The Gromov width of symmetric spaces

Andrea Loi

University of Cagliari-Italy

Evora, 3 September 2013

AL, R. Mossa, F. Zuddas,

Symplectic capacities of Hermitian symmetric spaces, arXiv:1302.1984 (2013).

Basic facts on Symplectic Topology

• Darboux Theorem

- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity

2 Hermitian symmetric spaces

- Definition and some properties
- Duality

3) Main results: the Gromov width of Hermitian symmetric spaces

- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5

Open problems and other symplectic invariants

- Biran's conjecture
- Hofer–Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

Darboux Theorem

Let (M^{2n}, ω) be a symplectic manifold and let $\omega_0 = \sum_{j=1}^n dx_j \wedge dy_j$ be the standard symplectic form on \mathbb{R}^{2n} . Given $p \in M$ there exist an open set $U_p \subset M$ and a diffeomorphism

$$\psi: U_p \to \psi(U_p) \subset \mathbb{R}^{2n}$$

such that

$$\psi^*\omega_0 = \omega_{|U_p|}$$

Darboux Theorem

Let (M^{2n}, ω) be a symplectic manifold and let $\omega_0 = \sum_{j=1}^n dx_j \wedge dy_j$ be the standard symplectic form on \mathbb{R}^{2n} . Given $p \in M$ there exist an open set $U_p \subset M$ and a diffeomorphism

$$\psi: U_p \to \psi(U_p) \subset \mathbb{R}^{2n}$$

such that

$$\psi^*\omega_0=\omega_{|U_p|}$$

Question

How large U_p can be taken?

Darboux Theorem

Let (M^{2n}, ω) be a symplectic manifold and let $\omega_0 = \sum_{j=1}^n dx_j \wedge dy_j$ be the standard symplectic form on \mathbb{R}^{2n} . Given $p \in M$ there exist an open set $U_p \subset M$ and a diffeomorphism

$$\psi: U_p \to \psi(U_p) \subset \mathbb{R}^{2n}$$

such that

$$\psi^*\omega_0=\omega_{|U_p|}$$

Question

How large U_p can be taken?

Gromov's exotic symplectic structures

There exists a symplectic form ω on \mathbb{R}^{2n} , $n \geq 2$, such that $(\mathbb{R}^{2n}, \omega)$ cannot be symplectically embedded into $(\mathbb{R}^{2n}, \omega_0)$. [Gromov, Inv. Math., 1985]

Basic facts on Symplectic Topology

• Darboux Theorem

Gromov width

- Symplectic capacities
- The Gromov width as a symplectic capacity

2 Hermitian symmetric spaces

- Definition and some properties
- Duality

3 Main results: the Gromov width of Hermitian symmetric spaces

- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5

Open problems and other symplectic invariants

- Biran's conjecture
- Hofer–Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

The Gromov width [Gromov, Inv. Math., 1985] of a 2*n*-dimensional symplectic manifold (M, ω) is defined as

 $c_G(M,\omega) = \sup\{\pi r^2 \mid B^{2n}(r) \text{ symplectically embeds into } (M,\omega)\},\$

where

$$B^{2n}(r) = \{(x, y) \in \mathbb{R}^{2n} \mid \sum_{j=1}^{n} |x_j|^2 + |y_j|^2 < r^2\}$$

is the open ball of radius r in $(\mathbb{R}^{2n}, \omega_0)$.

The Gromov width [Gromov, Inv. Math., 1985] of a 2*n*-dimensional symplectic manifold (M, ω) is defined as

 $c_G(M,\omega) = \sup\{\pi r^2 \mid B^{2n}(r) \text{ symplectically embeds into } (M,\omega)\},\$

where

$$B^{2n}(r) = \{(x, y) \in \mathbb{R}^{2n} \mid \sum_{j=1}^{n} |x_j|^2 + |y_j|^2 < r^2\}$$

is the open ball of radius r in $(\mathbb{R}^{2n}, \omega_0)$.

Remarks

The Gromov width [Gromov, Inv. Math., 1985] of a 2*n*-dimensional symplectic manifold (M, ω) is defined as

 $c_G(M,\omega) = \sup\{\pi r^2 \mid B^{2n}(r) \text{ symplectically embeds into } (M,\omega)\},\$

where

$$B^{2n}(r) = \{(x, y) \in \mathbb{R}^{2n} \mid \sum_{j=1}^{n} |x_j|^2 + |y_j|^2 < r^2\}$$

is the open ball of radius r in $(\mathbb{R}^{2n}, \omega_0)$.

Remarks

• $c_G > 0$ by Darboux theorem.

The Gromov width [Gromov, Inv. Math., 1985] of a 2*n*-dimensional symplectic manifold (M, ω) is defined as

$$c_G(M,\omega) = \sup\{\pi r^2 \mid B^{2n}(r) \text{ symplectically embeds into } (M,\omega)\},\$$

where

$$B^{2n}(r) = \{(x, y) \in \mathbb{R}^{2n} \mid \sum_{j=1}^{n} |x_j|^2 + |y_j|^2 < r^2\}$$

is the open ball of radius r in $(\mathbb{R}^{2n}, \omega_0)$.

Remarks

• $c_G > 0$ by Darboux theorem.

•
$$M$$
 compact \Rightarrow $c_G(M,\omega) < \infty$.

Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width

Symplectic capacities

• The Gromov width as a symplectic capacity

2 Hermitian symmetric spaces

- Definition and some properties
- Duality

3 Main results: the Gromov width of Hermitian symmetric spaces

- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5

Open problems and other symplectic invariants

- Biran's conjecture
- Hofer–Zehnder capacity
- Symplectic Lusternik-Schnirelmann category
- Darboux charts
- Symplectic packings and Fefferman invariant

A map c from the class C(2n) of all symplectic manifolds of dimension 2n to $[0, +\infty]$ is called a *symplectic capacity* [H. Hofer, E. Zehnder, 1990] if it satisfies the following conditions:

A map c from the class C(2n) of all symplectic manifolds of dimension 2n to $[0, +\infty]$ is called a *symplectic capacity* [H. Hofer, E. Zehnder, 1990] if it satisfies the following conditions:

• (monotonicity) if there exists a symplectic embedding $(M_1, \omega_1) \rightarrow (M_2, \omega_2)$ then $c(M_1, \omega_1) \leq c(M_2, \omega_2)$;

A map c from the class C(2n) of all symplectic manifolds of dimension 2n to $[0, +\infty]$ is called a *symplectic capacity* [H. Hofer, E. Zehnder, 1990] if it satisfies the following conditions:

- (monotonicity) if there exists a symplectic embedding $(M_1, \omega_1) \rightarrow (M_2, \omega_2)$ then $c(M_1, \omega_1) \leq c(M_2, \omega_2)$;
- (conformality) $c(M, \lambda \omega) = |\lambda| c(M, \omega)$, for every $\lambda \in \mathbb{R} \setminus \{0\}$;

A map c from the class C(2n) of all symplectic manifolds of dimension 2n to $[0, +\infty]$ is called a *symplectic capacity* [H. Hofer, E. Zehnder, 1990] if it satisfies the following conditions:

- (monotonicity) if there exists a symplectic embedding $(M_1, \omega_1) \rightarrow (M_2, \omega_2)$ then $c(M_1, \omega_1) \leq c(M_2, \omega_2)$;
- (conformality) $c(M, \lambda \omega) = |\lambda| c(M, \omega)$, for every $\lambda \in \mathbb{R} \setminus \{0\}$;
- (nontriviality) $c(B^{2n}(r), \omega_0) = \pi r^2 = c(Z^{2n}(r), \omega_0),$

A map c from the class C(2n) of all symplectic manifolds of dimension 2n to $[0, +\infty]$ is called a *symplectic capacity* [H. Hofer, E. Zehnder, 1990] if it satisfies the following conditions:

- (monotonicity) if there exists a symplectic embedding $(M_1, \omega_1) \rightarrow (M_2, \omega_2)$ then $c(M_1, \omega_1) \leq c(M_2, \omega_2)$;
- (conformality) $c(M, \lambda \omega) = |\lambda| c(M, \omega)$, for every $\lambda \in \mathbb{R} \setminus \{0\}$;
- (nontriviality) $c(B^{2n}(r), \omega_0) = \pi r^2 = c(Z^{2n}(r), \omega_0),$

where

$$Z^{2n}(r) = B^2(r) imes \mathbb{R}^{2n-2} = \{(x,y) \in \mathbb{R}^{2n} \mid x_1^2 + y_1^2 < r^2\}.$$

When n = 1 (2-dimensional symplectic manifolds)

$$c(M,\omega) := |\int_M \omega|$$

defines a symplecitc capacity which agrees with the Lebesgue measure in $(\mathbb{R}^2,\omega_0).$

When n = 1 (2-dimensional symplectic manifolds)

$$c(M,\omega) := |\int_M \omega|$$

defines a symplecitc capacity which agrees with the Lebesgue measure in (\mathbb{R}^2, ω_0) .

