2c. If S is assumed to be

complete and simply-connected one has:

Complex Euclidean space (CN , g0)

ω0 = i
2∂∂̄|z|

2 = i
2
∑N
j=1 dzj ∧ dz̄j, |z|

2 = |z1|2 + · · ·+ |zN |2.

Complex hyperbolic space (CHN := {z ∈ CN | |z|2 < 1}, gc), c < 0

ωc = i
c∂∂̄ log(1− |z|2).

Complex projective space (CPN = CN+1 \ {0}/z ∼ λz, gc), c > 0

ωc|U0
= i

c∂∂̄ log(1 + |z|2), zj =
Zj
Z0

, j = 1, . . . , N , U0 = {Z0 6= 0}.



1. The work of E. Calabi, Ann. Math. 1953

Let (M, g) be a real analytic Kähler manifold. Then in a neigh-
borhood U of p ∈ M one can find a Kähler potential (Calabi’s
diastasis function) Dg

p : U → R characterized by the fact that in
every complex coordinates {z1, . . . , zn} centered at p

Dg
p(z, z̄) =

∑
|j|,|k|≥0

ajkz
jz̄k,

with aj0 = a0j = 0 for all multi-indices j.

Definition A Kähler immersion of a Kähler manifold (M, g) into
a complex space form (S, gc) is a holomorphic map f : M → S
which is isometric, i.e. f∗gc = g.

Theorem (hereditary property of the diastasis) if f : M → S is a
Kähler immersion from a Kähler manifold (M, g) into a complex
space form (S, gc) then D

g
p = ϕ∗(Dgc

ϕ(p)), for all p ∈M .



Theorem 1 (rigidity) Given two Kähler immersions f1 and f2

from a Kähler manifold (M, g) into a complex space form (S, gc)

there exists U ∈ Aut(S) ∩ Isom(S, gS) such that f2 = U ◦ f1.

Theorem 2 (extension) A simply-connected Kähler manifold

(M, g) admits a Kähler immersion into a complex space form

(S, gc) iff there exists an open set U ⊂ M such that (U, g|U) can

be Kähler immersed into (S, gc).

Theorem 3 If there exists a Kähler immersion of an open subset

of a complex space form (S, gc) into a complex space form (S̃, gc̃)

then sign(c) = sign(c̃).



2.The Kähler-Einstein (KE) case

Theorem (B. Smyth, Ann. Math. 1967) A compact KE ma-

nifold of complex dimension n which admits a Kähler embed-

ding into (CPn+1, gc) is totally geodesic or the complex quadric

Q = {Z2
0 + · · ·+ Z2

n+1 = 0}.

Theorem (S. S. Chern, J. Diff. Geom. 1967) A KE manifold

of complex dimension n which admits a Kähler immersion into

(CPn+1, gc) is totally geodesic or an open subset of the complex

quadric.



Theorem (K. Tsukada, Math. Ann. 1986) A KE manifold

of complex dimension n which admits a Kähler immersion into

(CPn+2, gc) is totally geodesic or an open subset of the complex

quadric.

Theorem (J. Hano, Math. Ann. 1975) Let M ⊂ CPN be a

compact complete intersection. If the restriction of gc to M is

Einstein then M is totally geodesic or the complex quadric.

Theorem (D. Hulin, Journal of Geom. Anal. 2000) A compact

KE manifold which admits a Kähler embedding into (CPN , gc)
has positive scalar curvature.

Open problem: Drop the compactness assumption and injecti-

vity assumption.



Theorem (G. Manno, F. Salis, NY Journal of Math. 2022) Let
g be a rotation invariant KE metric∗ on a complex surface M .
If (M, g) admits a Kähler immersion into (CPn, gc), is an open
subset of either (CP2, qgc) or (CP1 × CP1, q(gc ⊕ gc)), q ∈ Z+.

Conjecture A: A KE manifold which admits a Kähler immer-
sion into (CPN , gc) is an open subset of a compact and simply-
connected homogeneous Kähler manifold and the immersion is
an embedding.

Theorem (M. Umehara, Tohoku Math. J., 1987) If a KE ma-
nifold (M, g) admits a Kähler immersion into a complex space
form (S, gc) with c ≤ 0 then g is a complex space form (and the
immersion is a totally geodesic).
∗A Kähler metric g is rotation invariant if it admits a Kähler potential Φ :
U → R which depends only on |z1|2, |z2|2, . . . , |zn|2.



3.The Kähler-Ricci solitons (KRS) case

Theorem KRS (-, Mossa, PAMS 2021) Let (g,X) be a KRS†

on complex manifold M . If (M, g) can be Kähler immersed into

a complex space form (S, gc) then g is KE. Moreover, its Einstein

constant is a rational multiple of c.

Remark There are no topological assumptions and the immer-

sion is not required to be injective.

Remark The theorem is valid also when the ambient space is an

indefinite complex space form.

