The Gromov width of symmetric spaces

Andrea Loi
University of Cagliari-Italy

Evora, 3 September 2013

國 AL, R. Mossa, F. Zuddas, Symplectic capacities of Hermitian symmetric spaces, arXiv:1302.1984 (2013).
(1) Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
(2) Hermitian symmetric spaces
- Definition and some properties
- Duality
(3) Main results: the Gromov width of Hermitian symmetric spaces
- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
(4) Open problems and other symplectic invariants
- Biran's conjecture
- Hofer-Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

Darboux Theorem

Let $\left(M^{2 n}, \omega\right)$ be a symplectic manifold and let $\omega_{0}=\sum_{j=1}^{n} d x_{j} \wedge d y_{j}$ be the standard symplectic form on $\mathbb{R}^{2 n}$. Given $p \in M$ there exist an open set $U_{p} \subset M$ and a diffeomorphism

$$
\psi: U_{p} \rightarrow \psi\left(U_{p}\right) \subset \mathbb{R}^{2 n}
$$

such that

$$
\psi^{*} \omega_{0}=\omega_{\mid U_{p}}
$$

Darboux Theorem

Let $\left(M^{2 n}, \omega\right)$ be a symplectic manifold and let $\omega_{0}=\sum_{j=1}^{n} d x_{j} \wedge d y_{j}$ be the standard symplectic form on $\mathbb{R}^{2 n}$. Given $p \in M$ there exist an open set $U_{p} \subset M$ and a diffeomorphism

$$
\psi: U_{p} \rightarrow \psi\left(U_{p}\right) \subset \mathbb{R}^{2 n}
$$

such that

$$
\psi^{*} \omega_{0}=\omega_{\mid U_{p}}
$$

Question

How large U_{p} can be taken?

Darboux Theorem

Let $\left(M^{2 n}, \omega\right)$ be a symplectic manifold and let $\omega_{0}=\sum_{j=1}^{n} d x_{j} \wedge d y_{j}$ be the standard symplectic form on $\mathbb{R}^{2 n}$. Given $p \in M$ there exist an open set $U_{p} \subset M$ and a diffeomorphism

$$
\psi: U_{p} \rightarrow \psi\left(U_{p}\right) \subset \mathbb{R}^{2 n}
$$

such that

$$
\psi^{*} \omega_{0}=\omega_{\mid U_{p}}
$$

Question

How large U_{p} can be taken?

Gromov's exotic symplectic structures

There exists a symplectic form ω on $\mathbb{R}^{2 n}, n \geq 2$, such that $\left(\mathbb{R}^{2 n}, \omega\right)$ cannot be symplectically embedded into $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$. [Gromov, Inv. Math., 1985]
(1) Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
(2) Hermitian symmetric spaces
- Definition and some properties
- Duality
(3) Main results: the Gromov width of Hermitian symmetric spaces
- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
(4) Open problems and other symplectic invariants
- Biran's conjecture
- Hofer-Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

Gromov width

The Gromov width [Gromov, Inv. Math., 1985] of a $2 n$-dimensional symplectic manifold (M, ω) is defined as

$$
c_{G}(M, \omega)=\sup \left\{\pi r^{2} \mid B^{2 n}(r) \text { symplectically embeds into }(M, \omega)\right\}
$$

where

$$
B^{2 n}(r)=\left\{\left.(x, y) \in \mathbb{R}^{2 n}\left|\sum_{j=1}^{n}\right| x_{j}\right|^{2}+\left|y_{j}\right|^{2}<r^{2}\right\}
$$

is the open ball of radius r in $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.

Gromov width

The Gromov width [Gromov, Inv. Math., 1985] of a $2 n$-dimensional symplectic manifold (M, ω) is defined as

$$
c_{G}(M, \omega)=\sup \left\{\pi r^{2} \mid B^{2 n}(r) \text { symplectically embeds into }(M, \omega)\right\}
$$

where

$$
B^{2 n}(r)=\left\{\left.(x, y) \in \mathbb{R}^{2 n}\left|\sum_{j=1}^{n}\right| x_{j}\right|^{2}+\left|y_{j}\right|^{2}<r^{2}\right\}
$$

is the open ball of radius r in $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.

Remarks

Gromov width

The Gromov width [Gromov, Inv. Math., 1985] of a $2 n$-dimensional symplectic manifold (M, ω) is defined as

$$
c_{G}(M, \omega)=\sup \left\{\pi r^{2} \mid B^{2 n}(r) \text { symplectically embeds into }(M, \omega)\right\}
$$

where

$$
B^{2 n}(r)=\left\{\left.(x, y) \in \mathbb{R}^{2 n}\left|\sum_{j=1}^{n}\right| x_{j}\right|^{2}+\left|y_{j}\right|^{2}<r^{2}\right\}
$$

is the open ball of radius r in $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.

Remarks

- $c_{G}>0$ by Darboux theorem.

Gromov width

The Gromov width [Gromov, Inv. Math., 1985] of a $2 n$-dimensional symplectic manifold (M, ω) is defined as

$$
c_{G}(M, \omega)=\sup \left\{\pi r^{2} \mid B^{2 n}(r) \text { symplectically embeds into }(M, \omega)\right\}
$$

where

$$
B^{2 n}(r)=\left\{\left.(x, y) \in \mathbb{R}^{2 n}\left|\sum_{j=1}^{n}\right| x_{j}\right|^{2}+\left|y_{j}\right|^{2}<r^{2}\right\}
$$

is the open ball of radius r in $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.

Remarks

- $c_{G}>0$ by Darboux theorem.
- M compact $\Rightarrow c_{G}(M, \omega)<\infty$.
(1) Basic facts on Symplectic Topology
- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
(2) Hermitian symmetric spaces
- Definition and some properties
- Duality
(3) Main results: the Gromov width of Hermitian symmetric spaces
- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
(4) Open problems and other symplectic invariants
- Biran's conjecture
- Hofer-Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

Symplectic capacities

A map c from the class $\mathcal{C}(2 n)$ of all symplectic manifolds of dimension $2 n$ to $[0,+\infty]$ is called a symplectic capacity [н. Hofer, E. Zehnder, 1990] if it satisfies the following conditions:

Symplectic capacities

A map c from the class $\mathcal{C}(2 n)$ of all symplectic manifolds of dimension $2 n$ to $[0,+\infty]$ is called a symplectic capacity $[$ [. Hofer, e. Zehnder, 1990$]$ if it satisfies the following conditions:

- (monotonicity) if there exists a symplectic embedding $\left(M_{1}, \omega_{1}\right) \rightarrow\left(M_{2}, \omega_{2}\right)$ then $c\left(M_{1}, \omega_{1}\right) \leq c\left(M_{2}, \omega_{2}\right)$;

Symplectic capacities

A map c from the class $\mathcal{C}(2 n)$ of all symplectic manifolds of dimension $2 n$ to $[0,+\infty]$ is called a symplectic capacity $[$ [. Hofer, e. Zehnder, 1990] if it satisfies the following conditions:

- (monotonicity) if there exists a symplectic embedding $\left(M_{1}, \omega_{1}\right) \rightarrow\left(M_{2}, \omega_{2}\right)$ then $c\left(M_{1}, \omega_{1}\right) \leq c\left(M_{2}, \omega_{2}\right)$;
- (conformality) $c(M, \lambda \omega)=|\lambda| c(M, \omega)$, for every $\lambda \in \mathbb{R} \backslash\{0\}$;

Symplectic capacities

A map c from the class $\mathcal{C}(2 n)$ of all symplectic manifolds of dimension $2 n$ to $[0,+\infty]$ is called a symplectic capacity $[$ [. Hofer, e. Zehnder, 1990] if it satisfies the following conditions:

- (monotonicity) if there exists a symplectic embedding $\left(M_{1}, \omega_{1}\right) \rightarrow\left(M_{2}, \omega_{2}\right)$ then $c\left(M_{1}, \omega_{1}\right) \leq c\left(M_{2}, \omega_{2}\right)$;
- (conformality) $c(M, \lambda \omega)=|\lambda| c(M, \omega)$, for every $\lambda \in \mathbb{R} \backslash\{0\}$;
- (nontriviality) $c\left(B^{2 n}(r), \omega_{0}\right)=\pi r^{2}=c\left(Z^{2 n}(r), \omega_{0}\right)$,

Symplectic capacities

A map c from the class $\mathcal{C}(2 n)$ of all symplectic manifolds of dimension $2 n$ to $[0,+\infty]$ is called a symplectic capacity $[$ [. Hofer, e. Zehnder, 1990] if it satisfies the following conditions:

- (monotonicity) if there exists a symplectic embedding

$$
\left(M_{1}, \omega_{1}\right) \rightarrow\left(M_{2}, \omega_{2}\right) \text { then } c\left(M_{1}, \omega_{1}\right) \leq c\left(M_{2}, \omega_{2}\right) ;
$$

- (conformality) $c(M, \lambda \omega)=|\lambda| c(M, \omega)$, for every $\lambda \in \mathbb{R} \backslash\{0\}$;
- (nontriviality) $c\left(B^{2 n}(r), \omega_{0}\right)=\pi r^{2}=c\left(Z^{2 n}(r), \omega_{0}\right)$,
where

$$
Z^{2 n}(r)=B^{2}(r) \times \mathbb{R}^{2 n-2}=\left\{(x, y) \in \mathbb{R}^{2 n} \mid x_{1}^{2}+y_{1}^{2}<r^{2}\right\}
$$

Some remarks on symplectic capacities 1

Some remarks on symplectic capacities 1

When $n=1$ (2-dimensional symplectic manifolds)

$$
c(M, \omega):=\left|\int_{M} \omega\right|
$$

defines a symplecitc capacity which agrees with the Lebesgue measure in $\left(\mathbb{R}^{2}, \omega_{0}\right)$.

Some remarks on symplectic capacities 1

When $n=1$ (2-dimensional symplectic manifolds)

$$
c(M, \omega):=\left|\int_{M} \omega\right|
$$

defines a symplecitc capacity which agrees with the Lebesgue measure in $\left(\mathbb{R}^{2}, \omega_{0}\right)$.

In contrast, when $n>1$,

$$
c(M, \omega):=\left(\int_{M} \frac{\omega^{n}}{n!}\right)^{\frac{1}{n}}
$$

does not define a symplectic capacity since $Z^{2 n}(r)$ has infinite volume.

Some remarks on symplectic capacities 2

Some remarks on symplectic capacities 2

(monotonicity) \Rightarrow symplectic capacities are symplectic invariants.

Some remarks on symplectic capacities 2

(monotonicity) \Rightarrow symplectic capacities are symplectic invariants.
for every open set $U \subset \mathbb{R}^{n}$ such that $B^{2 n}(r) \subset U \subset Z^{2 n}(r) \Rightarrow$ $c(U)=\pi r^{2}$.

