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Basic facts on Symplectic Topology Darboux Theorem

Darboux Theorem

Let (M2n, ω) be a symplectic manifold and let ω0 =
∑n

j=1 dxj ∧ dyj be the

standard symplectic form on R2n. Given p ∈ M there exist an open set
Up ⊂ M and a diffeomorphism

ψ : Up → ψ(Up) ⊂ R2n

such that
ψ∗ω0 = ω|Up

Question

How large Up can be taken?

Gromov’s exotic symplectic structures

There exists a symplectic form ω on R2n, n ≥ 2, such that (R2n, ω) cannot
be symplectically embedded into (R2n, ω0). [Gromov, Inv. Math., 1985]
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Basic facts on Symplectic Topology Gromov width

Gromov width

The Gromov width [Gromov, Inv. Math., 1985] of a 2n-dimensional symplectic
manifold (M, ω) is defined as

cG (M, ω) = sup{πr 2 | B2n(r) symplectically embeds into (M, ω)},

where

B2n(r) = {(x , y) ∈ R2n |
n∑

j=1

|xj |2 + |yj |2 < r 2}

is the open ball of radius r in (R2n, ω0).

Remarks

cG > 0 by Darboux theorem.

M compact ⇒ cG (M, ω) <∞.

6 / 52



Basic facts on Symplectic Topology Gromov width

Gromov width

The Gromov width [Gromov, Inv. Math., 1985] of a 2n-dimensional symplectic
manifold (M, ω) is defined as

cG (M, ω) = sup{πr 2 | B2n(r) symplectically embeds into (M, ω)},

where

B2n(r) = {(x , y) ∈ R2n |
n∑

j=1

|xj |2 + |yj |2 < r 2}

is the open ball of radius r in (R2n, ω0).

Remarks

cG > 0 by Darboux theorem.

M compact ⇒ cG (M, ω) <∞.

6 / 52



Basic facts on Symplectic Topology Gromov width

Gromov width

The Gromov width [Gromov, Inv. Math., 1985] of a 2n-dimensional symplectic
manifold (M, ω) is defined as

cG (M, ω) = sup{πr 2 | B2n(r) symplectically embeds into (M, ω)},

where

B2n(r) = {(x , y) ∈ R2n |
n∑

j=1

|xj |2 + |yj |2 < r 2}

is the open ball of radius r in (R2n, ω0).

Remarks

cG > 0 by Darboux theorem.

M compact ⇒ cG (M, ω) <∞.

6 / 52



Basic facts on Symplectic Topology Gromov width

Gromov width

The Gromov width [Gromov, Inv. Math., 1985] of a 2n-dimensional symplectic
manifold (M, ω) is defined as

cG (M, ω) = sup{πr 2 | B2n(r) symplectically embeds into (M, ω)},

where

B2n(r) = {(x , y) ∈ R2n |
n∑

j=1

|xj |2 + |yj |2 < r 2}

is the open ball of radius r in (R2n, ω0).

Remarks

cG > 0 by Darboux theorem.

M compact ⇒ cG (M, ω) <∞.

6 / 52



Basic facts on Symplectic Topology Symplectic capacities

1 Basic facts on Symplectic Topology
Darboux Theorem
Gromov width
Symplectic capacities
The Gromov width as a symplectic capacity

2 Hermitian symmetric spaces
Definition and some properties
Duality

3 Main results: the Gromov width of Hermitian symmetric spaces
Main results on HSSCT: Theorem 1 and Theorem 2
Main results on HSSNT: Theorem 3 and Theorem 4
Symplectic capacities of HSSNT: Theorem 5

4 Open problems and other symplectic invariants
Biran’s conjecture
Hofer–Zehnder capacity
Symplectic Lusternik-Schnirelmann category
Darboux charts
Symplectic packings and Fefferman invariant

7 / 52



Basic facts on Symplectic Topology Symplectic capacities

Symplectic capacities

A map c from the class C(2n) of all symplectic manifolds of dimension 2n
to [0,+∞] is called a symplectic capacity [H. Hofer, E. Zehnder, 1990] if it satisfies
the following conditions:

(monotonicity) if there exists a symplectic embedding
(M1, ω1)→ (M2, ω2) then c(M1, ω1) ≤ c(M2, ω2);

(conformality) c(M, λω) = |λ|c(M, ω), for every λ ∈ R \ {0};
(nontriviality) c(B2n(r), ω0) = πr 2 = c(Z 2n(r), ω0),

where

Z 2n(r) = B2(r)× R2n−2 = {(x , y) ∈ R2n | x2
1 + y 2

1 < r 2}.
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Basic facts on Symplectic Topology Symplectic capacities

Some remarks on symplectic capacities 1

When n = 1 (2-dimensional symplectic manifolds)

c(M, ω) := |
∫
M
ω|

defines a symplecitc capacity which agrees with the Lebesgue measure in
(R2, ω0).

In contrast, when n > 1,

c(M, ω) :=

(∫
M

ωn

n!

) 1
n

does not define a symplectic capacity since Z 2n(r) has infinite volume.
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Basic facts on Symplectic Topology Symplectic capacities

Some remarks on symplectic capacities 2

(monotonicity) ⇒ symplectic capacities are symplectic invariants.

for every open set U ⊂ Rn such that B2n(r) ⊂ U ⊂ Z 2n(r) ⇒

c(U) = πr 2.