In contrast, when n > 1,

$$c(M,\omega):=\left(\int_M \frac{\omega^n}{n!}\right)^{\frac{1}{n}}$$

does not define a symplectic capacity since $Z^{2n}(r)$ has infinite volume.

(monotonicity) \Rightarrow symplectic capacities are symplectic invariants.

(monotonicity) \Rightarrow symplectic capacities are symplectic invariants.

for every open set $U \subset \mathbb{R}^n$ such that $B^{2n}(r) \subset U \subset Z^{2n}(r) \Rightarrow c(U) = \pi r^2$.

(monotonicity) \Rightarrow symplectic capacities are symplectic invariants.

for every open set
$$U \subset \mathbb{R}^n$$
 such that $B^{2n}(r) \subset U \subset Z^{2n}(r) \Rightarrow c(U) = \pi r^2$.

It is hard to prove the existence of a symplectic capacity.

Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
- 2 Hermitian symmetric spaces
 - Definition and some properties
 - Duality

3 Main results: the Gromov width of Hermitian symmetric spaces

- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
- Open problems and other symplectic invariants
 - Biran's conjecture
 - Hofer–Zehnder capacity
 - Symplectic Lusternik-Schnirelmann category
 - Darboux charts
 - Symplectic packings and Fefferman invariant

The Gromov width c_G is a symplectic capacity. Moreover

$$c_G(M,\omega) \leq c(M,\omega)$$

for every capacity c.

The Gromov width c_G is a symplectic capacity. Moreover

$$c_G(M,\omega) \leq c(M,\omega)$$

for every capacity c.

Proof

(monotonicity) and (conformality) for c_G are easy consequences of the definition of Gromov width. \bigcirc details

The Gromov width c_G is a symplectic capacity. Moreover

$$c_G(M,\omega) \leq c(M,\omega)$$

for every capacity c.

Proof

(monotonicity) and (conformality) for c_G are easy consequences of the definition of Gromov width. Let $\varphi: B^{2n}(r) \to M$ be a symplectic embedding. Then

$$\pi r^2 = c(B^{2n}(r), \omega_0) \leq c(M, \omega) \implies c_G(M, \omega) \leq c(M, \omega).$$

The Gromov width c_G is a symplectic capacity. Moreover

$$c_G(M,\omega) \leq c(M,\omega)$$

for every capacity c.

Proof

(monotonicity) and (conformality) for c_G are easy consequences of the definition of Gromov width. Let $\varphi: B^{2n}(r) \to M$ be a symplectic embedding. Then

$$\pi r^2 = c(B^{2n}(r), \omega_0) \leq c(M, \omega) \implies c_G(M, \omega) \leq c(M, \omega).$$

The (nontriviality) for c_G , i.e. $c_G(B^{2n}(r), \omega_0) = \pi = c_G(Z^{2n}(r), \omega_0)$, follows by the celebrated Gromov's nonsqueezing theorem:

Gromov nonsqueezing theorem

There exists a symplectic embedding $B^{2n}(r) \hookrightarrow Z^{2n}(R)$ iff $r \leq R$.

[Gromov, Inv. Math., 1985]

Gromov nonsqueezing theorem

There exists a symplectic embedding $B^{2n}(r) \hookrightarrow Z^{2n}(R)$ iff $r \leq R$.

[Gromov, Inv. Math., 1985]

Remark

Assuming the existence of any symplectic capacity c one easily deduces Gromov's nonsqueezing theorem. Indeed, let $\varphi : B^{2n}(r) \to Z^{2n}(R)$ be a symplectic embedding. Then (monotonicity)+(nontriviality) \Rightarrow

$$\pi r^2 = c(B^{2n}(r), \omega_0) \le c(Z^{2n}(R), \omega_0) = \pi R^2.$$

• Upper and lower bounds of the Gromov width of some coadjoint orbits

[A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of type A, arXiv:1301.0158v1]

[Taekgyu Hwang, Dong Youp Suh, The Gromov width from Hamiltonian circle actions, arXiv:1305.2989v2]

• Upper and lower bounds of the Gromov width of some coadjoint orbits

[A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of type A, arXiv:1301.0158v1]

[Taekgyu Hwang, Dong Youp Suh, The Gromov width from Hamiltonian circle actions, arXiv:1305.2989v2]

• Computation of the Gromov width of the complex Grassmannian

[Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] and product of Grassmannians

[G. Lu, Israel J. Math., 2006]

• Upper and lower bounds of the Gromov width of some coadjoint orbits

[A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of type A, arXiv:1301.0158v1]

[Taekgyu Hwang, Dong Youp Suh, The Gromov width from Hamiltonian circle actions, arXiv:1305.2989v2]

• Computation of the Gromov width of the complex Grassmannian

[Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] and product of Grassmannians

[G. Lu, Israel J. Math., 2006]

• Computation of the Gromov width of the 4-dimensional torus.

[J. Latschev, D. McDuff and F. Schlenk, Te Gromov width of the 4-dimensional tori, arXiv:1111.6566]

• Upper and lower bounds of the Gromov width of some coadjoint orbits

[A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of type A, arXiv:1301.0158v1]

[Taekgyu Hwang, Dong Youp Suh, The Gromov width from Hamiltonian circle actions, arXiv:1305.2989v2]

• Computation of the Gromov width of the complex Grassmannian

[Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] and product of Grassmannians

[G. Lu, Israel J. Math., 2006]

• Computation of the Gromov width of the 4-dimensional torus.

[J. Latschev, D. McDuff and F. Schlenk, Te Gromov width of the 4-dimensional tori, arXiv:1111.6566]

• Computation of the Gromov width of the first Cartan domain and upper and lower bounds for the classical ones (endowed with ω_0)

[G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007].

• Upper and lower bounds of the Gromov width of some coadjoint orbits

[A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of type A, arXiv:1301.0158v1]

[Taekgyu Hwang, Dong Youp Suh, The Gromov width from Hamiltonian circle actions, arXiv:1305.2989v2]

• Computation of the Gromov width of the complex Grassmannian

[Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] and product of Grassmannians

[G. Lu, Israel J. Math., 2006]

• Computation of the Gromov width of the 4-dimensional torus.

[J. Latschev, D. McDuff and F. Schlenk, Te Gromov width of the 4-dimensional tori, arXiv:1111.6566]

Computation of the Gromov width of the first Cartan domain and upper and lower bounds for the classical ones (endowed with ω₀)

[G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007].

Aim of this talk: to compute the Gromov width for all Hermitian symmetric spaces of compact and noncompact type (bounded symmetric domains) and their products.
Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
- 2 Hermitian symmetric spaces
 - Definition and some properties
 - Duality

3 Main results: the Gromov width of Hermitian symmetric spaces

- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
- Open problems and other symplectic invariants
 - Biran's conjecture
 - Hofer–Zehnder capacity
 - Symplectic Lusternik-Schnirelmann category
 - Darboux charts
 - Symplectic packings and Fefferman invariant

 A Hermitian symmetric space is a connected Kähler manifold (M, ω) such that each point p ∈ M is an isolated fixed point of some holomorphic involutory isometry s_p of M.

- A Hermitian symmetric space is a connected Kähler manifold (M, ω) such that each point p ∈ M is an isolated fixed point of some holomorphic involutory isometry s_p of M.
- The component of the identity of the group of holomorphic isometries of *M* acts transitively on *M* and hence every Hermitian symmetric space is a homogeneous space.

- A Hermitian symmetric space is a connected Kähler manifold (M, ω) such that each point p ∈ M is an isolated fixed point of some holomorphic involutory isometry s_p of M.
- The component of the identity of the group of holomorphic isometries of *M* acts transitively on *M* and hence every Hermitian symmetric space is a homogeneous space.
- A Hermitian symmetric space *M* is said to be of *compact* or *noncompact type* if *M* is compact or noncompact (and non flat).