Some remarks on symplectic capacities 2

(monotonicity) \Rightarrow symplectic capacities are symplectic invariants.
for every open set $U \subset \mathbb{R}^{n}$ such that $B^{2 n}(r) \subset U \subset Z^{2 n}(r) \Rightarrow$ $c(U)=\pi r^{2}$.

It is hard to prove the existence of a symplectic capacity.
(1) Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
(2) Hermitian symmetric spaces
- Definition and some properties
- Duality
(3) Main results: the Gromov width of Hermitian symmetric spaces
- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5

4 Open problems and other symplectic invariants

- Biran's conjecture
- Hofer-Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

Theorem

The Gromov width c_{G} is a symplectic capacity. Moreover

$$
c_{G}(M, \omega) \leq c(M, \omega)
$$

for every capacity c.

Theorem

The Gromov width c_{G} is a symplectic capacity. Moreover

$$
c_{G}(M, \omega) \leq c(M, \omega)
$$

for every capacity c.

Proof

(monotonicity) and (conformality) for c_{G} are easy consequences of the definition of Gromov width. details

Theorem

The Gromov width c_{G} is a symplectic capacity. Moreover

$$
c_{G}(M, \omega) \leq c(M, \omega)
$$

for every capacity c.

Proof

(monotonicity) and (conformality) for c_{G} are easy consequences of the definition of Gromov width. ©details
Let $\varphi: B^{2 n}(r) \rightarrow M$ be a symplectic embedding. Then

$$
\pi r^{2}=c\left(B^{2 n}(r), \omega_{0}\right) \leq c(M, \omega) \Rightarrow c_{G}(M, \omega) \leq c(M, \omega)
$$

Theorem

The Gromov width c_{G} is a symplectic capacity. Moreover

$$
c_{G}(M, \omega) \leq c(M, \omega)
$$

for every capacity c.

Proof

(monotonicity) and (conformality) for c_{G} are easy consequences of the definition of Gromov width. details
Let $\varphi: B^{2 n}(r) \rightarrow M$ be a symplectic embedding. Then

$$
\pi r^{2}=c\left(B^{2 n}(r), \omega_{0}\right) \leq c(M, \omega) \Rightarrow c_{G}(M, \omega) \leq c(M, \omega)
$$

The (nontriviality) for c_{G}, i.e. $c_{G}\left(B^{2 n}(r), \omega_{0}\right)=\pi=c_{G}\left(Z^{2 n}(r), \omega_{0}\right)$, follows by the celebrated Gromov's nonsqueezing theorem:

Gromov nonsqueezing theorem

There exists a symplectic embedding $B^{2 n}(r) \hookrightarrow Z^{2 n}(R)$ iff $r \leq R$.
[Gromov, Inv. Math., 1985]

Gromov nonsqueezing theorem

There exists a symplectic embedding $B^{2 n}(r) \hookrightarrow Z^{2 n}(R)$ iff $r \leq R$.

```
[Gromov, Inv. Math., 1985]
```


Remark

Assuming the existence of any symplectic capacity c one easily deduces Gromov's nonsqueezing theorem. Indeed, let $\varphi: B^{2 n}(r) \rightarrow Z^{2 n}(R)$ be a symplectic embedding. Then (monotonicity) + (nontriviality) \Rightarrow

$$
\pi r^{2}=c\left(B^{2 n}(r), \omega_{0}\right) \leq c\left(Z^{2 n}(R), \omega_{0}\right)=\pi R^{2}
$$

Some known results for homogeneous Kähler manifolds

- Upper and lower bounds of the Gromov width of some coadjoint orbits

```
[A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of type A, arXiv:1301.0158v1]
[Taekgyu Hwang, Dong Youp Suh, The Gromov width from Hamiltonian circle actions, arXiv:1305.2989v2]
```


Some known results for homogeneous Kähler manifolds

- Upper and lower bounds of the Gromov width of some coadjoint orbits
[A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of type A, arXiv:1301.0158v1] [Taekgyu Hwang, Dong Youp Suh, The Gromov width from Hamiltonian circle actions, arXiv:1305.2989v2]
- Computation of the Gromov width of the complex Grassmannian [y. Karshon, S. Tolman, A1gebr. Geom. Topol., 2005] and product of Grassmannians [G. Lu, Israel J. Math., 2006]

Some known results for homogeneous Kähler manifolds

- Upper and lower bounds of the Gromov width of some coadjoint orbits [A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of type A, arXiv:1301.0158v1] [Taekgyu Hwang, Dong Youp Suh, The Gromov width from Hamiltonian circle actions, arXiv:1305.2989v2]
- Computation of the Gromov width of the complex Grassmannian [y. Karshon, s. Tolman, A1gebr. Geom. Topo1., 2005] and product of Grassmannians [G. Lu, Israel J. Math., 2006]
- Computation of the Gromov width of the 4-dimensional torus.
[J. Latschev, D. McDuff and F. Schlenk, Te Gromov width of the 4-dimensional tori, arXiv:1111.6566]

Some known results for homogeneous Kähler manifolds

- Upper and lower bounds of the Gromov width of some coadjoint orbits [A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of type A, arXiv:1301.0158v1] [Taekgyu Hwang, Dong Youp Suh, The Gromov width from Hamiltonian circle actions, arXiv:1305.2989v2]
- Computation of the Gromov width of the complex Grassmannian [y. Karshon, s. Tolman, A1gebr. Geom. Topo1., 2005] and product of Grassmannians [G. Lu, Israel J. Math., 2006]
- Computation of the Gromov width of the 4-dimensional torus.
[J. Latschev, D. McDuff and F. Schlenk, Te Gromov width of the 4-dimensional tori, arXiv:1111.6566]
- Computation of the Gromov width of the first Cartan domain and upper and lower bounds for the classical ones (endowed with ω_{0})
[G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007].

Some known results for homogeneous Kähler manifolds

- Upper and lower bounds of the Gromov width of some coadjoint orbits

```
[A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of type A, arXiv:1301.0158v1]
[Taekgyu Hwang, Dong Youp Suh, The Gromov width from Hamiltonian circle actions, arXiv:1305.2989v2]
```

- Computation of the Gromov width of the complex Grassmannian [y. Karshon, s. Tolman, A1gebr. Geom. Topo1., 2005] and product of Grassmannians [c. Lu, Israel J. Math., 2006]
- Computation of the Gromov width of the 4-dimensional torus.
[J. Latschev, D. McDuff and F. Schlenk, Te Gromov width of the 4-dimensional tori, arXiv:1111.6566]
- Computation of the Gromov width of the first Cartan domain and upper and lower bounds for the classical ones (endowed with ω_{0})
[c. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007].

> Aim of this talk: to compute the Gromov width for all Hermitian symmetric spaces of compact and noncompact type (bounded symmetric domains) and their products.
(1) Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
(2) Hermitian symmetric spaces
- Definition and some properties
- Duality
(3) Main results: the Gromov width of Hermitian symmetric spaces
- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5

4 Open problems and other symplectic invariants

- Biran's conjecture
- Hofer-Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

Basic facts on Hermitian spaces

- A Hermitian symmetric space is a connected Kähler manifold (M, ω) such that each point $p \in M$ is an isolated fixed point of some holomorphic involutory isometry s_{p} of M.

Basic facts on Hermitian spaces

- A Hermitian symmetric space is a connected Kähler manifold (M, ω) such that each point $p \in M$ is an isolated fixed point of some holomorphic involutory isometry s_{p} of M.
- The component of the identity of the group of holomorphic isometries of M acts transitively on M and hence every Hermitian symmetric space is a homogeneous space.

Basic facts on Hermitian spaces

- A Hermitian symmetric space is a connected Kähler manifold (M, ω) such that each point $p \in M$ is an isolated fixed point of some holomorphic involutory isometry s_{p} of M.
- The component of the identity of the group of holomorphic isometries of M acts transitively on M and hence every Hermitian symmetric space is a homogeneous space.
- A Hermitian symmetric space M is said to be of compact or noncompact type if M is compact or noncompact (and non flat).

Basic facts on Hermitian spaces

- A Hermitian symmetric space is a connected Kähler manifold (M, ω) such that each point $p \in M$ is an isolated fixed point of some holomorphic involutory isometry s_{p} of M.
- The component of the identity of the group of holomorphic isometries of M acts transitively on M and hence every Hermitian symmetric space is a homogeneous space.
- A Hermitian symmetric space M is said to be of compact or noncompact type if M is compact or noncompact (and non flat).
- Every Hermitian symmetric space is a direct product

$$
M_{0} \times M_{-} \times M_{+}
$$

where all the factors are simply-connected Hermitian symmetric spaces, $M_{0}=\mathbb{C}^{n}$ and M_{-}and M_{+}are spaces of compact and noncompact type, respectively.

Basic facts on Hermitian spaces

- A Hermitian symmetric space is a connected Kähler manifold (M, ω) such that each point $p \in M$ is an isolated fixed point of some holomorphic involutory isometry s_{p} of M.
- The component of the identity of the group of holomorphic isometries of M acts transitively on M and hence every Hermitian symmetric space is a homogeneous space.
- A Hermitian symmetric space M is said to be of compact or noncompact type if M is compact or noncompact (and non flat).
- Every Hermitian symmetric space is a direct product

$$
M_{0} \times M_{-} \times M_{+}
$$

where all the factors are simply-connected Hermitian symmetric spaces, $M_{0}=\mathbb{C}^{n}$ and M_{-}and M_{+}are spaces of compact and noncompact type, respectively.

- Any Hermitian symmetric space of compact or non-compact type is simply connected and is a direct product of irreducible Hermitian symmetric spaces.

Hermitian symmetric spaces of noncompact type (HSSNT)

An irreducible HSSNT is holomorphically isometric to a bounded symmetric domain $\Omega \subset \mathbb{C}^{n}$ centered at the origin $0 \in \mathbb{C}^{n}$ equipped with (a multiple of) the Bergman metric $\omega_{\text {Berg }}$.

Hermitian symmetric spaces of noncompact type (HSSNT)

An irreducible HSSNT is holomorphically isometric to a bounded symmetric domain $\Omega \subset \mathbb{C}^{n}$ centered at the origin $0 \in \mathbb{C}^{n}$ equipped with (a multiple of) the Bergman metric $\omega_{\text {Berg }}$.

There exists homogeneous bounded domains (equipped with the Bergman metric) which are not HSSNT (first examples due to Pyateskii-Shapiro).

Hermitian symmetric spaces of noncompact type (HSSNT)

An irreducible HSSNT is holomorphically isometric to a bounded symmetric domain $\Omega \subset \mathbb{C}^{n}$ centered at the origin $0 \in \mathbb{C}^{n}$ equipped with (a multiple of) the Bergman metric $\omega_{\text {Berg }}$.

There exists homogeneous bounded domains (equipped with the Bergman metric) which are not HSSNT (first examples due to Pyateskii-Shapiro).

There is a complete classification of irreducible HSSNT, with four classical series, studied by Cartan, and two exceptional cases.