It is hard to prove the existence of a symplectic capacity.
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Basic facts on Symplectic Topology The Gromov width as a symplectic capacity

Theorem

The Gromov width cG is a symplectic capacity. Moreover

cG (M, ω) ≤ c(M, ω)

for every capacity c .

Proof

(monotonicity) and (conformality) for cG are easy consequences of the
definition of Gromov width. details

Let ϕ : B2n(r)→ M be a symplectic embedding. Then

πr 2 = c(B2n(r), ω0) ≤ c(M, ω) ⇒ cG (M, ω) ≤ c(M, ω).

The (nontriviality) for cG , i.e. cG (B2n(r), ω0) = π = cG (Z 2n(r), ω0),
follows by the celebrated Gromov’s nonsqueezing theorem:
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Basic facts on Symplectic Topology The Gromov width as a symplectic capacity

Gromov nonsqueezing theorem

There exists a symplectic embedding B2n(r) ↪→ Z 2n(R) iff r ≤ R.
[Gromov, Inv. Math., 1985]

Remark

Assuming the existence of any symplectic capacity c one easily deduces
Gromov’s nonsqueezing theorem. Indeed, let ϕ : B2n(r)→ Z 2n(R) be a

symplectic embedding. Then (monotonicity)+(nontriviality) ⇒

πr 2 = c(B2n(r), ω0) ≤ c(Z 2n(R), ω0) = πR2.
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Basic facts on Symplectic Topology The Gromov width as a symplectic capacity

Some known results for homogeneous Kähler manifolds

Upper and lower bounds of the Gromov width of some coadjoint orbits
[A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of type A, arXiv:1301.0158v1]

[Taekgyu Hwang, Dong Youp Suh, The Gromov width from Hamiltonian circle actions, arXiv:1305.2989v2]

Computation of the Gromov width of the complex Grassmannian
[Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] and product of Grassmannians
[G. Lu, Israel J. Math., 2006]

Computation of the Gromov width of the 4-dimensional torus.
[J. Latschev, D. McDuff and F. Schlenk, Te Gromov width of the 4-dimensional tori, arXiv:1111.6566]

Computation of the Gromov width of the first Cartan domain and
upper and lower bounds for the classical ones (endowed with ω0)
[G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007].

Aim of this talk: to compute the Gromov width for all Hermitian
symmetric spaces of compact and noncompact type (bounded
symmetric domains) and their products.

14 / 52



Basic facts on Symplectic Topology The Gromov width as a symplectic capacity

Some known results for homogeneous Kähler manifolds

Upper and lower bounds of the Gromov width of some coadjoint orbits
[A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of type A, arXiv:1301.0158v1]

[Taekgyu Hwang, Dong Youp Suh, The Gromov width from Hamiltonian circle actions, arXiv:1305.2989v2]

Computation of the Gromov width of the complex Grassmannian
[Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] and product of Grassmannians
[G. Lu, Israel J. Math., 2006]

Computation of the Gromov width of the 4-dimensional torus.
[J. Latschev, D. McDuff and F. Schlenk, Te Gromov width of the 4-dimensional tori, arXiv:1111.6566]

Computation of the Gromov width of the first Cartan domain and
upper and lower bounds for the classical ones (endowed with ω0)
[G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007].

Aim of this talk: to compute the Gromov width for all Hermitian
symmetric spaces of compact and noncompact type (bounded
symmetric domains) and their products.

14 / 52



Basic facts on Symplectic Topology The Gromov width as a symplectic capacity

Some known results for homogeneous Kähler manifolds

Upper and lower bounds of the Gromov width of some coadjoint orbits
[A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of type A, arXiv:1301.0158v1]

[Taekgyu Hwang, Dong Youp Suh, The Gromov width from Hamiltonian circle actions, arXiv:1305.2989v2]

Computation of the Gromov width of the complex Grassmannian
[Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] and product of Grassmannians
[G. Lu, Israel J. Math., 2006]

Computation of the Gromov width of the 4-dimensional torus.
[J. Latschev, D. McDuff and F. Schlenk, Te Gromov width of the 4-dimensional tori, arXiv:1111.6566]

Computation of the Gromov width of the first Cartan domain and
upper and lower bounds for the classical ones (endowed with ω0)
[G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007].

Aim of this talk: to compute the Gromov width for all Hermitian
symmetric spaces of compact and noncompact type (bounded
symmetric domains) and their products.

14 / 52



Basic facts on Symplectic Topology The Gromov width as a symplectic capacity

Some known results for homogeneous Kähler manifolds

Upper and lower bounds of the Gromov width of some coadjoint orbits
[A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of type A, arXiv:1301.0158v1]

[Taekgyu Hwang, Dong Youp Suh, The Gromov width from Hamiltonian circle actions, arXiv:1305.2989v2]

Computation of the Gromov width of the complex Grassmannian
[Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] and product of Grassmannians
[G. Lu, Israel J. Math., 2006]

Computation of the Gromov width of the 4-dimensional torus.
[J. Latschev, D. McDuff and F. Schlenk, Te Gromov width of the 4-dimensional tori, arXiv:1111.6566]

Computation of the Gromov width of the first Cartan domain and
upper and lower bounds for the classical ones (endowed with ω0)
[G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007].