- A Hermitian symmetric space is a connected Kähler manifold (M, ω) such that each point p ∈ M is an isolated fixed point of some holomorphic involutory isometry s_p of M.
- The component of the identity of the group of holomorphic isometries of *M* acts transitively on *M* and hence every Hermitian symmetric space is a homogeneous space.
- A Hermitian symmetric space *M* is said to be of *compact* or *noncompact type* if *M* is compact or noncompact (and non flat).
- Every Hermitian symmetric space is a direct product

 $M_0 \times M_- \times M_+$

where all the factors are simply-connected Hermitian symmetric spaces, $M_0 = \mathbb{C}^n$ and M_- and M_+ are spaces of compact and noncompact type, respectively.

- A Hermitian symmetric space is a connected Kähler manifold (M, ω) such that each point p ∈ M is an isolated fixed point of some holomorphic involutory isometry s_p of M.
- The component of the identity of the group of holomorphic isometries of *M* acts transitively on *M* and hence every Hermitian symmetric space is a homogeneous space.
- A Hermitian symmetric space *M* is said to be of *compact* or *noncompact type* if *M* is compact or noncompact (and non flat).
- Every Hermitian symmetric space is a direct product

 $M_0 \times M_- \times M_+$

where all the factors are simply-connected Hermitian symmetric spaces, $M_0 = \mathbb{C}^n$ and M_- and M_+ are spaces of compact and noncompact type, respectively.

• Any Hermitian symmetric space of compact or non-compact type is simply connected and is a direct product of irreducible Hermitian symmetric spaces.

An irreducible HSSNT is holomorphically isometric to a bounded symmetric domain $\Omega \subset \mathbb{C}^n$ centered at the origin $0 \in \mathbb{C}^n$ equipped with (a multiple of) the Bergman metric ω_{Berg} .

An irreducible HSSNT is holomorphically isometric to a bounded symmetric domain $\Omega \subset \mathbb{C}^n$ centered at the origin $0 \in \mathbb{C}^n$ equipped with (a multiple of) the Bergman metric ω_{Berg} .

There exists homogeneous bounded domains (equipped with the Bergman metric) which are not HSSNT (first examples due to Pyateskii–Shapiro).

An irreducible HSSNT is holomorphically isometric to a bounded symmetric domain $\Omega \subset \mathbb{C}^n$ centered at the origin $0 \in \mathbb{C}^n$ equipped with (a multiple of) the Bergman metric ω_{Berg} .

There exists homogeneous bounded domains (equipped with the Bergman metric) which are not HSSNT (first examples due to Pyateskii–Shapiro).

There is a complete classification of irreducible HSSNT, with four classical series, studied by Cartan, and two exceptional cases.

An irreducible HSSNT is holomorphically isometric to a bounded symmetric domain $\Omega \subset \mathbb{C}^n$ centered at the origin $0 \in \mathbb{C}^n$ equipped with (a multiple of) the Bergman metric ω_{Berg} .

There exists homogeneous bounded domains (equipped with the Bergman metric) which are not HSSNT (first examples due to Pyateskii–Shapiro).

There is a complete classification of irreducible HSSNT, with four classical series, studied by Cartan, and two exceptional cases.

Let (M, ω_{FS}) be an irreducible HSSCT, where ω_{FS} is the *canonical Kähler* form, i.e. the Kähler-Einstein form such that

$$\omega_{FS}(A) = \int_A \omega_{FS} = \pi$$

for the generator $A = [\mathbb{C}P^1] \in H_2(M, \mathbb{Z})$.

Let (M, ω_{FS}) be an irreducible HSSCT, where ω_{FS} is the *canonical Kähler* form, i.e. the Kähler-Einstein form such that

$$\omega_{FS}(A) = \int_A \omega_{FS} = \pi$$

for the generator $A = [\mathbb{C}P^1] \in H_2(M, \mathbb{Z})$.

There exists a natural number N and a holomorphic embedding

$$BW: M \to \mathbb{C}P^N$$

called the Borel-Weil embedding, such that

$$\omega_{FS} = BW^*\Omega_{FS}.$$

Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
- 2 Hermitian symmetric spaces
 - Definition and some properties
 - Duality

Main results: the Gromov width of Hermitian symmetric spaces

- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
- Open problems and other symplectic invariants
 - Biran's conjecture
 - Hofer–Zehnder capacity
 - Symplectic Lusternik-Schnirelmann category
 - Darboux charts
 - Symplectic packings and Fefferman invariant

Duality

To every bounded symmetric domain $\Omega \subset \mathbb{C}^n$ one can associate an irreducible HSSCT (M, ω) called the *compact dual* of Ω (and viceversa) such that Ω is holomorphically embedded into M.

Duality

To every bounded symmetric domain $\Omega \subset \mathbb{C}^n$ one can associate an irreducible HSSCT (M, ω) called the *compact dual* of Ω (and viceversa) such that Ω is holomorphically embedded into M.

More precisely we have the following holomorphic embeddings:

$$\Omega \stackrel{Harish-Chandra}{\subset} \mathbb{C}^n \stackrel{Borel}{\subset} M \stackrel{BW}{\hookrightarrow} \mathbb{C}P^N$$

The first Cartan domain and the complex Grassmannian

Duality

The first Cartan domain and the complex Grassmannian

Let

$$D_{I}[k, n] = \{ Z \in M_{k,n}(\mathbb{C}) \mid I_{k} - ZZ^{*} > 0 \}$$

be the first Cartan domain.

The first Cartan domain and the complex Grassmannian

Let

$$D_{I}[k, n] = \{ Z \in M_{k, n}(\mathbb{C}) \mid I_{k} - ZZ^{*} > 0 \}$$

be the first Cartan domain.

The compact dual of $D_{I}[k, n]$ is the complex Grassmannian $\text{Grass}_{k}(\mathbb{C}^{n+k})$ endowed with the Fubini-Study form ω_{FS} . More precisely,

$$D_{I}[k,n] \stackrel{Harish-Chandra}{\subset} M_{k,n}(\mathbb{C}) = \mathbb{C}^{kn} \stackrel{Borel}{\subset} \operatorname{Grass}_{k}(\mathbb{C}^{n+k}) \stackrel{P=Plucker}{\hookrightarrow} \mathbb{C}P^{N},$$
$$N = \left(\begin{array}{c} n+k \\ k \end{array} \right) - 1,$$

The first Cartan domain and the complex Grassmannian

Let

$$D_{I}[k, n] = \{ Z \in M_{k, n}(\mathbb{C}) \mid I_{k} - ZZ^{*} > 0 \}$$

be the first Cartan domain.

The compact dual of $D_{I}[k, n]$ is the complex Grassmannian $\text{Grass}_{k}(\mathbb{C}^{n+k})$ endowed with the Fubini-Study form ω_{FS} . More precisely,

$$D_{I}[k,n] \stackrel{Harish-Chandra}{\subset} M_{k,n}(\mathbb{C}) = \mathbb{C}^{kn} \stackrel{Borel}{\subset} \operatorname{Grass}_{k}(\mathbb{C}^{n+k}) \stackrel{P=Plucker}{\hookrightarrow} \mathbb{C}P^{N},$$
$$N = \left(\begin{array}{c} n+k \\ k \end{array} \right) - 1,$$

$$\omega_{FS} = P^* \Omega_{FS}, \ \omega_{FS}|_{\mathbb{C}^{kn}} = \frac{i}{2\pi} \partial \bar{\partial} \log \det(I_k + ZZ^*)$$

$$\omega_{Berg} = -2n \frac{I}{2\pi} \partial \bar{\partial} \log \det(I_k - ZZ^*).$$

Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
- 2 Hermitian symmetric spaces
 - Definition and some properties
 - Duality

3) Main results: the Gromov width of Hermitian symmetric spaces

- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
- Open problems and other symplectic invariants
 - Biran's conjecture
 - Hofer–Zehnder capacity
 - Symplectic Lusternik-Schnirelmann category
 - Darboux charts
 - Symplectic packings and Fefferman invariant

Let (M, ω_{FS}) be an irreducible HSSCT endowed with the canonical symplectic (Kähler) form ω_{FS} .