†Ricg = λg + LXg, where X is the real part of a holomorphic vector field.



Corollary Let (g,X) be a KRS on a complex manifold M . A

Kähler immersion of (M, g) into a complex space form of non-

positive holomorphic sectional curvature is totally geodesic.

Theorem KRS extends the following:

Theorem (Bedulli and Gori, PAMS 2014) A KRS on a compact

Kähler submanifold M ⊂ CPN which is a complete intersection

is KE (and hence by Hano’s theorem is the quadric or a complex

projective space totally geodesically embedded in CPN).



4. Kähler immersions into (S∞, gc)

Theorem (Calabi, Ann. Math. 1953) If there exist a Kähler

immersion of an open subset of a complex space form (S, gc)

into an infinite dimensional complex space form (S̃∞, gc̃) then

c ≤ c̃.

Example (Calabi’s embedding):

Cn → CP∞ : z 7→ (. . . ,

√
1

j!
zj, . . .), |j| ≥ 0

zj = z
j1
1 · · · z

jn
n |j| = j1 + · · ·+ jn, j! = j1! · · · jn!



Theorem (-, M. Zedda, Math. Ann. 2010) There exist conti-

nuous families of complete and nonhomogeneous KE manifolds

which can be Kähler embedded into infinite dimensional complex

projective space.

Open question: does there exist complete and nonhomoge-

neous KE manifolds Kähler immersed into non-elliptic infinite

dimensional complex space forms?

Theorem (-, F. Salis, F. Zuddas, Pacific J. Math. 2022) There

exist continuous families of non trivial (radial‡) KRS which can

be Kähler embedded into any infinite dimensional complex space

form.
‡A Kähler metric g is radial if it admits a Kähler potential Φ : U → R which
depends only on |z1|2 + |z2|2 + · · ·+ |zn|2.



5.The Ricci flat case

Definition: A Kähler metric g on a complex manifold M is pro-

jectively induced if (M, g) can be Kähler immersed into a finite

or infinite dimensional complex projective space.

Conjecture B: A Ricci flat projectively induced Kähler metric is

flat.



The Taub-NUT metrics

The Taub-NUT metrics is the family of Kähler metrics gm on C2

whose associated Kähler forms are given by

ωm =
i

2
∂∂̄

[
u2 + v2 +m(u4 + v4)

]
, m ≥ 0,

where |z1| = em(u2−v2)u, |z2| = em(v2−u2)v. For m = 0, g0 is flat

metric and for m 6= 0, gm is Ricci flat (not flat) and complete (C.

LeBrun, Proceedings of Symposia in Pure Mathematics, 1991).

Theorem (-, M. Zedda, F. Zuddas, Ann. Global Anal. Geom.

2012) For m > 1
2 the Kähler metric gm on C2 is not projectively

induced.

Open problem: Show that gm is projectively induced iff m = 0.



The Eguchi–Hanson metric

Let gEH be the Ricci flat and complete Kähler metric on Ĉ2

(the blow-up of C2 at the origin) given in Ĉ2 \ E = C2 \ {0} (E

exceptional divisor) by the potential

Φ(x) =
√
x2 + 1 + logx− log(1 +

√
x2 + 1), x = |z1|2 + |z2|2

Theorem (-, F. Salis, F. Zuddas, MZ 2018) The Eguchi-Hanson

metric gEH is not projectively induced.

Theorem (-, M. Zedda, F. Zuddas, Tohoku Math. J. 2020)

The Eguchi-Hanson metric λgEH is not projectively induced for

all λ > 0.



6. On the proof of Theorem KRS

Let M be a complex manifold and p ∈M . Define

Ôp =
{
α = (α1, . . . , αm) | αj ∈ Op, αj(p) = 0, ∀j = 1, . . . ,m,m ≥ 1

}
.

Let α ∈ Ôp and ` ∈ N such that ` ≤ |α| := m. Let

〈α, α〉`(z) =
∑̀
j=1

|αj(z)|2 −
|α|∑

k=`+1

|αk(z)|2.

The Umehara algebra is defined by

Λp =
{
h+ h̄+ 〈α, α〉` | h ∈ Op, α ∈ Ôp, ` ≤ |α|

}
.

Consider the R-algebra Λ̃p ⊂ Λp is defined by:

Λ̃p =
{
a+ 〈α, α〉` | a ∈ R, α ∈ Ôp, ` ≤ |α|

}
.



Remark Notice that the germ of the real part of a nonconstant

holomorphic function h ∈ Op belongs to Λp but not to Λ̃p.

Let Kp (resp. K̃p) be the field of fractions of Λp (resp. Λ̃p).

Definition A real analytic function defined on a neighborhood

U of a point p of a complex manifold M is of diastasis-type if in

one (and hence any) coordinate system {z1, . . . , zn} centered at

p its expansion in z and z̄ does not contains non constant purely

holomorphic or anti-holomorphic terms (i.e. of the form zj or z̄j

with j > 0).