Aim of this talk: to compute the Gromov width for all Hermitian
symmetric spaces of compact and noncompact type (bounded
symmetric domains) and their products.

14 / 52



Basic facts on Symplectic Topology The Gromov width as a symplectic capacity

Some known results for homogeneous Kähler manifolds

Upper and lower bounds of the Gromov width of some coadjoint orbits
[A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of type A, arXiv:1301.0158v1]

[Taekgyu Hwang, Dong Youp Suh, The Gromov width from Hamiltonian circle actions, arXiv:1305.2989v2]

Computation of the Gromov width of the complex Grassmannian
[Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] and product of Grassmannians
[G. Lu, Israel J. Math., 2006]

Computation of the Gromov width of the 4-dimensional torus.
[J. Latschev, D. McDuff and F. Schlenk, Te Gromov width of the 4-dimensional tori, arXiv:1111.6566]

Computation of the Gromov width of the first Cartan domain and
upper and lower bounds for the classical ones (endowed with ω0)
[G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007].

Aim of this talk: to compute the Gromov width for all Hermitian
symmetric spaces of compact and noncompact type (bounded
symmetric domains) and their products.

14 / 52



Hermitian symmetric spaces Definition and some properties

1 Basic facts on Symplectic Topology
Darboux Theorem
Gromov width
Symplectic capacities
The Gromov width as a symplectic capacity

2 Hermitian symmetric spaces
Definition and some properties
Duality

3 Main results: the Gromov width of Hermitian symmetric spaces
Main results on HSSCT: Theorem 1 and Theorem 2
Main results on HSSNT: Theorem 3 and Theorem 4
Symplectic capacities of HSSNT: Theorem 5

4 Open problems and other symplectic invariants
Biran’s conjecture
Hofer–Zehnder capacity
Symplectic Lusternik-Schnirelmann category
Darboux charts
Symplectic packings and Fefferman invariant

15 / 52



Hermitian symmetric spaces Definition and some properties

Basic facts on Hermitian spaces

A Hermitian symmetric space is a connected Kähler manifold (M, ω)
such that each point p ∈ M is an isolated fixed point of some
holomorphic involutory isometry sp of M.

The component of the identity of the group of holomorphic isometries
of M acts transitively on M and hence every Hermitian symmetric
space is a homogeneous space.
A Hermitian symmetric space M is said to be of compact or
noncompact type if M is compact or noncompact (and non flat).
Every Hermitian symmetric space is a direct product

M0 ×M− ×M+

where all the factors are simply-connected Hermitian symmetric
spaces, M0 = Cn and M− and M+ are spaces of compact and
noncompact type, respectively.
Any Hermitian symmetric space of compact or non-compact type is
simply connected and is a direct product of irreducible Hermitian
symmetric spaces.
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M0 ×M− ×M+

where all the factors are simply-connected Hermitian symmetric
spaces, M0 = Cn and M− and M+ are spaces of compact and
noncompact type, respectively.

Any Hermitian symmetric space of compact or non-compact type is
simply connected and is a direct product of irreducible Hermitian
symmetric spaces.
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Hermitian symmetric spaces Definition and some properties

Hermitian symmetric spaces of noncompact type (HSSNT)

An irreducible HSSNT is holomorphically isometric to a bounded
symmetric domain Ω ⊂ Cn centered at the origin 0 ∈ Cn equipped with (a
multiple of) the Bergman metric ωBerg .

There exists homogeneous bounded domains (equipped with the Bergman
metric) which are not HSSNT (first examples due to Pyateskii–Shapiro).

There is a complete classification of irreducible HSSNT, with four classical
series, studied by Cartan, and two exceptional cases.
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Hermitian symmetric spaces Definition and some properties

Hermitian symmetric spaces of compact type (HSSCT)

Let (M, ωFS) be an irreducible HSSCT, where ωFS is the canonical Kähler
form, i.e. the Kähler-Einstein form such that

ωFS(A) =

∫
A
ωFS = π

for the generator A = [CP1] ∈ H2(M,Z).

There exists a natural number N and a holomorphic embedding

BW : M → CPN

called the Borel–Weil embedding, such that

ωFS = BW ∗ΩFS .
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Hermitian symmetric spaces Duality

1 Basic facts on Symplectic Topology
Darboux Theorem
Gromov width
Symplectic capacities
The Gromov width as a symplectic capacity

2 Hermitian symmetric spaces
Definition and some properties
Duality

3 Main results: the Gromov width of Hermitian symmetric spaces
Main results on HSSCT: Theorem 1 and Theorem 2
Main results on HSSNT: Theorem 3 and Theorem 4
Symplectic capacities of HSSNT: Theorem 5

4 Open problems and other symplectic invariants
Biran’s conjecture
Hofer–Zehnder capacity
Symplectic Lusternik-Schnirelmann category
Darboux charts
Symplectic packings and Fefferman invariant
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Hermitian symmetric spaces Duality

Duality

To every bounded symmetric domain Ω ⊂ Cn one can associate an
irreducible HSSCT (M, ω) called the compact dual of Ω (and viceversa)
such that Ω is holomorphically embedded into M.