Let (M, ω_{FS}) be an irreducible HSSCT endowed with the canonical symplectic (Kähler) form ω_{FS} . Then

 $c_G(M,\omega_{FS})=\pi.$

Let (M, ω_{FS}) be an irreducible HSSCT endowed with the canonical symplectic (Kähler) form ω_{FS} . Then

$$c_G(M,\omega_{FS})=\pi.$$

Theorem 2

Let (M_i, ω_{FS}^i) , i = 1, ..., r, be irreducible HSSCT of complex dimension n_i endowed with the canonical symplectic (Kähler) forms ω_{FS}^i .

Let (M, ω_{FS}) be an irreducible HSSCT endowed with the canonical symplectic (Kähler) form ω_{FS} . Then

$$c_G(M,\omega_{FS})=\pi.$$

Theorem 2

Let (M_i, ω_{FS}^i) , i = 1, ..., r, be irreducible HSSCT of complex dimension n_i endowed with the canonical symplectic (Kähler) forms ω_{FS}^i . Then

$$c_G\left(M_1\times\cdots\times M_r,\omega_{FS}^1\oplus\cdots\oplus\omega_{FS}^r\right)=\pi.$$

Let (M, ω_{FS}) be an irreducible HSSCT endowed with the canonical symplectic (Kähler) form ω_{FS} . Then

$$c_G(M,\omega_{FS})=\pi.$$

Theorem 2

Let (M_i, ω_{FS}^i) , i = 1, ..., r, be irreducible HSSCT of complex dimension n_i endowed with the canonical symplectic (Kähler) forms ω_{FS}^i . Then

$$c_G\left(M_1\times\cdots\times M_r,\omega_{FS}^1\oplus\cdots\oplus\omega_{FS}^r\right)=\pi.$$

Moreover, if a_1, \ldots, a_r are nonzero constants,

Let (M, ω_{FS}) be an irreducible HSSCT endowed with the canonical symplectic (Kähler) form ω_{FS} . Then

$$c_G(M,\omega_{FS})=\pi.$$

Theorem 2

Let (M_i, ω_{FS}^i) , i = 1, ..., r, be irreducible HSSCT of complex dimension n_i endowed with the canonical symplectic (Kähler) forms ω_{FS}^i . Then

$$c_G\left(M_1\times\cdots\times M_r,\omega_{FS}^1\oplus\cdots\oplus\omega_{FS}^r\right)=\pi.$$

Moreover, if a_1, \ldots, a_r are nonzero constants, then

$$c_G\left(M_1 \times \cdots \times M_r, a_1 \omega_{FS}^1 \oplus \cdots \oplus a_r \omega_{FS}^r\right) \leq \min\{|a_1|, \ldots, |a_r|\}\pi.$$

Theorem 1 extends (to the case of HSSCT) the results of Y. Karshon, S. Tolman [Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] when M is the complex Grassmannian.

Theorem 1 extends (to the case of HSSCT) the results of Y. Karshon, S. Tolman [Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] when M is the complex Grassmannian.

Theorem 2 extends (to the case of HSSCT) G. Lu's results [G. Lu, Israel J. Math., 2006] when M_j are complex Grassmannians.

Theorem 1 extends (to the case of HSSCT) the results of Y. Karshon, S. Tolman [Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] when M is the complex Grassmannian.

Theorem 2 extends (to the case of HSSCT) G. Lu's results [G. Lu, Israel J. Math., 2006] when M_j are complex Grassmannians.

When
$$M_j = \mathbb{C}P^1$$
 for all $j = 1, \ldots, r$,

$$c_{\mathcal{G}}(\mathbb{C}P^1 imes \cdots imes \mathbb{C}P^1, a_1 \omega_{FS} \oplus \cdots \oplus a_r \omega_{FS}) = \min\{|a_1|, \dots, |a_r|\}\pi.$$

[G. Lu, Israel J. Math., 2006]

Theorem 1 extends (to the case of HSSCT) the results of Y. Karshon, S. Tolman [Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] when M is the complex Grassmannian.

Theorem 2 extends (to the case of HSSCT) G. Lu's results [G. Lu, Israel J. Math., 2006] when M_j are complex Grassmannians.

When
$$M_j = \mathbb{C}P^1$$
 for all $j = 1, \ldots, r$,

$$c_{\mathcal{G}}(\mathbb{C}P^1 imes \cdots imes \mathbb{C}P^1, a_1 \omega_{FS} \oplus \cdots \oplus a_r \omega_{FS}) = \min\{|a_1|, \dots, |a_r|\}\pi.$$

[G. Lu, Israel J. Math., 2006]

$$c_G(\mathbb{C}P^{n_1} \times \cdots \times \mathbb{C}P^{n_r}, a_1\omega_{FS}^1 \oplus \cdots \oplus a_r\omega_{FS}^r) = ?$$

if some $n_j > 1$ or $|a_j| \neq 1$.

Idea of the proof of Theorem 1: the upper bound

Idea of the proof of Theorem 1: the upper bound

Step 1

• The proof of the upper bound $c_G(M, \omega_{FS}) \leq \pi$ is obtained by the computations of some genus-zero three-points Gromov-Witten invariants for irreducible HSSCT [A. Beauville, Mat. Fiz. Anal. Geom., 1995],

[P. E. Chaput, L. Manivel, N. Perrin, Transform. Groups, 2008],

[B. Siebert, G. Tian, Asian J. Math., 1997]

Idea of the proof of Theorem 1: the upper bound

Step 1

• The proof of the upper bound $c_G(M, \omega_{FS}) \leq \pi$ is obtained by the computations of some genus-zero three-points Gromov-Witten invariants for irreducible HSSCT [A. Beauville, Mat. Fiz. Anal. Geom., 1995],

[P. E. Chaput, L. Manivel, N. Perrin, Transform. Groups, 2008],

- [B. Siebert, G. Tian, Asian J. Math., 1997] and through nonsqueezing theorem techingues using and extending the ideas in
- [Y. Karshon, S. Tolman, Algebr. Geom. Topol., 2005] for the complex Grassmannian.

▶ details

Idea of the proof of Theorem 1: the lower bound

Step 2 The lower bound $c_G(M, \omega_{FS}) \ge \pi$ is obtained as follows.

Idea of the proof of Theorem 1: the lower bound

Step 2 The lower bound $c_G(M, \omega_{FS}) \ge \pi$ is obtained as follows.

 Let (Ω, ω₀), Ω ⊂ ℂⁿ, be the bounded symmetric domain noncompact dual of (M, ω_{FS}) equipped with the canonical symplectic form ω₀ of ℝ²ⁿ.
Step 2 The lower bound $c_G(M, \omega_{FS}) \ge \pi$ is obtained as follows.

 Let (Ω, ω₀), Ω ⊂ Cⁿ, be the bounded symmetric domain noncompact dual of (M, ω_{FS}) equipped with the canonical symplectic form ω₀ of R²ⁿ. Then there exists a symplectic embedding

$$\Phi_{\Omega}: (\Omega, \omega_0) \to (M, \omega_{FS})$$

[A. J. Di Scala, AL, Symplectic duality of Symmetric Spaces, Adv.Math., 2008]

Step 2 The lower bound $c_G(M, \omega_{FS}) \ge \pi$ is obtained as follows.

 Let (Ω, ω₀), Ω ⊂ Cⁿ, be the bounded symmetric domain noncompact dual of (M, ω_{FS}) equipped with the canonical symplectic form ω₀ of R²ⁿ. Then there exists a symplectic embedding

$$\Phi_{\Omega}: (\Omega, \omega_0) \to (M, \omega_{FS})$$

• go to Example [A. J. Di Scala, AL, Symplectic duality of Symmetric Spaces, Adv.Math., 2008]

Using Jordan triple systems tools one can prove that there exists a symplectic embedding

 $(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0)$

Step 2 The lower bound $c_G(M, \omega_{FS}) \ge \pi$ is obtained as follows.

 Let (Ω, ω₀), Ω ⊂ Cⁿ, be the bounded symmetric domain noncompact dual of (M, ω_{FS}) equipped with the canonical symplectic form ω₀ of R²ⁿ. Then there exists a symplectic embedding

$$\Phi_{\Omega}: (\Omega, \omega_0) \to (M, \omega_{FS})$$

• go to Example [A. J. Di Scala, AL, Symplectic duality of Symmetric Spaces, Adv.Math., 2008]

Using Jordan triple systems tools one can prove that there exists a symplectic embedding

$$(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0) \stackrel{\Phi_\Omega}{\to} (M,\omega_{FS})$$

Step 2 The lower bound $c_G(M, \omega_{FS}) \ge \pi$ is obtained as follows.