Hermitian symmetric spaces of noncompact type (HSSNT)

An irreducible HSSNT is holomorphically isometric to a bounded symmetric domain $\Omega \subset \mathbb{C}^{n}$ centered at the origin $0 \in \mathbb{C}^{n}$ equipped with (a multiple of) the Bergman metric $\omega_{\text {Berg }}$.

There exists homogeneous bounded domains (equipped with the Bergman metric) which are not HSSNT (first examples due to Pyateskii-Shapiro).

There is a complete classification of irreducible HSSNT, with four classical series, studied by Cartan, and two exceptional cases.

Hermitian symmetric spaces of compact type (HSSCT)

Let $\left(M, \omega_{F S}\right)$ be an irreducible HSSCT, where $\omega_{F S}$ is the canonical Kähler form, i.e. the Kähler-Einstein form such that

$$
\omega_{F S}(A)=\int_{A} \omega_{F S}=\pi
$$

for the generator $A=\left[\mathbb{C} P^{1}\right] \in H_{2}(M, \mathbb{Z})$.

Hermitian symmetric spaces of compact type (HSSCT)

Let $\left(M, \omega_{F S}\right)$ be an irreducible HSSCT, where $\omega_{F S}$ is the canonical Kähler form, i.e. the Kähler-Einstein form such that

$$
\omega_{F S}(A)=\int_{A} \omega_{F S}=\pi
$$

for the generator $A=\left[\mathbb{C} P^{1}\right] \in H_{2}(M, \mathbb{Z})$.

There exists a natural number N and a holomorphic embedding

$$
B W: M \rightarrow \mathbb{C} P^{N}
$$

called the Borel-Weil embedding, such that

$$
\omega_{F S}=B W^{*} \Omega_{F S} .
$$

(1) Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
(2) Hermitian symmetric spaces
- Definition and some properties
- Duality
(3) Main results: the Gromov width of Hermitian symmetric spaces
- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5

4 Open problems and other symplectic invariants

- Biran's conjecture
- Hofer-Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

Duality

To every bounded symmetric domain $\Omega \subset \mathbb{C}^{n}$ one can associate an irreducible HSSCT (M, ω) called the compact dual of Ω (and viceversa) such that Ω is holomorphically embedded into M.

Duality

To every bounded symmetric domain $\Omega \subset \mathbb{C}^{n}$ one can associate an irreducible HSSCT (M, ω) called the compact dual of Ω (and viceversa) such that Ω is holomorphically embedded into M.

More precisely we have the following holomorphic embeddings:

$$
\Omega^{\text {Harish_Chandra }} \mathbb{C}^{n} \stackrel{\text { Borel }}{\subset} M \stackrel{B W}{\hookrightarrow} \mathbb{C} P^{N}
$$

The first Cartan domain and the complex Grassmannian

The first Cartan domain and the complex Grassmannian

Let

$$
D_{l}[k, n]=\left\{Z \in M_{k, n}(\mathbb{C}) \mid I_{k}-Z Z^{*}>0\right\}
$$

be the first Cartan domain.

The first Cartan domain and the complex Grassmannian

Let

$$
D_{l}[k, n]=\left\{Z \in M_{k, n}(\mathbb{C}) \mid I_{k}-Z Z^{*}>0\right\}
$$

be the first Cartan domain.
The compact dual of $D_{l}[k, n]$ is the complex Grassmannian $\operatorname{Grass}_{k}\left(\mathbb{C}^{n+k}\right)$ endowed with the Fubini-Study form $\omega_{F S}$. More precisely,

$$
D_{I}[k, n] \stackrel{\text { Harish-Chandra }}{C} M_{k, n}(\mathbb{C})=\mathbb{C}^{k n} \stackrel{\text { Borel }}{C} \operatorname{Grass}_{k}\left(\mathbb{C}^{n+k}\right) \stackrel{P=\text { Plucker }}{\hookrightarrow} \mathbb{C} P^{N}
$$

$N=\binom{n+k}{k}-1$,

The first Cartan domain and the complex Grassmannian

Let

$$
D_{l}[k, n]=\left\{Z \in M_{k, n}(\mathbb{C}) \mid I_{k}-Z Z^{*}>0\right\}
$$

be the first Cartan domain.
The compact dual of $D_{l}[k, n]$ is the complex Grassmannian $\operatorname{Grass}_{k}\left(\mathbb{C}^{n+k}\right)$ endowed with the Fubini-Study form $\omega_{F S}$. More precisely,

$$
D_{I}[k, n] \stackrel{\text { Harish-Chandra }}{\subset} M_{k, n}(\mathbb{C})=\mathbb{C}^{k n} \stackrel{\text { Borel }}{\subset} \operatorname{Grass}_{k}\left(\mathbb{C}^{n+k}\right) \stackrel{P=\text { Plucker }}{\hookrightarrow} \mathbb{C} P^{N}
$$

$$
N=\binom{n+k}{k}-1
$$

$$
\begin{gathered}
\omega_{F S}=P^{*} \Omega_{F S},\left.\omega_{F S}\right|_{\mathbb{C}^{k n}}=\frac{i}{2 \pi} \partial \bar{\partial} \log \operatorname{det}\left(I_{k}+Z Z^{*}\right) \\
\omega_{B e r g}=-2 n \frac{i}{2 \pi} \partial \bar{\partial} \log \operatorname{det}\left(I_{k}-Z Z^{*}\right)
\end{gathered}
$$

(1) Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
(2) Hermitian symmetric spaces
- Definition and some properties
- Duality
(3) Main results: the Gromov width of Hermitian symmetric spaces
- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
(4) Open problems and other symplectic invariants
- Biran's conjecture
- Hofer-Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

Theorem 1

Let $\left(M, \omega_{F S}\right)$ be an irreducible HSSCT endowed with the canonical symplectic (Kähler) form $\omega_{F S}$.

Theorem 1

Let $\left(M, \omega_{F S}\right)$ be an irreducible HSSCT endowed with the canonical symplectic (Kähler) form $\omega_{F S}$. Then

$$
c_{G}\left(M, \omega_{F S}\right)=\pi
$$

Theorem 1

Let $\left(M, \omega_{F S}\right)$ be an irreducible HSSCT endowed with the canonical symplectic (Kähler) form $\omega_{F S}$. Then

$$
c_{G}\left(M, \omega_{F S}\right)=\pi
$$

Theorem 2

Let $\left(M_{i}, \omega_{F S}^{i}\right), i=1, \ldots, r$, be irreducible HSSCT of complex dimension n_{i} endowed with the canonical symplectic (Kähler) forms $\omega_{F S}^{i}$.

Theorem 1

Let $\left(M, \omega_{F S}\right)$ be an irreducible HSSCT endowed with the canonical symplectic (Kähler) form $\omega_{F S}$. Then

$$
c_{G}\left(M, \omega_{F S}\right)=\pi
$$

Theorem 2

Let $\left(M_{i}, \omega_{F S}^{i}\right), i=1, \ldots, r$, be irreducible HSSCT of complex dimension n_{i} endowed with the canonical symplectic (Kähler) forms $\omega_{F S}^{i}$. Then

$$
c_{G}\left(M_{1} \times \cdots \times M_{r}, \omega_{F S}^{1} \oplus \cdots \oplus \omega_{F S}^{r}\right)=\pi .
$$

Theorem 1

Let $\left(M, \omega_{F S}\right)$ be an irreducible HSSCT endowed with the canonical symplectic (Kähler) form $\omega_{F S}$. Then

$$
c_{G}\left(M, \omega_{F S}\right)=\pi
$$

Theorem 2

Let $\left(M_{i}, \omega_{F S}^{i}\right), i=1, \ldots, r$, be irreducible HSSCT of complex dimension n_{i} endowed with the canonical symplectic (Kähler) forms $\omega_{F S}^{i}$. Then

$$
c_{G}\left(M_{1} \times \cdots \times M_{r}, \omega_{F S}^{1} \oplus \cdots \oplus \omega_{F S}^{r}\right)=\pi .
$$

Moreover, if a_{1}, \ldots, a_{r} are nonzero constants,

Theorem 1

Let $\left(M, \omega_{F S}\right)$ be an irreducible HSSCT endowed with the canonical symplectic (Kähler) form $\omega_{F S}$. Then

$$
c_{G}\left(M, \omega_{F S}\right)=\pi
$$

Theorem 2

Let $\left(M_{i}, \omega_{F S}^{i}\right), i=1, \ldots, r$, be irreducible HSSCT of complex dimension n_{i} endowed with the canonical symplectic (Kähler) forms $\omega_{F S}^{i}$. Then

$$
c_{G}\left(M_{1} \times \cdots \times M_{r}, \omega_{F S}^{1} \oplus \cdots \oplus \omega_{F S}^{r}\right)=\pi .
$$

Moreover, if a_{1}, \ldots, a_{r} are nonzero constants, then

$$
c_{G}\left(M_{1} \times \cdots \times M_{r}, a_{1} \omega_{F S}^{1} \oplus \cdots \oplus a_{r} \omega_{F S}^{r}\right) \leq \min \left\{\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right\} \pi .
$$

Remarks on Theorem 1 and Theorem 2

Remarks on Theorem 1 and Theorem 2

Theorem 1 extends (to the case of HSSCT) the results of Y. Karshon, S. Tolman [y. Karshon, s. Tolman, Algebr. Goom. Topol., 2005] when M is the complex Grassmannian.

Remarks on Theorem 1 and Theorem 2

Theorem 1 extends (to the case of HSSCT) the results of Y. Karshon, S. Tolman [y. Karshon, s. Tolman, A1gebr. Geom. Topol., 20055 when M is the complex Grassmannian.

Theorem 2 extends (to the case of HSSCT) G. Lu's results ${ }_{\text {[G. Lu, Israel J. Math., 2006] }}$ when M_{j} are complex Grassmannians.

Remarks on Theorem 1 and Theorem 2

Theorem 1 extends (to the case of HSSCT) the results of Y. Karshon, S. Tolman [y. Karshon, s. Tolman, Algebr. Goom. Topol., 2005] when M is the complex Grassmannian.

Theorem 2 extends (to the case of HSSCT) G. Lu's results [G. Lu, Israel J. Math., 2006] when M_{j} are complex Grassmannians.

When $M_{j}=\mathbb{C} P^{1}$ for all $j=1, \ldots, r$,

$$
c_{G}\left(\mathbb{C} P^{1} \times \cdots \times \mathbb{C} P^{1}, a_{1} \omega_{F S} \oplus \cdots \oplus a_{r} \omega_{F S}\right)=\min \left\{\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right\} \pi
$$

[G. Lu, Israel J. Math., 2006]

Remarks on Theorem 1 and Theorem 2

Theorem 1 extends (to the case of HSSCT) the results of Y. Karshon, S. Tolman [y. Karshon, s. Tolman, Algebr. Goom. Topol., 2005] when M is the complex Grassmannian.