More precisely we have the following holomorphic embeddings:

Ω
Harish−Chandra

⊂ Cn Borel
⊂ M

BW
↪→ CPN
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Hermitian symmetric spaces Duality

The first Cartan domain and the complex Grassmannian

Let
DI [k , n] = {Z ∈ Mk,n(C) | Ik − ZZ ∗ > 0}

be the first Cartan domain.
The compact dual of DI [k, n] is the complex Grassmannian Grassk(Cn+k)
endowed with the Fubini-Study form ωFS . More precisely,

DI [k , n]
Harish−Chandra

⊂ Mk,n(C) = Ckn Borel
⊂ Grassk(Cn+k)

P=Plucker
↪→ CPN ,

N = ( n + k
k )− 1,

ωFS = P∗ΩFS , ωFS |Ckn =
i

2π
∂∂̄ log det(Ik + ZZ ∗)

ωBerg = −2n
i

2π
∂∂̄ log det(Ik − ZZ ∗).
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Main results: the Gromov width of Hermitian symmetric spaces Main results on HSSCT: Theorem 1 and Theorem 2

1 Basic facts on Symplectic Topology
Darboux Theorem
Gromov width
Symplectic capacities
The Gromov width as a symplectic capacity

2 Hermitian symmetric spaces
Definition and some properties
Duality

3 Main results: the Gromov width of Hermitian symmetric spaces
Main results on HSSCT: Theorem 1 and Theorem 2
Main results on HSSNT: Theorem 3 and Theorem 4
Symplectic capacities of HSSNT: Theorem 5

4 Open problems and other symplectic invariants
Biran’s conjecture
Hofer–Zehnder capacity
Symplectic Lusternik-Schnirelmann category
Darboux charts
Symplectic packings and Fefferman invariant
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Main results: the Gromov width of Hermitian symmetric spaces Main results on HSSCT: Theorem 1 and Theorem 2

Theorem 1

Let (M, ωFS) be an irreducible HSSCT endowed with the canonical
symplectic (Kähler) form ωFS .

Then

cG (M, ωFS) = π.

Theorem 2

Let (Mi , ω
i
FS), i = 1, . . . , r , be irreducible HSSCT of complex dimension ni

endowed with the canonical symplectic (Kähler) forms ωi
FS . Then

cG
(
M1 × · · · ×Mr , ω

1
FS ⊕ · · · ⊕ ωr

FS

)
= π.

Moreover, if a1, . . . , ar are nonzero constants, then

cG
(
M1 × · · · ×Mr , a1ω

1
FS ⊕ · · · ⊕ arω

r
FS

)
≤ min{|a1|, . . . , |ar |}π.
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Main results: the Gromov width of Hermitian symmetric spaces Main results on HSSCT: Theorem 1 and Theorem 2

Remarks on Theorem 1 and Theorem 2

Theorem 1 extends (to the case of HSSCT) the results of Y. Karshon, S.
Tolman [Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] when M is the complex
Grassmannian.

Theorem 2 extends (to the case of HSSCT) G. Lu’s results
[G. Lu, Israel J. Math., 2006] when Mj are complex Grassmannians.

When Mj = CP1 for all j = 1, . . . , r ,

cG (CP1 × · · · × CP1, a1ωFS ⊕ · · · ⊕ arωFS) = min{|a1|, . . . , |ar |}π.

[G. Lu, Israel J. Math., 2006]

cG (CPn1 × · · · × CPnr , a1ω
1
FS ⊕ · · · ⊕ arω

r
FS) = ?

if some nj > 1 or |aj | 6= 1.
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Main results: the Gromov width of Hermitian symmetric spaces Main results on HSSCT: Theorem 1 and Theorem 2

Idea of the proof of Theorem 1: the upper bound

Step 1

The proof of the upper bound cG (M, ωFS) ≤ π is obtained by the
computations of some genus-zero three-points Gromov-Witten
invariants for irreducible HSSCT [A. Beauville, Mat. Fiz. Anal. Geom., 1995],
[P. E. Chaput, L. Manivel, N. Perrin, Transform. Groups, 2008],
[B. Siebert, G. Tian, Asian J. Math., 1997]

and through nonsqueezing theorem
techinques using and extending the ideas in
[Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] for the complex Grassmannian.

details
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Main results: the Gromov width of Hermitian symmetric spaces Main results on HSSCT: Theorem 1 and Theorem 2

Idea of the proof of Theorem 1: the lower bound

Step 2 The lower bound cG (M, ωFS) ≥ π is obtained as follows.

Let (Ω, ω0), Ω ⊂ Cn, be the bounded symmetric domain noncompact
dual of (M, ωFS) equipped with the canonical symplectic form ω0 of
R2n.

Then there exists a symplectic embedding

ΦΩ : (Ω, ω0)→ (M, ωFS)

go to Example [A. J. Di Scala, AL, Symplectic duality of Symmetric Spaces, Adv.Math., 2008]

Using Jordan triple systems tools one can prove that there exists a
symplectic embedding

(B2n(1), ω0) ↪→ (Ω, ω0)
ΦΩ→ (M, ωFS) ⇒ cG (M, ωFS) ≥ π.