 Let (Ω, ω₀), Ω ⊂ Cⁿ, be the bounded symmetric domain noncompact dual of (M, ω_{FS}) equipped with the canonical symplectic form ω₀ of R²ⁿ. Then there exists a symplectic embedding

$$\Phi_{\Omega}: (\Omega, \omega_0) \to (M, \omega_{FS})$$

• go to Example [A. J. Di Scala, AL, Symplectic duality of Symmetric Spaces, Adv.Math., 2008]

Using Jordan triple systems tools one can prove that there exists a symplectic embedding

$$(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0) \stackrel{\Phi_\Omega}{\to} (M,\omega_{FS}) \implies c_G(M,\omega_{FS}) \ge \pi.$$

Step 2 The lower bound $c_G(M, \omega_{FS}) \ge \pi$ is obtained as follows.

 Let (Ω, ω₀), Ω ⊂ Cⁿ, be the bounded symmetric domain noncompact dual of (M, ω_{FS}) equipped with the canonical symplectic form ω₀ of R²ⁿ. Then there exists a symplectic embedding

$$\Phi_{\Omega}: (\Omega, \omega_0) \to (M, \omega_{FS})$$

• go to Example [A. J. Di Scala, AL, Symplectic duality of Symmetric Spaces, Adv.Math., 2008]

Using Jordan triple systems tools one can prove that there exists a symplectic embedding

$$(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0) \stackrel{\Phi_{\Omega}}{\to} (M,\omega_{FS}) \implies c_G(M,\omega_{FS}) \ge \pi.$$

The embedding Φ_Ω induces a global symplectomorphism

$$(\Omega,\omega_0) \stackrel{\Phi_{\Omega}}{\to} (M \setminus \mathsf{Cut}_0(M) \cong \mathbb{C}^n, \omega_{FS}) \stackrel{Borel}{\subset} (M,\omega_{FS}) \stackrel{BW}{\hookrightarrow} (\mathbb{C}P^N, \omega_{FS})$$

Idea of the proof of Theorem 2

Idea of the proof of Theorem 2

Steps

The lower bound c_G (M₁ × ··· × M_r, ω¹_{FS} ⊕ ··· ⊕ ω^r_{FS}) ≥ π is obtained by (motonicity)+(nontriviality) of c_G and the embeddings

$$B^{2n_1+\dots+2n_r}(1)\subset imes_{j=1}^rB^{2n_j}(1)\subset imes_{j=1}^r\Omega_j\stackrel{\Phi_{\Omega_1} imes\dots imes\Phi_{\Omega_r}}{\longrightarrow} imes_{j=1}^rM_j.$$

Idea of the proof of Theorem 2

Steps

The lower bound c_G (M₁ × ··· × M_r, ω¹_{FS} ⊕ ··· ⊕ ω^r_{FS}) ≥ π is obtained by (motonicity)+(nontriviality) of c_G and the embeddings

$$B^{2n_1+\dots+2n_r}(1)\subset imes_{j=1}^rB^{2n_j}(1)\subset imes_{j=1}^r\Omega_j \stackrel{\Phi_{\Omega_1} imes\dots imes\Phi_{\Omega_r}}{\longrightarrow} imes_{j=1}^rM_j.$$

The upper bound

$$c_G\left(M_1 imes \cdots imes M_r, a_1 \omega_{FS}^1 \oplus \cdots \oplus a_r \omega_{FS}^r
ight) \leq \min\{|a_1|, \dots, |a_r|\}\pi$$

and hence $c_G(M_1 \times \cdots \times M_r, \omega_{FS}^1 \oplus \cdots \oplus \omega_{FS}^r) \leq \pi$ is obtained by combining $c_G(M_j, \omega_{FS}^j) \leq \pi$ with the following theorem.

Let (M, ω_{FS}) be an irreducible HSSCT and (N, ω) be any closed symplectic manifold. Then, for any nonzero real number *a*,

 $c_G(N \times M, \omega \oplus a\omega_{FS}) \leq |a|\pi.$

Let (M, ω_{FS}) be an irreducible HSSCT and (N, ω) be any closed symplectic manifold. Then, for any nonzero real number *a*,

 $c_G(N \times M, \omega \oplus a\omega_{FS}) \leq |a|\pi.$

Remark

The proof of the theorem uses Lu's pseudo symplectic capacities and their estimation in terms of Gromov-Witten invariants.

Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
- 2 Hermitian symmetric spaces
 - Definition and some properties
 - Duality
 - 3 Main results: the Gromov width of Hermitian symmetric spaces
 - Main results on HSSCT: Theorem 1 and Theorem 2
 - Main results on HSSNT: Theorem 3 and Theorem 4
 - Symplectic capacities of HSSNT: Theorem 5
 - Open problems and other symplectic invariants
 - Biran's conjecture
 - Hofer-Zehnder capacity
 - Symplectic Lusternik-Schnirelmann category
 - Darboux charts
 - Symplectic packings and Fefferman invariant

Let $\Omega \subset \mathbb{C}^n$ be a bounded symmetric domain.

Let $\Omega \subset \mathbb{C}^n$ be a bounded symmetric domain. Then

 $c_G(\Omega,\omega_0)=\pi.$

Let $\Omega \subset \mathbb{C}^n$ be a bounded symmetric domain. Then

$$c_G(\Omega,\omega_0)=\pi.$$

Theorem 4

Let $\Omega_i \subset \mathbb{C}^{n_i}$, i = 1, ..., r, be bounded symmetric domains of complex dimension n_i equipped with the standard symplectic form ω_0^i of $\mathbb{R}^{2n_i} = \mathbb{C}^{n_i}$.

Let $\Omega \subset \mathbb{C}^n$ be a bounded symmetric domain. Then

$$c_G(\Omega,\omega_0)=\pi.$$

Theorem 4

Let $\Omega_i \subset \mathbb{C}^{n_i}$, i = 1, ..., r, be bounded symmetric domains of complex dimension n_i equipped with the standard symplectic form ω_0^i of $\mathbb{R}^{2n_i} = \mathbb{C}^{n_i}$. Then

$$c_{G}\left(\Omega_{1} imes\cdots imes\Omega_{r},\omega_{0}^{1}\oplus\cdots\oplus\omega_{0}^{r}
ight)=\pi.$$

Let $\Omega \subset \mathbb{C}^n$ be a bounded symmetric domain. Then

$$c_G(\Omega,\omega_0)=\pi.$$

Theorem 4

Let $\Omega_i \subset \mathbb{C}^{n_i}$, $i = 1, \ldots, r$, be bounded symmetric domains of complex dimension n_i equipped with the standard symplectic form ω_0^i of $\mathbb{R}^{2n_i} = \mathbb{C}^{n_i}$. Then

$$c_G\left(\Omega_1 imes\cdots imes\Omega_r,\omega_0^1\oplus\cdots\oplus\omega_0^r
ight)=\pi.$$

Moreover, If a_1, \ldots, a_r are nonzero constants,

Let $\Omega \subset \mathbb{C}^n$ be a bounded symmetric domain. Then

$$c_G(\Omega,\omega_0)=\pi.$$

Theorem 4

Let $\Omega_i \subset \mathbb{C}^{n_i}$, $i = 1, \ldots, r$, be bounded symmetric domains of complex dimension n_i equipped with the standard symplectic form ω_0^i of $\mathbb{R}^{2n_i} = \mathbb{C}^{n_i}$. Then

$$c_G\left(\Omega_1 \times \cdots \times \Omega_r, \omega_0^1 \oplus \cdots \oplus \omega_0^r\right) = \pi.$$

Moreover, If a_1, \ldots, a_r are nonzero constants, then

$$c_{\mathcal{G}}\left(\Omega_1 imes \cdots imes \Omega_r, a_1 \omega_0^1 \oplus \cdots \oplus a_r \omega_0^r
ight) \leq \min\{|a_1|, \dots, |a_r|\} \pi.$$

Theorem 3 extends to the product of HSSNT (including the exceptional ones) the results in [G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007] valid for classical Cartan domains.

Theorem 3 extends to the product of HSSNT (including the exceptional ones) the results in [G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007] valid for classical Cartan domains.