Theorem 2 extends (to the case of HSSCT) G. Lu's results ${ }_{\text {[G. Lu, Israel J. Math., 2006] }}$ when M_{j} are complex Grassmannians.

When $M_{j}=\mathbb{C} P^{1}$ for all $j=1, \ldots, r$,

$$
c_{G}\left(\mathbb{C} P^{1} \times \cdots \times \mathbb{C} P^{1}, a_{1} \omega_{F S} \oplus \cdots \oplus a_{r} \omega_{F S}\right)=\min \left\{\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right\} \pi .
$$

[G. Lu, Israel J. Math., 2006]

$$
c_{G}\left(\mathbb{C} P^{n_{1}} \times \cdots \times \mathbb{C} P^{n_{r}}, a_{1} \omega_{F S}^{1} \oplus \cdots \oplus a_{r} \omega_{F S}^{r}\right)=?
$$

if some $n_{j}>1$ or $\left|a_{j}\right| \neq 1$.

Idea of the proof of Theorem 1: the upper bound

Step 1

Idea of the proof of Theorem 1: the upper bound

Step 1

- The proof of the upper bound $c_{G}\left(M, \omega_{F S}\right) \leq \pi$ is obtained by the computations of some genus-zero three-points Gromov-Witten invariants for irreducible HSSCT [A. Beauville, Mat. Fiz. Anal. Geom. 1995],
[P. E. Chaput, L. Manivel, N. Perrin, Transform. Groups, 2008],
[B. Siebert, G. Tian, Asian J. Math., 1997]

Idea of the proof of Theorem 1: the upper bound

Step 1

- The proof of the upper bound $c_{G}\left(M, \omega_{F S}\right) \leq \pi$ is obtained by the computations of some genus-zero three-points Gromov-Witten invariants for irreducible HSSCT [A. Beauvi1le, Mat. Fiz. Anal. Geom., 1995], [P. E. Chaput, L. Manivel, N. Perrin, Transform. Groups, 2008], [B. Siebert, G. Tian, Asian J. Math., 1997] and through nonsqueezing theorem techinques using and extending the ideas in
[y. Karshon, s. Tolman, Algebr. Geom. Topol., 2005] for the complex Grassmannian.

```
details
```


Idea of the proof of Theorem 1: the lower bound

Step 2 The lower bound $c_{G}\left(M, \omega_{F S}\right) \geq \pi$ is obtained as follows.

Idea of the proof of Theorem 1: the lower bound

Step 2 The lower bound $c_{G}\left(M, \omega_{F S}\right) \geq \pi$ is obtained as follows.

- Let $\left(\Omega, \omega_{0}\right), \Omega \subset \mathbb{C}^{n}$, be the bounded symmetric domain noncompact dual of $\left(M, \omega_{F S}\right)$ equipped with the canonical symplectic form ω_{0} of $\mathbb{R}^{2 n}$.

Idea of the proof of Theorem 1: the lower bound

Step 2 The lower bound $c_{G}\left(M, \omega_{F S}\right) \geq \pi$ is obtained as follows.

- Let $\left(\Omega, \omega_{0}\right), \Omega \subset \mathbb{C}^{n}$, be the bounded symmetric domain noncompact dual of $\left(M, \omega_{F S}\right)$ equipped with the canonical symplectic form ω_{0} of $\mathbb{R}^{2 n}$. Then there exists a symplectic embedding

$$
\Phi_{\Omega}:\left(\Omega, \omega_{0}\right) \rightarrow\left(M, \omega_{F S}\right)
$$

Idea of the proof of Theorem 1: the lower bound

Step 2 The lower bound $c_{G}\left(M, \omega_{F S}\right) \geq \pi$ is obtained as follows.

- Let $\left(\Omega, \omega_{0}\right), \Omega \subset \mathbb{C}^{n}$, be the bounded symmetric domain noncompact dual of $\left(M, \omega_{F S}\right)$ equipped with the canonical symplectic form ω_{0} of $\mathbb{R}^{2 n}$. Then there exists a symplectic embedding

$$
\Phi_{\Omega}:\left(\Omega, \omega_{0}\right) \rightarrow\left(M, \omega_{F S}\right)
$$

\checkmark go to Example [A. J. Di Scala, AL, Symplectic duality of Symmetric Spaces, Adv.Math., 2008]

- Using Jordan triple systems tools one can prove that there exists a symplectic embedding

$$
\left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right)
$$

Idea of the proof of Theorem 1: the lower bound

Step 2 The lower bound $c_{G}\left(M, \omega_{F S}\right) \geq \pi$ is obtained as follows.

- Let $\left(\Omega, \omega_{0}\right), \Omega \subset \mathbb{C}^{n}$, be the bounded symmetric domain noncompact dual of $\left(M, \omega_{F S}\right)$ equipped with the canonical symplectic form ω_{0} of $\mathbb{R}^{2 n}$. Then there exists a symplectic embedding

$$
\Phi_{\Omega}:\left(\Omega, \omega_{0}\right) \rightarrow\left(M, \omega_{F S}\right)
$$

\checkmark go to Example [A. J. Di Scala, AL, Symplectic duality of Symmetric Spaces, Adv.Math., 2008]

- Using Jordan triple systems tools one can prove that there exists a symplectic embedding

$$
\left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right) \xrightarrow{\Phi_{f}}\left(M, \omega_{F S}\right)
$$

Idea of the proof of Theorem 1: the lower bound

Step 2 The lower bound $c_{G}\left(M, \omega_{F S}\right) \geq \pi$ is obtained as follows.

- Let $\left(\Omega, \omega_{0}\right), \Omega \subset \mathbb{C}^{n}$, be the bounded symmetric domain noncompact dual of $\left(M, \omega_{F S}\right)$ equipped with the canonical symplectic form ω_{0} of $\mathbb{R}^{2 n}$. Then there exists a symplectic embedding

$$
\Phi_{\Omega}:\left(\Omega, \omega_{0}\right) \rightarrow\left(M, \omega_{F S}\right)
$$

\downarrow go to Example [A. J. Di Scala, AL, Symplectic duality of Symmetric Spaces, Adv.Math., 2008]

- Using Jordan triple systems tools one can prove that there exists a symplectic embedding

$$
\left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right) \xrightarrow{\Phi_{f}}\left(M, \omega_{F S}\right) \Rightarrow c_{G}\left(M, \omega_{F S}\right) \geq \pi .
$$

Idea of the proof of Theorem 1: the lower bound

Step 2 The lower bound $c_{G}\left(M, \omega_{F S}\right) \geq \pi$ is obtained as follows.

- Let $\left(\Omega, \omega_{0}\right), \Omega \subset \mathbb{C}^{n}$, be the bounded symmetric domain noncompact dual of $\left(M, \omega_{F S}\right)$ equipped with the canonical symplectic form ω_{0} of $\mathbb{R}^{2 n}$. Then there exists a symplectic embedding

$$
\Phi_{\Omega}:\left(\Omega, \omega_{0}\right) \rightarrow\left(M, \omega_{F S}\right)
$$

\checkmark go to Example [A. J. Di Scala, AL, Symplectic duality of Symmetric Spaces, Adv.Math., 2008]

- Using Jordan triple systems tools one can prove that there exists a symplectic embedding

$$
\left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right) \xrightarrow{\Phi_{f}}\left(M, \omega_{F S}\right) \Rightarrow c_{G}\left(M, \omega_{F S}\right) \geq \pi .
$$

The embedding Φ_{Ω} induces a global symplectomorphism

$$
\left(\Omega, \omega_{0}\right) \xrightarrow{\Phi_{\Omega}}\left(M \backslash \operatorname{Cut}_{0}(M) \cong \mathbb{C}^{n}, \omega_{F S}\right) \stackrel{\text { Borel }}{\subset}\left(M, \omega_{F S}\right) \xrightarrow{B W}\left(\mathbb{C} P^{N}, \omega_{F S}\right)
$$

Idea of the proof of Theorem 2

Steps

Idea of the proof of Theorem 2

Steps

- The lower bound $c_{G}\left(M_{1} \times \cdots \times M_{r}, \omega_{F S}^{1} \oplus \cdots \oplus \omega_{F S}^{r}\right) \geq \pi$ is obtained by (motonicity) + (nontriviality) of c_{G} and the embeddings

$$
B^{2 n_{1}+\cdots+2 n_{r}}(1) \subset \times_{j=1}^{r} B^{2 n_{j}}(1) \subset \times_{j=1}^{r} \Omega_{j} \stackrel{\Phi_{\Omega_{1}} \times \cdots \times \Phi_{\Omega_{r}}}{\longrightarrow} \times_{j=1}^{r} M_{j}
$$

Idea of the proof of Theorem 2

Steps

- The lower bound $c_{G}\left(M_{1} \times \cdots \times M_{r}, \omega_{F S}^{1} \oplus \cdots \oplus \omega_{F S}^{r}\right) \geq \pi$ is obtained by (motonicity) + (nontriviality) of c_{G} and the embeddings

$$
B^{2 n_{1}+\cdots+2 n_{r}}(1) \subset \times_{j=1}^{r} B^{2 n_{j}}(1) \subset \times_{j=1}^{r} \Omega_{j} \stackrel{\Phi_{\Omega_{1}} \times \cdots \times \Phi_{\Omega_{r}}}{\longrightarrow} \times_{j=1}^{r} M_{j}
$$

- The upper bound

$$
c_{G}\left(M_{1} \times \cdots \times M_{r}, a_{1} \omega_{F S}^{1} \oplus \cdots \oplus a_{r} \omega_{F S}^{r}\right) \leq \min \left\{\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right\} \pi
$$

and hence $c_{G}\left(M_{1} \times \cdots \times M_{r}, \omega_{F S}^{1} \oplus \cdots \oplus \omega_{F S}^{r}\right) \leq \pi$ is obtained by combining $c_{G}\left(M_{j}, \omega_{F S}^{j}\right) \leq \pi$ with the following theorem.

Theorem

Let $\left(M, \omega_{F S}\right)$ be an irreducible HSSCT and (N, ω) be any closed symplectic manifold. Then, for any nonzero real number a,

$$
c_{G}\left(N \times M, \omega \oplus a \omega_{F S}\right) \leq|a| \pi .
$$

Theorem

Let $\left(M, \omega_{F S}\right)$ be an irreducible HSSCT and (N, ω) be any closed symplectic manifold. Then, for any nonzero real number a,

$$
c_{G}\left(N \times M, \omega \oplus a \omega_{F S}\right) \leq|a| \pi .
$$

Remark

The proof of the theorem uses Lu's pseudo symplectic capacities and their estimation in terms of Gromov-Witten invariants.
(1) Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
(2) Hermitian symmetric spaces
- Definition and some properties
- Duality
(3) Main results: the Gromov width of Hermitian symmetric spaces
- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
(4) Open problems and other symplectic invariants
- Biran's conjecture
- Hofer-Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

Theorem 3

Let $\Omega \subset \mathbb{C}^{n}$ be a bounded symmetric domain.