The embedding ΦΩ induces a global symplectomorphism

(Ω, ω0)
ΦΩ→ (M \ Cut0(M) ∼= Cn, ωFS)

Borel
⊂ (M, ωFS)

BW
↪→ (CPN , ωFS)
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(Ω, ω0)
ΦΩ→ (M \ Cut0(M) ∼= Cn, ωFS)

Borel
⊂ (M, ωFS)

BW
↪→ (CPN , ωFS)
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Idea of the proof of Theorem 2

Steps

The lower bound cG
(
M1 × · · · ×Mr , ω

1
FS ⊕ · · · ⊕ ωr

FS

)
≥ π is

obtained by (motonicity)+(nontriviality) of cG and the embeddings

B2n1+···+2nr (1) ⊂ ×r
j=1B2nj (1) ⊂ ×r

j=1Ωj

ΦΩ1
×···×ΦΩr−→ ×r

j=1Mj .

The upper bound

cG
(
M1 × · · · ×Mr , a1ω

1
FS ⊕ · · · ⊕ arω

r
FS

)
≤ min{|a1|, . . . , |ar |}π

and hence cG
(
M1 × · · · ×Mr , ω

1
FS ⊕ · · · ⊕ ωr

FS

)
≤ π is obtained by

combining cG (Mj , ω
j
FS) ≤ π with the following theorem.
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Theorem

Let (M, ωFS) be an irreducible HSSCT and (N, ω) be any closed
symplectic manifold. Then, for any nonzero real number a,

cG (N ×M, ω ⊕ aωFS) ≤ |a|π.

Remark

The proof of the theorem uses Lu’s pseudo symplectic capacities and their
estimation in terms of Gromov-Witten invariants.
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1 Basic facts on Symplectic Topology
Darboux Theorem
Gromov width
Symplectic capacities
The Gromov width as a symplectic capacity

2 Hermitian symmetric spaces
Definition and some properties
Duality

3 Main results: the Gromov width of Hermitian symmetric spaces
Main results on HSSCT: Theorem 1 and Theorem 2
Main results on HSSNT: Theorem 3 and Theorem 4
Symplectic capacities of HSSNT: Theorem 5

4 Open problems and other symplectic invariants
Biran’s conjecture
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Symplectic Lusternik-Schnirelmann category
Darboux charts
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Theorem 3

Let Ω ⊂ Cn be a bounded symmetric domain.

Then

cG (Ω, ω0) = π.

Theorem 4

Let Ωi ⊂ Cni , i = 1, . . . , r , be bounded symmetric domains of complex
dimension ni equipped with the standard symplectic form ωi

0 of
R2ni = Cni . Then

cG
(
Ω1 × · · · × Ωr , ω

1
0 ⊕ · · · ⊕ ωr

0

)
= π.

Moreover, If a1, . . . , ar are nonzero constants, then

cG
(
Ω1 × · · · × Ωr , a1ω

1
0 ⊕ · · · ⊕ arω

r
0

)
≤ min{|a1|, . . . , |ar |}π.
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Remarks on Theorem 3 and Theorem 4

Theorem 3 extends to the product of HSSNT (including the exceptional
ones) the results in [G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007] valid for
classical Cartan domains.

Notice that
cG (Ω, ωBerg ) = +∞.

Indeed, by the following result of D. McDuff [D. McDuff, J. Diff. Geometry, 1988]

(Ω, ωBerg ) is globally symplectomorphic to (R2n, ω0).

Theorem (McDuff)

Let (M, ω) be a Kähler manifold. Assume that π1(M) = {1}, M is
complete and K ≤ 0. Then there exists a symplectomorphism

ψ : (M, ω)→ (R2n, ω0).
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The proof of Theorem 3

(B2n(1), ω0) ↪→ (Ω, ω0)
ΦΩ→ (M, ωFS), cG (B2n(1), ω0) = cG (M, ωFS)

Th1
= π

⇒

cG (Ω, ω0) = π

The proof of Theorem 4

B2n1+···+2nr (1) ⊂ ×r
j=1B2nj (1) ⊂ ×r

j=1Ωj

ΦΩ1
×···×ΦΩr−→ ×r

j=1Mj

cG (B2n1+···+2nr (1), ω0) = cG
(
M1 × · · · ×Mr , ω

1
FS ⊕ · · · ⊕ ωr

FS

) Th2
= π

⇒

cG
(
Ω1 × · · · × Ωr , ω

1
0 ⊕ · · · ⊕ ωr

0

)
= π

cG
(
M1 × · · · ×Mr , a1ω

1
FS ⊕ · · · ⊕ arω

r
FS

) Th2
≤ min{|a1|, . . . , |ar |}π

⇒

cG
(
Ω1 × · · · × Ωr , a1ω

1
0 ⊕ · · · ⊕ arω

r
0

)
≤ min{|a1|, . . . , |ar |}π.
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Main results: the Gromov width of Hermitian symmetric spaces Symplectic capacities of HSSNT: Theorem 5
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Definition and some properties
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3 Main results: the Gromov width of Hermitian symmetric spaces
Main results on HSSCT: Theorem 1 and Theorem 2
Main results on HSSNT: Theorem 3 and Theorem 4
Symplectic capacities of HSSNT: Theorem 5
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Main results: the Gromov width of Hermitian symmetric spaces Symplectic capacities of HSSNT: Theorem 5

Theorem 5

Let Ω ⊂ Cn be a bounded symmetric domain. Then

c(Ω, ω0) = π

for any symplectic capacity c .