Notice that

$$c_G(\Omega, \omega_{Berg}) = +\infty.$$

Theorem 3 extends to the product of HSSNT (including the exceptional ones) the results in [G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007] valid for classical Cartan domains.

Notice that

$$c_G(\Omega, \omega_{Berg}) = +\infty.$$

Indeed, by the following result of D. McDuff [D. McDuff, J. Diff. Geometry, 1988] (Ω, ω_{Berg}) is globally symplectomorphic to $(\mathbb{R}^{2n}, \omega_0)$.

Theorem 3 extends to the product of HSSNT (including the exceptional ones) the results in [G. Lu, H. Ding, Q. Zhang, Int. Math. Forum 2, 2007] valid for classical Cartan domains.

Notice that

$$c_G(\Omega, \omega_{Berg}) = +\infty.$$

Indeed, by the following result of D. McDuff [D. McDuff, J. Diff. Geometry, 1988] (Ω, ω_{Berg}) is globally symplectomorphic to $(\mathbb{R}^{2n}, \omega_0)$.

Theorem (McDuff)

Let (M, ω) be a Kähler manifold. Assume that $\pi_1(M) = \{1\}$, M is complete and $K \leq 0$. Then there exists a symplectomorphism

 $\psi: (M, \omega) \to (\mathbb{R}^{2n}, \omega_0).$

$$(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0) \stackrel{\Phi_\Omega}{\to} (M,\omega_{FS}),$$

$$(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0) \stackrel{\Phi_{\Omega}}{\to} (M,\omega_{FS}), \ c_G(B^{2n}(1),\omega_0) = c_G(M,\omega_{FS}) \stackrel{Th1}{=} \pi$$

$(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0) \stackrel{\Phi_{\Omega}}{\to} (M,\omega_{FS}), \ c_G(B^{2n}(1),\omega_0) = c_G(M,\omega_{FS}) \stackrel{Th1}{=} \pi$

$$(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0) \stackrel{\Phi_{\Omega}}{\to} (M,\omega_{FS}), \ c_G(B^{2n}(1),\omega_0) = c_G(M,\omega_{FS}) \stackrel{Th1}{=} \pi$$
$$\Rightarrow \ c_G(\Omega,\omega_0) = \pi$$

$$(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0) \stackrel{\Phi_{\Omega}}{\to} (M,\omega_{FS}), \ c_G(B^{2n}(1),\omega_0) = c_G(M,\omega_{FS}) \stackrel{Th1}{=} \pi$$
$$\Rightarrow c_G(\Omega,\omega_0) = \pi$$

$$(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0) \stackrel{\Phi_{\Omega}}{\to} (M,\omega_{FS}), \ c_G(B^{2n}(1),\omega_0) = c_G(M,\omega_{FS}) \stackrel{Th1}{=} \pi$$

$$\Rightarrow c_G(\Omega,\omega_0) = \pi$$

$$B^{2n_1+\dots+2n_r}(1)\subset imes_{j=1}^rB^{2n_j}(1)\subset imes_{j=1}^r\Omega_j \stackrel{\Phi_{\Omega_1} imes\dots imes\Phi_{\Omega_r}}{\longrightarrow} imes_{j=1}^rM_j$$

$$(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0) \stackrel{\Phi_{\Omega}}{\to} (M,\omega_{FS}), \ c_G(B^{2n}(1),\omega_0) = c_G(M,\omega_{FS}) \stackrel{Th1}{=} \pi$$

$$\Rightarrow \ c_G(\Omega,\omega_0) = \pi$$

The proof of Theorem 4

$$B^{2n_1+\dots+2n_r}(1) \subset \times_{j=1}^r B^{2n_j}(1) \subset \times_{j=1}^r \Omega_j \xrightarrow{\Phi_{\Omega_1} \times \dots \times \Phi_{\Omega_r}} \times_{j=1}^r M_j$$
$$c_G(B^{2n_1+\dots+2n_r}(1), \omega_0) = c_G(M_1 \times \dots \times M_r, \omega_{FS}^1 \oplus \dots \oplus \omega_{FS}^r) \stackrel{Th2}{=} \pi$$

.

.

$$(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0) \stackrel{\Phi_{\Omega}}{\to} (M,\omega_{FS}), \ c_G(B^{2n}(1),\omega_0) = c_G(M,\omega_{FS}) \stackrel{Th1}{=} \pi$$
$$\Rightarrow c_G(\Omega,\omega_0) = \pi$$

The proof of Theorem 4

$$B^{2n_1+\dots+2n_r}(1) \subset \times_{j=1}^r B^{2n_j}(1) \subset \times_{j=1}^r \Omega_j \xrightarrow{\Phi_{\Omega_1} \times \dots \times \Phi_{\Omega_r}} \times_{j=1}^r M_j$$

$$c_G(B^{2n_1+\dots+2n_r}(1), \omega_0) = c_G(M_1 \times \dots \times M_r, \omega_{FS}^1 \oplus \dots \oplus \omega_{FS}^r) \xrightarrow{Th2} \pi$$

.

$$(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0) \stackrel{\Phi_{\Omega}}{\to} (M,\omega_{FS}), \ c_G(B^{2n}(1),\omega_0) = c_G(M,\omega_{FS}) \stackrel{Th1}{=} \pi$$
$$\Rightarrow c_G(\Omega,\omega_0) = \pi$$

The proof of Theorem 4

$$B^{2n_1+\dots+2n_r}(1) \subset \times_{j=1}^r B^{2n_j}(1) \subset \times_{j=1}^r \Omega_j \xrightarrow{\Phi_{\Omega_1} \times \dots \times \Phi_{\Omega_r}} \times_{j=1}^r M_j$$

$$c_G(B^{2n_1+\dots+2n_r}(1), \omega_0) = c_G(M_1 \times \dots \times M_r, \omega_{FS}^1 \oplus \dots \oplus \omega_{FS}^r) \xrightarrow{Th2} \pi$$

$$\Rightarrow c_G(\Omega_1 \times \dots \times \Omega_r, \omega_0^1 \oplus \dots \oplus \omega_0^r) = \pi$$

.

$$(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0) \stackrel{\Phi_{\Omega}}{\to} (M,\omega_{FS}), \ c_G(B^{2n}(1),\omega_0) = c_G(M,\omega_{FS}) \stackrel{Th1}{=} \pi$$
$$\Rightarrow c_G(\Omega,\omega_0) = \pi$$

$$B^{2n_1+\dots+2n_r}(1) \subset \times_{j=1}^r B^{2n_j}(1) \subset \times_{j=1}^r \Omega_j \xrightarrow{\Phi_{\Omega_1} \times \dots \times \Phi_{\Omega_r}} \times_{j=1}^r M_j$$

$$c_G(B^{2n_1+\dots+2n_r}(1), \omega_0) = c_G(M_1 \times \dots \times M_r, \omega_{FS}^1 \oplus \dots \oplus \omega_{FS}^r) \xrightarrow{Th2} \pi$$

$$\Rightarrow c_G(\Omega_1 \times \dots \times \Omega_r, \omega_0^1 \oplus \dots \oplus \omega_0^r) = \pi$$

$$c_G(M_1 \times \dots \times M_r, a_1 \omega_{FS}^1 \oplus \dots \oplus a_r \omega_{FS}^r) \stackrel{Th2}{\leq} \min\{|a_1|, \dots, |a_r|\}\pi$$

$$(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0) \stackrel{\Phi_{\Omega}}{\to} (M,\omega_{FS}), \ c_G(B^{2n}(1),\omega_0) = c_G(M,\omega_{FS}) \stackrel{Th1}{=} \pi$$
$$\Rightarrow c_G(\Omega,\omega_0) = \pi$$

$$B^{2n_1+\dots+2n_r}(1) \subset \times_{j=1}^r B^{2n_j}(1) \subset \times_{j=1}^r \Omega_j \xrightarrow{\Phi_{\Omega_1} \times \dots \times \Phi_{\Omega_r}} \times_{j=1}^r M_j$$

$$c_G(B^{2n_1+\dots+2n_r}(1), \omega_0) = c_G(M_1 \times \dots \times M_r, \omega_{FS}^1 \oplus \dots \oplus \omega_{FS}^r) \xrightarrow{Th2} \pi$$

$$\Rightarrow c_G(\Omega_1 \times \dots \times \Omega_r, \omega_0^1 \oplus \dots \oplus \omega_0^r) = \pi$$