Theorem 3

Let $\Omega \subset \mathbb{C}^{n}$ be a bounded symmetric domain. Then

$$
c_{G}\left(\Omega, \omega_{0}\right)=\pi .
$$

Theorem 3

Let $\Omega \subset \mathbb{C}^{n}$ be a bounded symmetric domain. Then

$$
c_{G}\left(\Omega, \omega_{0}\right)=\pi .
$$

Theorem 4

Let $\Omega_{i} \subset \mathbb{C}^{n_{i}}, i=1, \ldots, r$, be bounded symmetric domains of complex dimension n_{i} equipped with the standard symplectic form ω_{0}^{i} of $\mathbb{R}^{2 n_{i}}=\mathbb{C}^{n_{i}}$.

Theorem 3

Let $\Omega \subset \mathbb{C}^{n}$ be a bounded symmetric domain. Then

$$
c_{G}\left(\Omega, \omega_{0}\right)=\pi
$$

Theorem 4

Let $\Omega_{i} \subset \mathbb{C}^{n_{i}}, i=1, \ldots, r$, be bounded symmetric domains of complex dimension n_{i} equipped with the standard symplectic form ω_{0}^{i} of $\mathbb{R}^{2 n_{i}}=\mathbb{C}^{n_{i}}$. Then

$$
c_{G}\left(\Omega_{1} \times \cdots \times \Omega_{r}, \omega_{0}^{1} \oplus \cdots \oplus \omega_{0}^{r}\right)=\pi
$$

Theorem 3

Let $\Omega \subset \mathbb{C}^{n}$ be a bounded symmetric domain. Then

$$
c_{G}\left(\Omega, \omega_{0}\right)=\pi
$$

Theorem 4

Let $\Omega_{i} \subset \mathbb{C}^{n_{i}}, i=1, \ldots, r$, be bounded symmetric domains of complex dimension n_{i} equipped with the standard symplectic form ω_{0}^{i} of $\mathbb{R}^{2 n_{i}}=\mathbb{C}^{n_{i}}$. Then

$$
c_{G}\left(\Omega_{1} \times \cdots \times \Omega_{r}, \omega_{0}^{1} \oplus \cdots \oplus \omega_{0}^{r}\right)=\pi
$$

Moreover, If a_{1}, \ldots, a_{r} are nonzero constants,

Theorem 3

Let $\Omega \subset \mathbb{C}^{n}$ be a bounded symmetric domain. Then

$$
c_{G}\left(\Omega, \omega_{0}\right)=\pi
$$

Theorem 4

Let $\Omega_{i} \subset \mathbb{C}^{n_{i}}, i=1, \ldots, r$, be bounded symmetric domains of complex dimension n_{i} equipped with the standard symplectic form ω_{0}^{i} of $\mathbb{R}^{2 n_{i}}=\mathbb{C}^{n_{i}}$. Then

$$
c_{G}\left(\Omega_{1} \times \cdots \times \Omega_{r}, \omega_{0}^{1} \oplus \cdots \oplus \omega_{0}^{r}\right)=\pi
$$

Moreover, If a_{1}, \ldots, a_{r} are nonzero constants, then

$$
c_{G}\left(\Omega_{1} \times \cdots \times \Omega_{r}, a_{1} \omega_{0}^{1} \oplus \cdots \oplus a_{r} \omega_{0}^{r}\right) \leq \min \left\{\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right\} \pi
$$

Remarks on Theorem 3 and Theorem 4

Remarks on Theorem 3 and Theorem 4

Theorem 3 extends to the product of HSSNT (including the exceptional ones) the results in [G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007] valid for classical Cartan domains.

Remarks on Theorem 3 and Theorem 4

Theorem 3 extends to the product of HSSNT (including the exceptional ones) the results in [G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007] valid for classical Cartan domains.

Notice that

$$
c_{G}\left(\Omega, \omega_{\text {Berg }}\right)=+\infty .
$$

Remarks on Theorem 3 and Theorem 4

Theorem 3 extends to the product of HSSNT (including the exceptional ones) the results in [G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007] valid for classical Cartan domains.

Notice that

$$
c_{G}\left(\Omega, \omega_{\text {Berg }}\right)=+\infty .
$$

Indeed, by the following result of D. McDuff [D. McDuff, J. Diff. Geometry, 1988] $\left(\Omega, \omega_{\text {Berg }}\right)$ is globally symplectomorphic to $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.

Remarks on Theorem 3 and Theorem 4

Theorem 3 extends to the product of HSSNT (including the exceptional ones) the results in [G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007] valid for classical Cartan domains.

Notice that

$$
c_{G}\left(\Omega, \omega_{\text {Berg }}\right)=+\infty .
$$

Indeed, by the following result of D. McDuff [D. McDuff, J. Diff. Geometry, 1988] $\left(\Omega, \omega_{\text {Berg }}\right)$ is globally symplectomorphic to $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.

Theorem (McDuff)

Let (M, ω) be a Kähler manifold. Assume that $\pi_{1}(M)=\{1\}, M$ is complete and $K \leq 0$. Then there exists a symplectomorphism

$$
\psi:(M, \omega) \rightarrow\left(\mathbb{R}^{2 n}, \omega_{0}\right) .
$$

The proof of Theorem 3

The proof of Theorem 3

$$
\left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right) \xrightarrow{\Phi_{\Omega}}\left(M, \omega_{F S}\right)
$$

The proof of Theorem 3

$$
\left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right) \xrightarrow{\Phi_{\Omega}}\left(M, \omega_{F S}\right), c_{G}\left(B^{2 n}(1), \omega_{0}\right)=c_{G}\left(M, \omega_{F S}\right) \stackrel{T h 1}{=} \pi
$$

The proof of Theorem 3

$$
\left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right) \xrightarrow{\Phi_{\Omega}}\left(M, \omega_{F S}\right), c_{G}\left(B^{2 n}(1), \omega_{0}\right)=c_{G}\left(M, \omega_{F S}\right) \stackrel{T h 1}{=} \pi
$$

The proof of Theorem 3

$$
\begin{aligned}
& \left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right) \xrightarrow{\Phi_{\Omega}}\left(M, \omega_{F S}\right), c_{G}\left(B^{2 n}(1), \omega_{0}\right)=c_{G}\left(M, \omega_{F S}\right) \stackrel{T h 1}{=} \pi \\
& \Rightarrow c_{G}\left(\Omega, \omega_{0}\right)=\pi
\end{aligned}
$$

The proof of Theorem 3

$$
\begin{aligned}
& \left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right) \xrightarrow{\Phi_{\mathcal{R}}}\left(M, \omega_{F S}\right), c_{G}\left(B^{2 n}(1), \omega_{0}\right)=c_{G}\left(M, \omega_{F S}\right) \stackrel{T h 1}{=} \pi \\
& \Rightarrow c_{G}\left(\Omega, \omega_{0}\right)=\pi
\end{aligned}
$$

The proof of Theorem 4

The proof of Theorem 3

$$
\begin{aligned}
& \left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right) \xrightarrow{\Phi_{\Omega}}\left(M, \omega_{F S}\right), c_{G}\left(B^{2 n}(1), \omega_{0}\right)=c_{G}\left(M, \omega_{F S}\right) \stackrel{T h 1}{=} \pi \\
& \Rightarrow c_{G}\left(\Omega, \omega_{0}\right)=\pi
\end{aligned}
$$

The proof of Theorem 4

$$
B^{2 n_{1}+\cdots+2 n_{r}}(1) \subset \times_{j=1}^{r} B^{2 n_{j}}(1) \subset \times_{j=1}^{r} \Omega_{j} \xrightarrow{\Phi_{\Omega_{1}} \times \cdots \times \Phi_{\Omega_{r}}} \times_{j=1}^{r} M_{j}
$$

The proof of Theorem 3

$$
\begin{aligned}
& \left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right) \xrightarrow{\Phi_{\Omega}}\left(M, \omega_{F S}\right), c_{G}\left(B^{2 n}(1), \omega_{0}\right)=c_{G}\left(M, \omega_{F S}\right) \stackrel{T h 1}{=} \pi \\
& \Rightarrow c_{G}\left(\Omega, \omega_{0}\right)=\pi
\end{aligned}
$$

The proof of Theorem 4

$$
\begin{gathered}
B^{2 n_{1}+\cdots+2 n_{r}}(1) \subset \times_{j=1}^{r} B^{2 n_{j}}(1) \subset \times_{j=1}^{r} \Omega_{j} \stackrel{\Phi_{\Omega_{1}} \times \cdots \times \Phi_{\Omega_{r}}}{\longrightarrow} \times_{j=1}^{r} M_{j} \\
c_{G}\left(B^{2 n_{1}+\cdots+2 n_{r}}(1), \omega_{0}\right)=c_{G}\left(M_{1} \times \cdots \times M_{r}, \omega_{F S}^{1} \oplus \cdots \oplus \omega_{F S}^{r}\right) \stackrel{T h 2}{=} \pi
\end{gathered}
$$

The proof of Theorem 3

$$
\begin{aligned}
& \left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right) \xrightarrow{\Phi_{\Omega}}\left(M, \omega_{F S}\right), c_{G}\left(B^{2 n}(1), \omega_{0}\right)=c_{G}\left(M, \omega_{F S}\right) \stackrel{T h 1}{=} \pi \\
& \Rightarrow c_{G}\left(\Omega, \omega_{0}\right)=\pi
\end{aligned}
$$

The proof of Theorem 4

$$
\begin{gathered}
B^{2 n_{1}+\cdots+2 n_{r}}(1) \subset \times_{j=1}^{r} B^{2 n_{j}}(1) \subset \times_{j=1}^{r} \Omega_{j} \stackrel{\Phi_{\Omega_{1}} \times \cdots \times \Phi_{\Omega_{r}}}{\longrightarrow} \times_{j=1}^{r} M_{j} \\
c_{G}\left(B^{2 n_{1}+\cdots+2 n_{r}}(1), \omega_{0}\right)=c_{G}\left(M_{1} \times \cdots \times M_{r}, \omega_{F S}^{1} \oplus \cdots \oplus \omega_{F S}^{r}\right) \stackrel{T h 2}{=} \pi
\end{gathered}
$$

The proof of Theorem 3

$$
\begin{aligned}
& \left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right) \xrightarrow{\Phi_{\Omega}}\left(M, \omega_{F S}\right), c_{G}\left(B^{2 n}(1), \omega_{0}\right)=c_{G}\left(M, \omega_{F S}\right) \stackrel{T h 1}{=} \pi \\
& \Rightarrow c_{G}\left(\Omega, \omega_{0}\right)=\pi
\end{aligned}
$$