Idea of the proof

Using Jordan triple systems tools one can prove that

B2n(1) ⊂ Ω ⊂ Z 2n(1).

Hence the conclusion follows by (monotonicity)+(nontriviality) of c.
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Open problems and other symplectic invariants Biran’s conjecture
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Open problems and other symplectic invariants Biran’s conjecture

Biran’s conjecture

Let (M, ω) be a closed symplectic manifold with [ω] ∈ H2(M,Z). Then
cG (M, ω) ≥ π.
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Open problems and other symplectic invariants Hofer–Zehnder capacity
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Open problems and other symplectic invariants Hofer–Zehnder capacity

Hofer–Zehnder capacity cHZ

In [H. Hofer, E. Zehnder, A new capacity for symplectic manifolds, Academic Press, New York 1990 ]

Hofer and Zehnder defines a symplectic capacity cHZ , which satisfies

cHZ (M, ω) ≥ c(M, ω)

for all symplectic capacity c .
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Open problems and other symplectic invariants Hofer–Zehnder capacity

Known results on cHZ

Theorem (Hofer–Viterbo)

cHZ (CPn, ωFS) = π

[H. Hofer and C. Viterbo, The Weinstein conjecture...., Comm. Pure and Applied Math. 45, 1992]

Theorem (Lu)

Let aj 6= 0, j = 1, . . . r . Then

cHZ (CPn1 × · · · × CPnr , a1ω
1
FS ⊕ · · · ⊕ arω

r
FS) = (|a1|+ · · ·+ |ar |)π.

[G. Lu, Israel J. Math., 2006].
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Open problems and other symplectic invariants Hofer–Zehnder capacity

Results on cHZ

Theorem 6

Let (Mi , ω
i
FS), i = 1, . . . , r , be irreducible HSSCT of complex dimension ni

Then

cHZ
(
M1 × · · · ×Mr , a1ω

1
FS ⊕ · · · ⊕ arω

r
FS

)
≥ {|a1|+ · · ·+ |ar |}π

Remark

Theorem 6 extends a theorem of Lu when Mj are complex Grassmannians.

Open problem

cHZ (M, ωFS) = ?

40 / 52



Open problems and other symplectic invariants Hofer–Zehnder capacity

Results on cHZ

Theorem 6

Let (Mi , ω
i
FS), i = 1, . . . , r , be irreducible HSSCT of complex dimension ni

Then

cHZ
(
M1 × · · · ×Mr , a1ω

1
FS ⊕ · · · ⊕ arω

r
FS

)
≥ {|a1|+ · · ·+ |ar |}π

Remark

Theorem 6 extends a theorem of Lu when Mj are complex Grassmannians.

Open problem

cHZ (M, ωFS) = ?

40 / 52



Open problems and other symplectic invariants Hofer–Zehnder capacity

Results on cHZ

Theorem 6

Let (Mi , ω
i
FS), i = 1, . . . , r , be irreducible HSSCT of complex dimension ni

Then

cHZ
(
M1 × · · · ×Mr , a1ω

1
FS ⊕ · · · ⊕ arω

r
FS

)
≥ {|a1|+ · · ·+ |ar |}π

Remark

Theorem 6 extends a theorem of Lu when Mj are complex Grassmannians.

Open problem

cHZ (M, ωFS) = ?

40 / 52



Open problems and other symplectic invariants Hofer–Zehnder capacity

Results on cHZ

Theorem 6

Let (Mi , ω
i
FS), i = 1, . . . , r , be irreducible HSSCT of complex dimension ni

Then

cHZ
(
M1 × · · · ×Mr , a1ω

1
FS ⊕ · · · ⊕ arω

r
FS

)
≥ {|a1|+ · · ·+ |ar |}π

Remark

Theorem 6 extends a theorem of Lu when Mj are complex Grassmannians.

Open problem

cHZ (M, ωFS) = ?

40 / 52



Open problems and other symplectic invariants Hofer–Zehnder capacity

Results on cHZ

Theorem 6

Let (Mi , ω
i
FS), i = 1, . . . , r , be irreducible HSSCT of complex dimension ni

Then

cHZ
(
M1 × · · · ×Mr , a1ω

1
FS ⊕ · · · ⊕ arω

r
FS

)
≥ {|a1|+ · · ·+ |ar |}π

Remark

Theorem 6 extends a theorem of Lu when Mj are complex Grassmannians.

Open problem

cHZ (M, ωFS) = ?