$$c_G(M_1 \times \dots \times M_r, a_1 \omega_{FS}^1 \oplus \dots \oplus a_r \omega_{FS}^r) \xrightarrow{Th2} \min\{|a_1|, \dots, |a_r|\}\pi$$

$$\Rightarrow$$

$$(B^{2n}(1),\omega_0) \hookrightarrow (\Omega,\omega_0) \stackrel{\Phi_{\Omega}}{\to} (M,\omega_{FS}), \ c_G(B^{2n}(1),\omega_0) = c_G(M,\omega_{FS}) \stackrel{Th1}{=} \pi$$
$$\Rightarrow c_G(\Omega,\omega_0) = \pi$$

$$B^{2n_1+\dots+2n_r}(1) \subset \times_{j=1}^r B^{2n_j}(1) \subset \times_{j=1}^r \Omega_j \xrightarrow{\Phi_{\Omega_1} \times \dots \times \Phi_{\Omega_r}} \times_{j=1}^r M_j$$

$$c_G(B^{2n_1+\dots+2n_r}(1), \omega_0) = c_G(M_1 \times \dots \times M_r, \omega_{FS}^1 \oplus \dots \oplus \omega_{FS}^r) \xrightarrow{Th2} \pi$$

$$\Rightarrow c_G(\Omega_1 \times \dots \times \Omega_r, \omega_0^1 \oplus \dots \oplus \omega_0^r) = \pi$$

$$c_G(M_1 \times \dots \times M_r, a_1 \omega_{FS}^1 \oplus \dots \oplus a_r \omega_{FS}^r) \xrightarrow{Th2} \min\{|a_1|, \dots, |a_r|\}\pi$$

$$\Rightarrow c_G(\Omega_1 \times \dots \times \Omega_r, a_1 \omega_0^1 \oplus \dots \oplus a_r \omega_0^r) \leq \min\{|a_1|, \dots, |a_r|\}\pi.$$

Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
- 2 Hermitian symmetric spaces
 - Definition and some properties
 - Duality

3 Main results: the Gromov width of Hermitian symmetric spaces

- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
- Open problems and other symplectic invariants
 - Biran's conjecture
 - Hofer-Zehnder capacity
 - Symplectic Lusternik-Schnirelmann category
 - Darboux charts
 - Symplectic packings and Fefferman invariant

Let $\Omega \subset \mathbb{C}^n$ be a bounded symmetric domain.

Let $\Omega \subset \mathbb{C}^n$ be a bounded symmetric domain. Then

$$c(\Omega, \omega_0) = \pi$$

for any symplectic capacity c.

Let $\Omega \subset \mathbb{C}^n$ be a bounded symmetric domain. Then

$$c(\Omega, \omega_0) = \pi$$

for any symplectic capacity c.

Idea of the proof

Let $\Omega \subset \mathbb{C}^n$ be a bounded symmetric domain. Then

$$c(\Omega, \omega_0) = \pi$$

for any symplectic capacity c.

Idea of the proof

Using Jordan triple systems tools one can prove that

$$B^{2n}(1) \subset \Omega \subset Z^{2n}(1).$$

Let $\Omega \subset \mathbb{C}^n$ be a bounded symmetric domain. Then

$$c(\Omega, \omega_0) = \pi$$

for any symplectic capacity c.

Idea of the proof

Using Jordan triple systems tools one can prove that

$$B^{2n}(1) \subset \Omega \subset Z^{2n}(1).$$

Hence the conclusion follows by (monotonicity)+(nontriviality) of c.

Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
- 2 Hermitian symmetric spaces
 - Definition and some properties
 - Duality

3 Main results: the Gromov width of Hermitian symmetric spaces

- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
- Open problems and other symplectic invariants
 - Biran's conjecture
 - Hofer–Zehnder capacity
 - Symplectic Lusternik-Schnirelmann category
 - Darboux charts
 - Symplectic packings and Fefferman invariant

Biran's conjecture

Biran's conjecture

Let (M, ω) be a closed symplectic manifold with $[\omega] \in H^2(M, \mathbb{Z})$.

Biran's conjecture

Let (M, ω) be a closed symplectic manifold with $[\omega] \in H^2(M, \mathbb{Z})$. Then $c_G(M, \omega) \ge \pi$.

Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
- 2 Hermitian symmetric spaces
 - Definition and some properties
 - Duality

3 Main results: the Gromov width of Hermitian symmetric spaces

- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
- Open problems and other symplectic invariants
 - Biran's conjecture
 - Hofer-Zehnder capacity
 - Symplectic Lusternik-Schnirelmann category
 - Darboux charts
 - Symplectic packings and Fefferman invariant

Hofer–Zehnder capacity CHZ

Hofer–Zehnder capacity c_{HZ}

In [H. Hofer, E. Zehnder, A new capacity for symplectic manifolds, Academic Press, New York 1990] Hofer and Zehnder defines a symplectic capacity c_{HZ} , which satisfies

 $c_{HZ}(M,\omega) \geq c(M,\omega)$

for all symplectic capacity c.

Known results on c_{HZ}

Known results on c_{HZ}

Theorem (Hofer–Viterbo)

$$c_{HZ}(\mathbb{C}P^n,\omega_{FS})=\pi$$

[H. Hofer and C. Viterbo, The Weinstein conjecture...., Comm. Pure and Applied Math. 45, 1992]

Known results on c_{HZ}

Theorem (Hofer–Viterbo)

$$c_{HZ}(\mathbb{C}P^n,\omega_{FS})=\pi$$

[H. Hofer and C. Viterbo, The Weinstein conjecture...., Comm. Pure and Applied Math. 45, 1992]

Theorem (Lu)

Let
$$a_j \neq 0, j = 1, \ldots r$$
. Then

 $c_{HZ}(\mathbb{C}P^{n_1}\times\cdots\times\mathbb{C}P^{n_r},a_1\omega_{FS}^1\oplus\cdots\oplus a_r\omega_{FS}^r)=(|a_1|+\cdots+|a_r|)\pi.$

[G. Lu, Israel J. Math., 2006].

Results on *c_{HZ}*

Results on CHZ

Theorem 6

Let (M_i, ω_{FS}^i) , i = 1, ..., r, be irreducible HSSCT of complex dimension n_i

Results on CHZ

Theorem 6

Let (M_i, ω_{FS}^i) , i = 1, ..., r, be irreducible HSSCT of complex dimension n_i Then

$$c_{HZ}\left(M_1 \times \cdots \times M_r, a_1 \omega_{FS}^1 \oplus \cdots \oplus a_r \omega_{FS}^r\right) \geq \{|a_1| + \cdots + |a_r|\}\pi$$

Results on *c_{HZ}*

Theorem 6

Let (M_i, ω_{FS}^i) , i = 1, ..., r, be irreducible HSSCT of complex dimension n_i Then

$$c_{HZ}\left(M_1 \times \cdots \times M_r, a_1 \omega_{FS}^1 \oplus \cdots \oplus a_r \omega_{FS}^r\right) \geq \{|a_1| + \cdots + |a_r|\}\pi$$

Remark

Theorem 6 extends a theorem of Lu when M_i are complex Grassmannians.

Results on *c_{HZ}*

Theorem 6

Let (M_i, ω_{FS}^i) , i = 1, ..., r, be irreducible HSSCT of complex dimension n_i Then

$$c_{HZ}\left(M_1 \times \cdots \times M_r, a_1 \omega_{FS}^1 \oplus \cdots \oplus a_r \omega_{FS}^r\right) \geq \{|a_1| + \cdots + |a_r|\}\pi$$

Remark

Theorem 6 extends a theorem of Lu when M_i are complex Grassmannians.