The proof of Theorem 4

$$
\begin{aligned}
& \quad B^{2 n_{1}+\cdots+2 n_{r}}(1) \subset \times_{j=1}^{r} B^{2 n_{j}}(1) \subset \times_{j=1}^{r} \Omega_{j} \stackrel{\Phi_{\Omega_{1}} \times \cdots \times \Phi_{\Omega_{r}}}{\longrightarrow} \times_{j=1}^{r} M_{j} \\
& c_{G}\left(B^{2 n_{1}+\cdots+2 n_{r}}(1), \omega_{0}\right)=c_{G}\left(M_{1} \times \cdots \times M_{r}, \omega_{F S}^{1} \oplus \cdots \oplus \omega_{F S}^{r}\right) \stackrel{T h 2}{=} \pi \\
& \Rightarrow \\
& \Rightarrow c_{G}\left(\Omega_{1} \times \cdots \times \Omega_{r}, \omega_{0}^{1} \oplus \cdots \oplus \omega_{0}^{r}\right)=\pi
\end{aligned}
$$

The proof of Theorem 3

$$
\begin{aligned}
& \left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right) \xrightarrow{\Phi_{\Omega}}\left(M, \omega_{F S}\right), c_{G}\left(B^{2 n}(1), \omega_{0}\right)=c_{G}\left(M, \omega_{F S}\right) \stackrel{T h 1}{=} \pi \\
& \Rightarrow c_{G}\left(\Omega, \omega_{0}\right)=\pi
\end{aligned}
$$

The proof of Theorem 4

$$
\begin{gathered}
B^{2 n_{1}+\cdots+2 n_{r}}(1) \subset \times_{j=1}^{r} B^{2 n_{j}}(1) \subset \times_{j=1}^{r} \Omega_{j} \stackrel{\Phi_{\Omega_{1}} \times \cdots \times \Phi_{\Omega_{r}}}{\longrightarrow} \times_{j=1}^{r} M_{j} \\
c_{G}\left(B^{2 n_{1}+\cdots+2 n_{r}}(1), \omega_{0}\right)=c_{G}\left(M_{1} \times \cdots \times M_{r}, \omega_{F S}^{1} \oplus \cdots \oplus \omega_{F S}^{r}\right) \stackrel{T h 2}{=} \pi \\
\Rightarrow c_{G}\left(\Omega_{1} \times \cdots \times \Omega_{r}, \omega_{0}^{1} \oplus \cdots \oplus \omega_{0}^{r}\right)=\pi \\
c_{G}\left(M_{1} \times \cdots \times M_{r}, a_{1} \omega_{F S}^{1} \oplus \cdots \oplus a_{r} \omega_{F S}^{r}\right) \stackrel{T h 2}{\leq} \min \left\{\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right\} \pi
\end{gathered}
$$

The proof of Theorem 3

$$
\begin{aligned}
& \left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right) \xrightarrow{\Phi_{\Omega}}\left(M, \omega_{F S}\right), c_{G}\left(B^{2 n}(1), \omega_{0}\right)=c_{G}\left(M, \omega_{F S}\right) \stackrel{T h 1}{=} \pi \\
& \Rightarrow c_{G}\left(\Omega, \omega_{0}\right)=\pi
\end{aligned}
$$

The proof of Theorem 4

$$
\begin{gathered}
B^{2 n_{1}+\cdots+2 n_{r}}(1) \subset \times_{j=1}^{r} B^{2 n_{j}}(1) \subset \times_{j=1}^{r} \Omega_{j} \stackrel{\Phi_{\Omega_{1}} \times \cdots \times \Phi_{\Omega_{r}}}{\longrightarrow} \times_{j=1}^{r} M_{j} \\
c_{G}\left(B^{2 n_{1}+\cdots+2 n_{r}}(1), \omega_{0}\right)=c_{G}\left(M_{1} \times \cdots \times M_{r}, \omega_{F S}^{1} \oplus \cdots \oplus \omega_{F S}^{r}\right) \stackrel{T h 2}{=} \pi \\
\Rightarrow c_{G}\left(\Omega_{1} \times \cdots \times \Omega_{r}, \omega_{0}^{1} \oplus \cdots \oplus \omega_{0}^{r}\right)=\pi \\
c_{G}\left(M_{1} \times \cdots \times M_{r}, a_{1} \omega_{F S}^{1} \oplus \cdots \oplus a_{r} \omega_{F S}^{r}\right) \stackrel{T h 2}{\leq} \min \left\{\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right\} \pi
\end{gathered}
$$

The proof of Theorem 3

$$
\begin{aligned}
& \left(B^{2 n}(1), \omega_{0}\right) \hookrightarrow\left(\Omega, \omega_{0}\right) \stackrel{\Phi_{\Omega}}{\rightarrow}\left(M, \omega_{F S}\right), c_{G}\left(B^{2 n}(1), \omega_{0}\right)=c_{G}\left(M, \omega_{F S}\right) \stackrel{T h 1}{=} \pi \\
& \Rightarrow c_{G}\left(\Omega, \omega_{0}\right)=\pi
\end{aligned}
$$

The proof of Theorem 4

$$
\begin{gathered}
B^{2 n_{1}+\cdots+2 n_{r}}(1) \subset \times_{j=1}^{r} B^{2 n_{j}}(1) \subset \times_{j=1}^{r} \Omega_{j} \stackrel{\Phi_{\Omega_{1}} \times \cdots \times \Phi_{\Omega_{r}}}{\longrightarrow} \times_{j=1}^{r} M_{j} \\
c_{G}\left(B^{2 n_{1}+\cdots+2 n_{r}}(1), \omega_{0}\right)=c_{G}\left(M_{1} \times \cdots \times M_{r}, \omega_{F S}^{1} \oplus \cdots \oplus \omega_{F S}^{r}\right) \stackrel{T h 2}{=} \pi \\
\Rightarrow c_{G}\left(\Omega_{1} \times \cdots \times \Omega_{r}, \omega_{0}^{1} \oplus \cdots \oplus \omega_{0}^{r}\right)=\pi \\
c_{G}\left(M_{1} \times \cdots \times M_{r}, a_{1} \omega_{F S}^{1} \oplus \cdots \oplus a_{r} \omega_{F S}^{r}\right) \stackrel{T h 2}{\leq} \min \left\{\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right\} \pi \\
\Rightarrow c_{G}\left(\Omega_{1} \times \cdots \times \Omega_{r}, a_{1} \omega_{0}^{1} \oplus \cdots \oplus a_{r} \omega_{0}^{r}\right) \leq \min \left\{\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right\} \pi .
\end{gathered}
$$

(1) Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
(2) Hermitian symmetric spaces
- Definition and some properties
- Duality
(3) Main results: the Gromov width of Hermitian symmetric spaces
- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
(4) Open problems and other symplectic invariants
- Biran's conjecture
- Hofer-Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

Theorem 5

Theorem 5

Let $\Omega \subset \mathbb{C}^{n}$ be a bounded symmetric domain.

Theorem 5

Let $\Omega \subset \mathbb{C}^{n}$ be a bounded symmetric domain. Then

$$
c\left(\Omega, \omega_{0}\right)=\pi
$$

for any symplectic capacity c.

Theorem 5

Let $\Omega \subset \mathbb{C}^{n}$ be a bounded symmetric domain. Then

$$
c\left(\Omega, \omega_{0}\right)=\pi
$$

for any symplectic capacity c.
Idea of the proof

Theorem 5

Let $\Omega \subset \mathbb{C}^{n}$ be a bounded symmetric domain. Then

$$
c\left(\Omega, \omega_{0}\right)=\pi
$$

for any symplectic capacity c.

Idea of the proof

Using Jordan triple systems tools one can prove that

$$
B^{2 n}(1) \subset \Omega \subset Z^{2 n}(1)
$$

Theorem 5

Let $\Omega \subset \mathbb{C}^{n}$ be a bounded symmetric domain. Then

$$
c\left(\Omega, \omega_{0}\right)=\pi
$$

for any symplectic capacity c.

Idea of the proof

Using Jordan triple systems tools one can prove that

$$
B^{2 n}(1) \subset \Omega \subset Z^{2 n}(1)
$$

Hence the conclusion follows by (monotonicity) + (nontriviality) of c.
(1) Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
(2) Hermitian symmetric spaces
- Definition and some properties
- Duality
(3) Main results: the Gromov width of Hermitian symmetric spaces
- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5

4 Open problems and other symplectic invariants

- Biran's conjecture
- Hofer-Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

Biran's conjecture

Biran's conjecture

Let (M, ω) be a closed symplectic manifold with $[\omega] \in H^{2}(M, \mathbb{Z})$.

Biran's conjecture

Let (M, ω) be a closed symplectic manifold with $[\omega] \in H^{2}(M, \mathbb{Z})$. Then $c_{G}(M, \omega) \geq \pi$.
(1) Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
(2) Hermitian symmetric spaces
- Definition and some properties
- Duality
(3) Main results: the Gromov width of Hermitian symmetric spaces
- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5

4 Open problems and other symplectic invariants

- Biran's conjecture
- Hofer-Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

Hofer-Zehnder capacity c HZ

Hofer-Zehnder capacity CHz

In [H. Hofer, E. Zehnder, A new capacity for symplectic manifolds, Academic Press, New York 1990] Hofer and Zehnder defines a symplectic capacity $C_{H Z}$, which satisfies

$$
c_{H Z}(M, \omega) \geq c(M, \omega)
$$

for all symplectic capacity c.

Known results on CHz

Known results on CHZ

Theorem (Hofer-Viterbo)

$c_{H Z}\left(\mathbb{C} P^{n}, \omega_{F S}\right)=\pi$
[H. Hofer and C. Viterbo, The Weinstein conjecture...., Comm. Pure and Applied Math. 45, 1992]

Known results on CHz

Theorem (Hofer-Viterbo)

$$
c_{H Z}\left(\mathbb{C} P^{n}, \omega_{F S}\right)=\pi
$$

[H. Hofer and C. Viterbo, The Weinstein conjecture...., Comm. Pure and Applied Math. 45, 1992]

Theorem (Lu)

Let $a_{j} \neq 0, j=1, \ldots r$. Then

$$
c_{H Z}\left(\mathbb{C} P^{n_{1}} \times \cdots \times \mathbb{C} P^{n_{r}}, a_{1} \omega_{F S}^{1} \oplus \cdots \oplus a_{r} \omega_{F S}^{r}\right)=\left(\left|a_{1}\right|+\cdots+\left|a_{r}\right|\right) \pi .
$$

[G. Lu, Israel J. Math., 2006].