40 / 52



Open problems and other symplectic invariants Symplectic Lusternik-Schnirelmann category

1 Basic facts on Symplectic Topology
Darboux Theorem
Gromov width
Symplectic capacities
The Gromov width as a symplectic capacity

2 Hermitian symmetric spaces
Definition and some properties
Duality

3 Main results: the Gromov width of Hermitian symmetric spaces
Main results on HSSCT: Theorem 1 and Theorem 2
Main results on HSSNT: Theorem 3 and Theorem 4
Symplectic capacities of HSSNT: Theorem 5

4 Open problems and other symplectic invariants
Biran’s conjecture
Hofer–Zehnder capacity
Symplectic Lusternik-Schnirelmann category
Darboux charts
Symplectic packings and Fefferman invariant

41 / 52



Open problems and other symplectic invariants Symplectic Lusternik-Schnirelmann category

The symplectic Lusternik-Schnirelmann category

Let (N, ω) be a closed symplectc manifold. The symplectic
Lusternik-Schnirelmann category S(N, ω)
[Y. B. Rudyak, F. Schlenk, Commun. Contemp. Math., 2007 ] is defined as

S(N, ω) = min{k | N = V1 ∪ · · · ∪ Vk}

where each Vi = Φi (Ui ) by a symplectic embedding Φi : Ui → Vi ⊂ N, Ui

bounded subset of (R2n, ω0) diffeomorphic to an open ball in R2n.

Theorem 7

Let (M, ωFS) be an irreducible HSSCT and BW : M → CPN the
Borel–Weil embedding. Then

S(M, ωFS) ≤ N + 1
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Open problems and other symplectic invariants Darboux charts

Darboux charts

Let (M, ω) be a closed symplectic manifold. By Darboux theorem for each
point p ∈ M there exists a symplectic embedding
ϕ : (B2n(r), ω0)→ (M, ω), for some r > 0. One calls (B2n(r), ϕ) a
Darboux chart. [Y. B. Rudyak, F. Schlenk, Commun. Contemp. Math., 2007 ] .
Let

SB(M, ω) = min{k | M = B1 ∪ · · · ∪ Bk}

where each Bi is the image ϕi (B2n(ri )) of a Darboux chart.

Problem

Let (M, ωFS) be an irreducible HSSCT. Compute (or estimate)
SB(M, ωFS).
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SB(M, ω) = min{k | M = B1 ∪ · · · ∪ Bk}

where each Bi is the image ϕi (B2n(ri )) of a Darboux chart.

Problem

Let (M, ωFS) be an irreducible HSSCT. Compute (or estimate)
SB(M, ωFS).

44 / 52



Open problems and other symplectic invariants Darboux charts

Darboux charts

Let (M, ω) be a closed symplectic manifold. By Darboux theorem for each
point p ∈ M there exists a symplectic embedding
ϕ : (B2n(r), ω0)→ (M, ω), for some r > 0. One calls (B2n(r), ϕ) a
Darboux chart. [Y. B. Rudyak, F. Schlenk, Commun. Contemp. Math., 2007 ] .
Let

SB(M, ω) = min{k | M = B1 ∪ · · · ∪ Bk}

where each Bi is the image ϕi (B2n(ri )) of a Darboux chart.

Problem

Let (M, ωFS) be an irreducible HSSCT. Compute (or estimate)
SB(M, ωFS).

44 / 52



Open problems and other symplectic invariants Symplectic packings and Fefferman invariant

1 Basic facts on Symplectic Topology
Darboux Theorem
Gromov width
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The Gromov width as a symplectic capacity

2 Hermitian symmetric spaces
Definition and some properties
Duality

3 Main results: the Gromov width of Hermitian symmetric spaces
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Symplectic packings

For an integer k > 0 and r > 0, a symplectic k-packing by balls of
radius r of a 2n-dimensional symplectic manifold (M, ω) is a set of
symplectic embeddings

ϕi : (B2n(r), ω0)→ (M, ω), i = 1, . . . , k

such that ϕi (B2n(r)) ∩ ϕj(B2n(r)) = ∅, for i 6= j . A full symplectic
k-packing is a symplectic k-packing such that

M = ∪ki=1ϕi (B2n(r))

[Gromov, Inv. Math., 1985], [McDuff, Polterovich and Karshon, Inv. Math., 1994],
[Traynor, J. Diff. Geom., 1995], [Biran, Inv. Math., 1997].

Problem

Studying (full) symplectic k-packings of HSSCT.
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Fefferman invariant

Let (M, ω) be a closed symplectic manifold. Its Fefferman invariant
F (M, ω) is the largest integer p for which there exists a symplectic
p-packing (not necessarily full) of ball of radius 1.

When Grassk(Cn) G. Lu [G. Lu, Israel J. Math., 2006] shows that

F (Grassk(Cn), ωFS) ≤ [n/k].

Problem : find a similar upper bound for HSSCT.
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THANK YOU FOR YOUR ATTENTION!
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(monotonicity) for cG follows immediately by the definition of
Gromov width.

Given a symplectic embedding

ϕ : (B2n(r), ω0)→ (M, λω)

it is not hard to construct a symplectic embedding

ϕ̂ :

(
B2n(

r√
|λ|

), ω0

)
→ (M, ω)

and viceversa. Thus (conformality) for cG follows by the definition of
Gromov width. go back
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Lemma

Let (M, ω) be a monotone symplectic manifold (i.e. there exists λ > 0
such that

ω(B) = λc1(M)(B)

for all spherical classes B = [CP1] ∈ H2(M,Z)). Let A ∈ H2(M,Z) be an
indecomposable spherical class. (it cannot be decomposed as a sum
A = A1 + · · ·+ Ak , k ≥ 2, of classes which are spherical and satisfy
ω(Ai ) > 0 for i = 1, . . . , k). Let pt denote the homology class of a point.
Suppose that there exist submanifolds X and Y of M such that

dim X + dim Y = 4n − 2c1(M)(A)

and so that
ΦA(pt, [X ], [Y ]) 6= 0.