Remark A function f ∈ Λp (resp. Kp) belong to Λ̃p (resp. K̃p)

iff f is of diastasis-type.



Fundamental Lemma (-, Mossa, PAMS 2021) Let µ be a real

number and g ∈ K̃p. Then

eg 6∈ Λ̃µpK̃p \ R

where Λ̃µpK̃p =
{
fµh | f ∈ Λ̃p, h ∈ K̃p

}
.

This lemma extends the following

Theorem (Cheng, Di Scala,Yuan, Int. J. Math. 2021) Let

f ∈ Λ̃p then

ef 6∈ K̃p \ R.

Moreover, if fα ∈ K̃p \ R then α ∈ Q.



Lemma (Umehara, Tokyo J. Math. 1986) Let M be an n-

dimensional complex manifold, p ∈M and f ∈ Λp. Then

fn+1 det

[
∂2 log f

∂zα∂z̄β

]
∈ Λp.



Sketch of the Proof of Theorem KRS

Theorem KRS (-, Mossa, PAMS 2021) Let (g,X) be a KRS on

complex manifold M . If (M, g) can be Kähler immersed into a

complex space form (S, gc) then g is KE. Moreover, its Einstein

constant is a rational multiple of c.

Step 1. (Umehara’s algebra and Kähler immersions) Let p ∈M
and let Dg

p be the Calabi’s diastasis. Then

Dg
p =

N∑
i=1

|ϕi|2 ∈ Λ̃p, if c = 0 (1)

e
c
2D

g
p = 1 +

c

|c|

N∑
i=1

|ϕi|2s ∈ Λ̃p, if c 6= 0, (2)



det

[
∂2D

g
p

∂za∂z̄β

]
∈ K̃p, ∀c. (3)

The proof of (3) for c 6= 0 follows by Umehara’s lemma applied

to

f = e
c
2D

g
p = 1 +

c

|c|

N∑
i=1

|ϕi|2s ∈ Λ̃p.

Indeed

fn+1 det

[
∂2 log f

∂zα∂z̄β

]
=
(
c

2

)n
e(n+1) c2D

g
p det

[
∂2D

g
p

∂za∂z̄β

]
∈ Λ̃p,

Step 2. (KRS equation in terms of Calabi’s diastasis function)

In local complex coordinates {z1, . . . , zn} in a neighborhood U of

a point p ∈M where the diastasis Dg
p for the metric g is defined



one has

X =
n∑

j=1

(
fj

∂

∂zj
+ f̄j

∂

∂z̄j

)

for some holomorphic functions fj, j = 1, . . . , n, on U . Hence

LXω =
i

2
∂∂̄fX . (4)

where ω is the Kähler form associated to g and

fX =
n∑

j=1

fj
∂D

g
p

∂zj
+ f̄j

∂D
g
p

∂z̄j
. (5)

The KRS equation can be written on U as

ρω = −i∂∂̄ log det

[
∂2D

g
p

∂za∂z̄β

]
= λω + LXω = λ

i

2
∂∂̄Dg

p +
i

2
∂∂̄fX



where ρω the Ricci form of ω.

Thus the local expression of the KRS equation is

det

[
∂2D

g
p

∂za∂z̄β

]
= e−

λ
2D

g
p−

fX
2 +h+h̄, (6)

for a holomorphic function h on U .

Final step. We treat the two cases c = 0 and c 6= 0 separately.

If c = 0, we get by (1) and (5) that

ξ := −
λ

2
Dg
p −

fX
2

+ h+ h̄ ∈ Λp.

Now (3) with c = 0 gives

eξ = det

[
∂2D

g
p

∂za∂z̄β

]
∈ K̃p.



In particular eξ and so ξ is of diastasis-type. Then ξ ∈ Λ̃p.

By the fundamental lemma (with µ = 0)

eξ = det

[
∂2D

g
p

∂za∂z̄β

]
= cost,

Hence

ρω = −i∂∂̄ log det

[
∂2D

g
p

∂za∂z̄β

]
= 0

and so g is Ricci flat.

If c 6= 0 we get by (2) and (5) that

η := −
fX
2

+ h+ h̄ ∈ Kp.



By (2), (3) and (6) one deduces that

eη =
[
e
c
2D

g
p

]λ
c

det

[
∂2D

g
p

∂za∂z̄β

]
∈ Λ̃µpK̃p, µ =

λ

c
. (7)

In particular eη and so η is of diastasis-type. Then η ∈ K̃p.

By the fundamental lemma η = cost. So fX is the real part of a

holomorphic function and hence

ρω = λω + LXω = λω +
i

2
∂∂̄fX = λω

and so g is KE with Einstein constant λ.

Finally, λ
c is forced to be rational by the last part of the theorem

of Cheng-Di Scala-Yuan. �



Thank you for your attention!