Results on CHZ

Results on CHZ

Theorem 6

Let $\left(M_{i}, \omega_{F S}^{i}\right), i=1, \ldots, r$, be irreducible HSSCT of complex dimension n_{i}

Results on CHZ

Theorem 6

Let $\left(M_{i}, \omega_{F S}^{i}\right), i=1, \ldots, r$, be irreducible HSSCT of complex dimension n_{i} Then

$$
c_{H Z}\left(M_{1} \times \cdots \times M_{r}, a_{1} \omega_{F S}^{1} \oplus \cdots \oplus a_{r} \omega_{F S}^{r}\right) \geq\left\{\left|a_{1}\right|+\cdots+\left|a_{r}\right|\right\} \pi
$$

Results on CHZ

Theorem 6

Let $\left(M_{i}, \omega_{F S}^{i}\right), i=1, \ldots, r$, be irreducible HSSCT of complex dimension n_{i} Then

$$
c_{H Z}\left(M_{1} \times \cdots \times M_{r}, a_{1} \omega_{F S}^{1} \oplus \cdots \oplus a_{r} \omega_{F S}^{r}\right) \geq\left\{\left|a_{1}\right|+\cdots+\left|a_{r}\right|\right\} \pi
$$

Remark

Theorem 6 extends a theorem of $L u$ when M_{j} are complex Grassmannians.

Results on CHZ

Theorem 6

Let $\left(M_{i}, \omega_{F S}^{i}\right), i=1, \ldots, r$, be irreducible HSSCT of complex dimension n_{i} Then

$$
c_{H Z}\left(M_{1} \times \cdots \times M_{r}, a_{1} \omega_{F S}^{1} \oplus \cdots \oplus a_{r} \omega_{F S}^{r}\right) \geq\left\{\left|a_{1}\right|+\cdots+\left|a_{r}\right|\right\} \pi
$$

Remark

Theorem 6 extends a theorem of $L u$ when M_{j} are complex Grassmannians.

Open problem

$$
c_{H Z}\left(M, \omega_{F S}\right)=?
$$

(1) Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
(2) Hermitian symmetric spaces
- Definition and some properties
- Duality
(3) Main results: the Gromov width of Hermitian symmetric spaces
- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
(4) Open problems and other symplectic invariants
- Biran's conjecture
- Hofer-Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

The symplectic Lusternik-Schnirelmann category

The symplectic Lusternik-Schnirelmann category

Let (N, ω) be a closed symplectc manifold. The symplectic Lusternik-Schnirelmann category $S(N, \omega)$
[Y. B. Rudyak, F. Sch1enk, Commun. Contemp. Math., 2007] is defined as

$$
S(N, \omega)=\min \left\{k \mid N=V_{1} \cup \cdots \cup V_{k}\right\}
$$

The symplectic Lusternik-Schnirelmann category

Let (N, ω) be a closed symplectc manifold. The symplectic Lusternik-Schnirelmann category $S(N, \omega)$
[Y. B. Rudyak, F. Sch1enk, commun. Contemp. Math., 2007] is defined as

$$
S(N, \omega)=\min \left\{k \mid N=V_{1} \cup \cdots \cup V_{k}\right\}
$$

where each $V_{i}=\Phi_{i}\left(U_{i}\right)$ by a symplectic embedding $\Phi_{i}: U_{i} \rightarrow V_{i} \subset N, U_{i}$ bounded subset of $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ diffeomorphic to an open ball in $\mathbb{R}^{2 n}$.

The symplectic Lusternik-Schnirelmann category

Let (N, ω) be a closed symplectc manifold. The symplectic Lusternik-Schnirelmann category $S(N, \omega)$
[Y. B. Rudyak, F. Sch1enk, commun. Contemp. Math., 2007] is defined as

$$
S(N, \omega)=\min \left\{k \mid N=V_{1} \cup \cdots \cup V_{k}\right\}
$$

where each $V_{i}=\Phi_{i}\left(U_{i}\right)$ by a symplectic embedding $\Phi_{i}: U_{i} \rightarrow V_{i} \subset N, U_{i}$ bounded subset of $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ diffeomorphic to an open ball in $\mathbb{R}^{2 n}$.

Theorem 7

Let $\left(M, \omega_{F S}\right)$ be an irreducible HSSCT and $B W: M \rightarrow \mathbb{C} P^{N}$ the Borel-Weil embedding.

The symplectic Lusternik-Schnirelmann category

Let (N, ω) be a closed symplectc manifold. The symplectic Lusternik-Schnirelmann category $S(N, \omega)$
[Y. B. Rudyak, F. Sch1enk, Commun. Contemp. Math., 2007] is defined as

$$
S(N, \omega)=\min \left\{k \mid N=V_{1} \cup \cdots \cup V_{k}\right\}
$$

where each $V_{i}=\Phi_{i}\left(U_{i}\right)$ by a symplectic embedding $\Phi_{i}: U_{i} \rightarrow V_{i} \subset N, U_{i}$ bounded subset of $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ diffeomorphic to an open ball in $\mathbb{R}^{2 n}$.

Theorem 7

Let $\left(M, \omega_{F S}\right)$ be an irreducible HSSCT and $B W: M \rightarrow \mathbb{C} P^{N}$ the Borel-Weil embedding. Then

$$
S\left(M, \omega_{F S}\right) \leq N+1
$$

(1) Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
(2) Hermitian symmetric spaces
- Definition and some properties
- Duality
(3) Main results: the Gromov width of Hermitian symmetric spaces
- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5

4 Open problems and other symplectic invariants

- Biran's conjecture
- Hofer-Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

Darboux charts

Darboux charts

Let (M, ω) be a closed symplectic manifold. By Darboux theorem for each point $p \in M$ there exists a symplectic embedding $\varphi:\left(B^{2 n}(r), \omega_{0}\right) \rightarrow(M, \omega)$, for some $r>0$. One calls $\left(B^{2 n}(r), \varphi\right)$ a Darboux chart. [Y. B. Rudyak, F. Schlenk, commun. Contemp. Math., 2007] .

Darboux charts

Let (M, ω) be a closed symplectic manifold. By Darboux theorem for each point $p \in M$ there exists a symplectic embedding $\varphi:\left(B^{2 n}(r), \omega_{0}\right) \rightarrow(M, \omega)$, for some $r>0$. One calls $\left(B^{2 n}(r), \varphi\right)$ a
Darboux chart. [y. B. Rudyak, F. Schlenk, Commun. Contemp. Math., 2007] .
Let

$$
S_{B}(M, \omega)=\min \left\{k \mid M=B_{1} \cup \cdots \cup B_{k}\right\}
$$

Darboux charts

Let (M, ω) be a closed symplectic manifold. By Darboux theorem for each point $p \in M$ there exists a symplectic embedding $\varphi:\left(B^{2 n}(r), \omega_{0}\right) \rightarrow(M, \omega)$, for some $r>0$. One calls $\left(B^{2 n}(r), \varphi\right)$ a Darboux chart. [y. B. Rudyak, F. Schlenk, Commun. Contemp. Math., 2007] . Let

$$
S_{B}(M, \omega)=\min \left\{k \mid M=B_{1} \cup \cdots \cup B_{k}\right\}
$$

where each B_{i} is the image $\varphi_{i}\left(B^{2 n}\left(r_{i}\right)\right)$ of a Darboux chart.

Darboux charts

Let (M, ω) be a closed symplectic manifold. By Darboux theorem for each point $p \in M$ there exists a symplectic embedding $\varphi:\left(B^{2 n}(r), \omega_{0}\right) \rightarrow(M, \omega)$, for some $r>0$. One calls $\left(B^{2 n}(r), \varphi\right)$ a
Darboux chart. [Y. B. Rudyak, F. Schlenk, Commun. Contemp. Math., 2007] .
Let

$$
S_{B}(M, \omega)=\min \left\{k \mid M=B_{1} \cup \cdots \cup B_{k}\right\}
$$

where each B_{i} is the image $\varphi_{i}\left(B^{2 n}\left(r_{i}\right)\right)$ of a Darboux chart.

Problem

Let $\left(M, \omega_{F S}\right)$ be an irreducible HSSCT. Compute (or estimate) $S_{B}\left(M, \omega_{F S}\right)$.
(1) Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
(2) Hermitian symmetric spaces
- Definition and some properties
- Duality
(3) Main results: the Gromov width of Hermitian symmetric spaces
- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
(4) Open problems and other symplectic invariants
- Biran's conjecture
- Hofer-Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

Symplectic packings

Symplectic packings

For an integer $k>0$ and $r>0$, a symplectic k-packing by balls of radius r of a $2 n$-dimensional symplectic manifold (M, ω) is a set of symplectic embeddings

$$
\varphi_{i}:\left(B^{2 n}(r), \omega_{0}\right) \rightarrow(M, \omega), i=1, \ldots, k
$$

such that $\varphi_{i}\left(B^{2 n}(r)\right) \cap \varphi_{j}\left(B^{2 n}(r)\right)=\emptyset$, for $i \neq j$.

Symplectic packings

For an integer $k>0$ and $r>0$, a symplectic k-packing by balls of radius r of a $2 n$-dimensional symplectic manifold (M, ω) is a set of symplectic embeddings

$$
\varphi_{i}:\left(B^{2 n}(r), \omega_{0}\right) \rightarrow(M, \omega), \quad i=1, \ldots, k
$$

such that $\varphi_{i}\left(B^{2 n}(r)\right) \cap \varphi_{j}\left(B^{2 n}(r)\right)=\emptyset$, for $i \neq j$. A full symplectic k-packing is a symplectic k-packing such that

$$
M=\overline{\cup_{i=1}^{k} \varphi_{i}\left(B^{2 n}(r)\right)}
$$

[Gromov, Inv. Math., 1985], [McDuff, Polterovich and Karshon, Inv. Math., 1994],
[Traynor, J. Diff. Geom., 1995], [Biran, Inv. Math., 1997].

Symplectic packings

For an integer $k>0$ and $r>0$, a symplectic k-packing by balls of radius r of a $2 n$-dimensional symplectic manifold (M, ω) is a set of symplectic embeddings

$$
\varphi_{i}:\left(B^{2 n}(r), \omega_{0}\right) \rightarrow(M, \omega), \quad i=1, \ldots, k
$$

such that $\varphi_{i}\left(B^{2 n}(r)\right) \cap \varphi_{j}\left(B^{2 n}(r)\right)=\emptyset$, for $i \neq j$. A full symplectic k-packing is a symplectic k-packing such that

$$
M=\overline{\cup_{i=1}^{k} \varphi_{i}\left(B^{2 n}(r)\right)}
$$

[Gromov, Inv. Math., 1985], [McDuff, Polterovich and Karshon, Inv. Math., 1994],
[Traynor, J. Diff. Geom., 1995], [Biran, Inv. Math., 1997].

Problem

Studying (full) symplectic k-packings of HSSCT.

Fefferman invariant

Fefferman invariant

Let (M, ω) be a closed symplectic manifold. Its Fefferman invariant $F(M, \omega)$ is the largest integer p for which there exists a symplectic p-packing (not necessarily full) of ball of radius 1 .

Fefferman invariant

Let (M, ω) be a closed symplectic manifold. Its Fefferman invariant $F(M, \omega)$ is the largest integer p for which there exists a symplectic p-packing (not necessarily full) of ball of radius 1 .