If πr 2 > ω(A) =
∫
A ω, there does not exist a symplectic embedding of

(B2n(r), ω0) into (M, ω).

go back
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Example: symplectic embedding of the first Cartan domain into its
complex dual Grassk(Cn+k)

Let
DI [k , n] = {Z ∈ Mk,n(C) | Ik − ZZ ∗ > 0}

be the first Cartan domain.
The compact dual of DI [k, n] is the complex Grassmannian

(Grassk(Cn+k), ωFS).

The map

Φ : DI [k, n]→ Mk,n(C) = Ckn ⊂ Grassk(Cn+k)

defined by

Φ(Z ) = (Ik − ZZ ∗)−
1
2 Z

is a diffeomorphism such that

Φ∗ωFS = ω0.

go back

51 / 52



Open problems and other symplectic invariants Symplectic packings and Fefferman invariant

Example: symplectic embedding of the first Cartan domain into its
complex dual Grassk(Cn+k)

Let
DI [k , n] = {Z ∈ Mk,n(C) | Ik − ZZ ∗ > 0}

be the first Cartan domain.

The compact dual of DI [k, n] is the complex Grassmannian

(Grassk(Cn+k), ωFS).

The map

Φ : DI [k, n]→ Mk,n(C) = Ckn ⊂ Grassk(Cn+k)

defined by

Φ(Z ) = (Ik − ZZ ∗)−
1
2 Z

is a diffeomorphism such that

Φ∗ωFS = ω0.

go back

51 / 52



Open problems and other symplectic invariants Symplectic packings and Fefferman invariant

Example: symplectic embedding of the first Cartan domain into its
complex dual Grassk(Cn+k)

Let
DI [k , n] = {Z ∈ Mk,n(C) | Ik − ZZ ∗ > 0}

be the first Cartan domain.
The compact dual of DI [k, n] is the complex Grassmannian

(Grassk(Cn+k), ωFS).

The map

Φ : DI [k, n]→ Mk,n(C) = Ckn ⊂ Grassk(Cn+k)

defined by

Φ(Z ) = (Ik − ZZ ∗)−
1
2 Z

is a diffeomorphism such that

Φ∗ωFS = ω0.

go back

51 / 52



Open problems and other symplectic invariants Symplectic packings and Fefferman invariant

Example: symplectic embedding of the first Cartan domain into its
complex dual Grassk(Cn+k)

Let
DI [k , n] = {Z ∈ Mk,n(C) | Ik − ZZ ∗ > 0}

be the first Cartan domain.
The compact dual of DI [k, n] is the complex Grassmannian

(Grassk(Cn+k), ωFS).

The map

Φ : DI [k, n]→ Mk,n(C) = Ckn ⊂ Grassk(Cn+k)

defined by

Φ(Z ) = (Ik − ZZ ∗)−
1
2 Z

is a diffeomorphism such that

Φ∗ωFS = ω0.

go back

51 / 52



Open problems and other symplectic invariants Symplectic packings and Fefferman invariant

Example: symplectic embedding of the first Cartan domain into its
complex dual Grassk(Cn+k)

Let
DI [k , n] = {Z ∈ Mk,n(C) | Ik − ZZ ∗ > 0}

be the first Cartan domain.
The compact dual of DI [k, n] is the complex Grassmannian

(Grassk(Cn+k), ωFS).

The map

Φ : DI [k, n]→ Mk,n(C) = Ckn ⊂ Grassk(Cn+k)

defined by

Φ(Z ) = (Ik − ZZ ∗)−
1
2 Z

is a diffeomorphism such that

Φ∗ωFS = ω0.

go back

51 / 52



Open problems and other symplectic invariants Symplectic packings and Fefferman invariant

Pseudo symplectic capacities

A map ck from the set C(2n, k) of all tuples (M, ω;α1, . . . , αk) consisting
of a 2n-dimensional connected symplectic manifold (M, ω) and k nonzero
homology classes αi ∈ H∗(M;Q), i = 1, . . . , k to [0,+∞] is called a
k-pseudo symplectic capacity [G. Lu, Israel J. Math., 2006] if it satisfies the
following properties:

(pseudo monotonicity) if there exists a symplectic embedding
ϕ : (M, ω1)→ (M, ω2) then, for any αi ∈ H∗(M1;Q), i = 1, . . . , k ,

c(k)(M1, ω1;α1, . . . , αk) ≤ c(k)(M2, ω2;ϕ∗(α1), . . . , ϕ∗(αk));

(conformality) c(k)(M, λω;α1, . . . , αk) = |λ|c(k)(M, ω;α1, . . . , αk),
for every λ ∈ R \ {0} and all homology classes αi ∈ H∗(M;Q) \ {0},
i = 1, . . . , k;

(nontriviality)
c(k)(B2n(1), ω0; pt, . . . , pt) = π = c(k)(Z 2n(1), ω0; pt, . . . , pt), where
pt denotes the homology class of a point. go back
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