When $\operatorname{Grass}_{k}\left(\mathbb{C}^{n}\right)$ G. Lu [c. Lu, Israee1 J. Math., 2006] shows that

$$
F\left(\operatorname{Grass}_{k}\left(\mathbb{C}^{n}\right), \omega_{F S}\right) \leq[n / k]
$$

Fefferman invariant

Let (M, ω) be a closed symplectic manifold. Its Fefferman invariant $F(M, \omega)$ is the largest integer p for which there exists a symplectic p-packing (not necessarily full) of ball of radius 1 .

When $\operatorname{Grass}_{k}\left(\mathbb{C}^{n}\right)$ G. Lu [c. Lu, Israee1 J. Math., 2006] shows that

$$
F\left(\operatorname{Grass}_{k}\left(\mathbb{C}^{n}\right), \omega_{F S}\right) \leq[n / k]
$$

Problem : find a similar upper bound for HSSCT.

THANK YOU FOR YOUR ATTENTION!

- (monotonicity) for c_{G} follows immediately by the definition of Gromov width.
- (monotonicity) for c_{G} follows immediately by the definition of Gromov width.
- Given a symplectic embedding

$$
\varphi:\left(B^{2 n}(r), \omega_{0}\right) \rightarrow(M, \lambda \omega)
$$

it is not hard to construct a symplectic embedding

$$
\hat{\varphi}:\left(B^{2 n}\left(\frac{r}{\sqrt{|\lambda|}}\right), \omega_{0}\right) \rightarrow(M, \omega)
$$

and viceversa. Thus (conformality) for c_{G} follows by the definition of Gromov width. ge back

Lemma

Let (M, ω) be a monotone symplectic manifold (i.e. there exists $\lambda>0$ such that

$$
\omega(B)=\lambda c_{1}(M)(B)
$$

for all spherical classes $\left.B=\left[\mathbb{C} P^{1}\right] \in H^{2}(M, \mathbb{Z})\right)$. Let $A \in H_{2}(M, \mathbb{Z})$ be an indecomposable spherical class. (it cannot be decomposed as a sum $A=A_{1}+\cdots+A_{k}, k \geq 2$, of classes which are spherical and satisfy $\omega\left(A_{i}\right)>0$ for $\left.i=1, \ldots, k\right)$. Let $p t$ denote the homology class of a point. Suppose that there exist submanifolds X and Y of M such that

$$
\operatorname{dim} X+\operatorname{dim} Y=4 n-2 c_{1}(M)(A)
$$

and so that

$$
\Phi_{A}(p t,[X],[Y]) \neq 0 .
$$

If $\pi r^{2}>\omega(A)=\int_{A} \omega$, there does not exist a symplectic embedding of $\left(B^{2 n}(r), \omega_{0}\right)$ into (M, ω).

Example: symplectic embedding of the first Cartan domain into its complex dual $\operatorname{Grass}_{k}\left(\mathbb{C}^{n+k}\right)$

Example: symplectic embedding of the first Cartan domain into its complex dual Grass $_{k}\left(\mathbb{C}^{n+k}\right)$

Let

$$
D_{l}[k, n]=\left\{Z \in M_{k, n}(\mathbb{C}) \mid I_{k}-Z Z^{*}>0\right\}
$$

be the first Cartan domain.

Example: symplectic embedding of the first Cartan domain into its complex dual $\operatorname{Grass}_{k}\left(\mathbb{C}^{n+k}\right)$

Let

$$
D_{l}[k, n]=\left\{Z \in M_{k, n}(\mathbb{C}) \mid I_{k}-Z Z^{*}>0\right\}
$$

be the first Cartan domain.
The compact dual of $D_{l}[k, n]$ is the complex Grassmannian

$$
\left(\operatorname{Grass}_{k}\left(\mathbb{C}^{n+k}\right), \omega_{F S}\right)
$$

Example: symplectic embedding of the first Cartan domain into its complex dual $\operatorname{Grass}_{k}\left(\mathbb{C}^{n+k}\right)$

Let

$$
D_{l}[k, n]=\left\{Z \in M_{k, n}(\mathbb{C}) \mid I_{k}-Z Z^{*}>0\right\}
$$

be the first Cartan domain.
The compact dual of $D_{l}[k, n]$ is the complex Grassmannian

$$
\left(\operatorname{Grass}_{k}\left(\mathbb{C}^{n+k}\right), \omega_{F S}\right)
$$

The map

$$
\Phi: D_{l}[k, n] \rightarrow M_{k, n}(\mathbb{C})=\mathbb{C}^{k n} \subset \operatorname{Grass}_{k}\left(\mathbb{C}^{n+k}\right)
$$

defined by

$$
\Phi(Z)=\left(I_{k}-Z Z^{*}\right)^{-\frac{1}{2}} Z
$$

Example: symplectic embedding of the first Cartan domain into its

 complex dual Grassk $\left(\mathbb{C}^{n+k}\right)$Let

$$
D_{l}[k, n]=\left\{Z \in M_{k, n}(\mathbb{C}) \mid I_{k}-Z Z^{*}>0\right\}
$$

be the first Cartan domain.
The compact dual of $D_{l}[k, n]$ is the complex Grassmannian

$$
\left(\operatorname{Grass}_{k}\left(\mathbb{C}^{n+k}\right), \omega_{F S}\right)
$$

The map

$$
\Phi: D_{l}[k, n] \rightarrow M_{k, n}(\mathbb{C})=\mathbb{C}^{k n} \subset \operatorname{Grass}_{k}\left(\mathbb{C}^{n+k}\right)
$$

defined by

$$
\Phi(Z)=\left(I_{k}-Z Z^{*}\right)^{-\frac{1}{2}} Z
$$

is a diffeomorphism such that

$$
\Phi^{*} \omega_{F S}=\omega_{0} .
$$

Pseudo symplectic capacities

A map c^{k} from the set $\mathcal{C}(2 n, k)$ of all tuples $\left(M, \omega ; \alpha_{1}, \ldots, \alpha_{k}\right)$ consisting of a $2 n$-dimensional connected symplectic manifold (M, ω) and k nonzero homology classes $\alpha_{i} \in H_{*}(M ; \mathbb{Q}), i=1, \ldots, k$ to $[0,+\infty]$ is called a k-pseudo symplectic capacity [6. Lu, Israel J. Math., 2006] if it satisfies the following properties:

Pseudo symplectic capacities

A map c^{k} from the set $\mathcal{C}(2 n, k)$ of all tuples $\left(M, \omega ; \alpha_{1}, \ldots, \alpha_{k}\right)$ consisting of a $2 n$-dimensional connected symplectic manifold (M, ω) and k nonzero homology classes $\alpha_{i} \in H_{*}(M ; \mathbb{Q}), i=1, \ldots, k$ to $[0,+\infty]$ is called a k-pseudo symplectic capacity [G. Lu, Israel J. Math., 2006] if it satisfies the following properties:

- (pseudo monotonicity) if there exists a symplectic embedding $\varphi:\left(M, \omega_{1}\right) \rightarrow\left(M, \omega_{2}\right)$ then, for any $\alpha_{i} \in H_{*}\left(M_{1} ; \mathbb{Q}\right), i=1, \ldots, k$,

$$
c^{(k)}\left(M_{1}, \omega_{1} ; \alpha_{1}, \ldots, \alpha_{k}\right) \leq c^{(k)}\left(M_{2}, \omega_{2} ; \varphi_{*}\left(\alpha_{1}\right), \ldots, \varphi_{*}\left(\alpha_{k}\right)\right) ;
$$

Pseudo symplectic capacities

A map c^{k} from the set $\mathcal{C}(2 n, k)$ of all tuples $\left(M, \omega ; \alpha_{1}, \ldots, \alpha_{k}\right)$ consisting of a $2 n$-dimensional connected symplectic manifold (M, ω) and k nonzero homology classes $\alpha_{i} \in H_{*}(M ; \mathbb{Q}), i=1, \ldots, k$ to $[0,+\infty]$ is called a k-pseudo symplectic capacity [G. Lu, Israel J. Math., 2006] if it satisfies the following properties:

- (pseudo monotonicity) if there exists a symplectic embedding $\varphi:\left(M, \omega_{1}\right) \rightarrow\left(M, \omega_{2}\right)$ then, for any $\alpha_{i} \in H_{*}\left(M_{1} ; \mathbb{Q}\right), i=1, \ldots, k$,

$$
c^{(k)}\left(M_{1}, \omega_{1} ; \alpha_{1}, \ldots, \alpha_{k}\right) \leq c^{(k)}\left(M_{2}, \omega_{2} ; \varphi_{*}\left(\alpha_{1}\right), \ldots, \varphi_{*}\left(\alpha_{k}\right)\right) ;
$$

- (conformality) $c^{(k)}\left(M, \lambda \omega ; \alpha_{1}, \ldots, \alpha_{k}\right)=|\lambda| c^{(k)}\left(M, \omega ; \alpha_{1}, \ldots, \alpha_{k}\right)$, for every $\lambda \in \mathbb{R} \backslash\{0\}$ and all homology classes $\alpha_{i} \in H_{*}(M ; \mathbb{Q}) \backslash\{0\}$, $i=1, \ldots, k$;

Pseudo symplectic capacities

A map c^{k} from the set $\mathcal{C}(2 n, k)$ of all tuples $\left(M, \omega ; \alpha_{1}, \ldots, \alpha_{k}\right)$ consisting of a $2 n$-dimensional connected symplectic manifold (M, ω) and k nonzero homology classes $\alpha_{i} \in H_{*}(M ; \mathbb{Q}), i=1, \ldots, k$ to $[0,+\infty]$ is called a k-pseudo symplectic capacity [G. Lu, Israel J. Math., 2006] if it satisfies the following properties:

- (pseudo monotonicity) if there exists a symplectic embedding $\varphi:\left(M, \omega_{1}\right) \rightarrow\left(M, \omega_{2}\right)$ then, for any $\alpha_{i} \in H_{*}\left(M_{1} ; \mathbb{Q}\right), i=1, \ldots, k$,

$$
c^{(k)}\left(M_{1}, \omega_{1} ; \alpha_{1}, \ldots, \alpha_{k}\right) \leq c^{(k)}\left(M_{2}, \omega_{2} ; \varphi_{*}\left(\alpha_{1}\right), \ldots, \varphi_{*}\left(\alpha_{k}\right)\right) ;
$$

- (conformality) $c^{(k)}\left(M, \lambda \omega ; \alpha_{1}, \ldots, \alpha_{k}\right)=|\lambda| c^{(k)}\left(M, \omega ; \alpha_{1}, \ldots, \alpha_{k}\right)$, for every $\lambda \in \mathbb{R} \backslash\{0\}$ and all homology classes $\alpha_{i} \in H_{*}(M ; \mathbb{Q}) \backslash\{0\}$, $i=1, \ldots, k$;
- (nontriviality)
$c^{(k)}\left(B^{2 n}(1), \omega_{0} ; p t, \ldots, p t\right)=\pi=c^{(k)}\left(Z^{2 n}(1), \omega_{0} ; p t, \ldots, p t\right)$, where $p t$ denotes the homology class of a point. ©go back