Open problem

$$c_{HZ}(M,\omega_{FS}) = ?$$

Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
- 2 Hermitian symmetric spaces
 - Definition and some properties
 - Duality

3 Main results: the Gromov width of Hermitian symmetric spaces

- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
- Open problems and other symplectic invariants
 - Biran's conjecture
 - Hofer-Zehnder capacity
 - Symplectic Lusternik-Schnirelmann category
 - Darboux charts
 - Symplectic packings and Fefferman invariant

Let (N, ω) be a closed symplectic manifold. The symplectic Lusternik-Schnirelmann category $S(N, \omega)$

[Y. B. Rudyak, F. Schlenk, Commun. Contemp. Math., 2007] is defined as

$S(N,\omega) = \min\{k \mid N = V_1 \cup \cdots \cup V_k\}$

Let (N, ω) be a closed symplectic manifold. The symplectic Lusternik-Schnirelmann category $S(N, \omega)$

[Y. B. Rudyak, F. Schlenk, Commun. Contemp. Math., 2007] is defined as

$$S(N,\omega) = \min\{k \mid N = V_1 \cup \cdots \cup V_k\}$$

where each $V_i = \Phi_i(U_i)$ by a symplectic embedding $\Phi_i : U_i \to V_i \subset N$, U_i bounded subset of $(\mathbb{R}^{2n}, \omega_0)$ diffeomorphic to an open ball in \mathbb{R}^{2n} .

Let (N, ω) be a closed symplectic manifold. The symplectic Lusternik-Schnirelmann category $S(N, \omega)$

[Y. B. Rudyak, F. Schlenk, Commun. Contemp. Math., 2007] is defined as

$$S(N,\omega) = \min\{k \mid N = V_1 \cup \cdots \cup V_k\}$$

where each $V_i = \Phi_i(U_i)$ by a symplectic embedding $\Phi_i : U_i \to V_i \subset N$, U_i bounded subset of $(\mathbb{R}^{2n}, \omega_0)$ diffeomorphic to an open ball in \mathbb{R}^{2n} .

Theorem 7

Let (M, ω_{FS}) be an irreducible HSSCT and $BW : M \to \mathbb{C}P^N$ the Borel–Weil embedding.

Let (N, ω) be a closed symplectic manifold. The symplectic Lusternik-Schnirelmann category $S(N, \omega)$

[Y. B. Rudyak, F. Schlenk, Commun. Contemp. Math., 2007] is defined as

$$S(N,\omega) = \min\{k \mid N = V_1 \cup \cdots \cup V_k\}$$

where each $V_i = \Phi_i(U_i)$ by a symplectic embedding $\Phi_i : U_i \to V_i \subset N$, U_i bounded subset of $(\mathbb{R}^{2n}, \omega_0)$ diffeomorphic to an open ball in \mathbb{R}^{2n} .

Theorem 7

Let (M, ω_{FS}) be an irreducible HSSCT and $BW : M \to \mathbb{C}P^N$ the Borel–Weil embedding. Then

 $S(M, \omega_{FS}) \leq N + 1$

Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
- 2 Hermitian symmetric spaces
 - Definition and some properties
 - Duality

3 Main results: the Gromov width of Hermitian symmetric spaces

- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
- Open problems and other symplectic invariants
 - Biran's conjecture
 - Hofer–Zehnder capacity
 - Symplectic Lusternik-Schnirelmann category
 - Darboux charts
 - Symplectic packings and Fefferman invariant

Let (M, ω) be a closed symplectic manifold. By Darboux theorem for each point $p \in M$ there exists a symplectic embedding $\varphi : (B^{2n}(r), \omega_0) \to (M, \omega)$, for some r > 0. One calls $(B^{2n}(r), \varphi)$ a Darboux chart. [Y. B. Rudyak, F. Schlenk, Commun. Contemp. Math., 2007].

Let (M, ω) be a closed symplectic manifold. By Darboux theorem for each point $p \in M$ there exists a symplectic embedding $\varphi : (B^{2n}(r), \omega_0) \to (M, \omega)$, for some r > 0. One calls $(B^{2n}(r), \varphi)$ a Darboux chart. [Y. B. Rudyak, F. Schlenk, Commun. Contemp. Math., 2007]. Let

$$S_B(M,\omega) = \min\{k \mid M = B_1 \cup \cdots \cup B_k\}$$

Let (M, ω) be a closed symplectic manifold. By Darboux theorem for each point $p \in M$ there exists a symplectic embedding $\varphi : (B^{2n}(r), \omega_0) \to (M, \omega)$, for some r > 0. One calls $(B^{2n}(r), \varphi)$ a Darboux chart. [Y. B. Rudyak, F. Schlenk, Commun. Contemp. Math., 2007]. Let

$$S_B(M,\omega) = \min\{k \mid M = B_1 \cup \cdots \cup B_k\}$$

where each B_i is the image $\varphi_i(B^{2n}(r_i))$ of a Darboux chart.

Let (M, ω) be a closed symplectic manifold. By Darboux theorem for each point $p \in M$ there exists a symplectic embedding $\varphi : (B^{2n}(r), \omega_0) \to (M, \omega)$, for some r > 0. One calls $(B^{2n}(r), \varphi)$ a Darboux chart. [Y. B. Rudyak, F. Schlenk, Commun. Contemp. Math., 2007]. Let

$$S_B(M,\omega) = \min\{k \mid M = B_1 \cup \cdots \cup B_k\}$$

where each B_i is the image $\varphi_i(B^{2n}(r_i))$ of a Darboux chart.

Problem

Let (M, ω_{FS}) be an irreducible HSSCT. Compute (or estimate) $S_B(M, \omega_{FS})$.

Basic facts on Symplectic Topology

- Darboux Theorem
- Gromov width
- Symplectic capacities
- The Gromov width as a symplectic capacity
- 2 Hermitian symmetric spaces
 - Definition and some properties
 - Duality

3 Main results: the Gromov width of Hermitian symmetric spaces

- Main results on HSSCT: Theorem 1 and Theorem 2
- Main results on HSSNT: Theorem 3 and Theorem 4
- Symplectic capacities of HSSNT: Theorem 5
- Open problems and other symplectic invariants
 - Biran's conjecture
 - Hofer–Zehnder capacity
 - Symplectic Lusternik-Schnirelmann category
 - Darboux charts
 - Symplectic packings and Fefferman invariant

Symplectic packings

Symplectic packings

For an integer k > 0 and r > 0, a symplectic k-packing by balls of radius r of a 2n-dimensional symplectic manifold (M, ω) is a set of symplectic embeddings

$$\varphi_i: (B^{2n}(r), \omega_0) \to (M, \omega), \ i = 1, \dots, k$$

such that $\varphi_i(B^{2n}(r)) \cap \varphi_j(B^{2n}(r)) = \emptyset$, for $i \neq j$.
Symplectic packings

For an integer k > 0 and r > 0, a symplectic k-packing by balls of radius r of a 2n-dimensional symplectic manifold (M, ω) is a set of symplectic embeddings

$$\varphi_i: (B^{2n}(r), \omega_0) \to (M, \omega), \ i = 1, \dots, k$$

such that $\varphi_i(B^{2n}(r)) \cap \varphi_j(B^{2n}(r)) = \emptyset$, for $i \neq j$. A full symplectic *k*-packing is a symplectic *k*-packing such that

$$M = \overline{\bigcup_{i=1}^k \varphi_i(B^{2n}(r))}$$

[Gromov, Inv. Math., 1985], [McDuff, Polterovich and Karshon, Inv. Math., 1994],

[Traynor, J. Diff. Geom., 1995], [Biran, Inv. Math., 1997].

Symplectic packings

For an integer k > 0 and r > 0, a symplectic k-packing by balls of radius r of a 2n-dimensional symplectic manifold (M, ω) is a set of symplectic embeddings

$$\varphi_i: (B^{2n}(r), \omega_0) \to (M, \omega), \ i = 1, \dots, k$$

such that $\varphi_i(B^{2n}(r)) \cap \varphi_j(B^{2n}(r)) = \emptyset$, for $i \neq j$. A full symplectic *k*-packing is a symplectic *k*-packing such that

$$M = \overline{\bigcup_{i=1}^k \varphi_i(B^{2n}(r))}$$

[Gromov, Inv. Math., 1985], [McDuff, Polterovich and Karshon, Inv. Math., 1994],

[Traynor, J. Diff. Geom., 1995], [Biran, Inv. Math., 1997].

Problem

Studying (full) symplectic *k*-packings of HSSCT.

Let (M, ω) be a closed symplectic manifold. Its *Fefferman invariant* $F(M, \omega)$ is the largest integer p for which there exists a symplectic p-packing (not necessarily full) of ball of radius 1.

Let (M, ω) be a closed symplectic manifold. Its *Fefferman invariant* $F(M, \omega)$ is the largest integer p for which there exists a symplectic p-packing (not necessarily full) of ball of radius 1.

When $\operatorname{Grass}_k(\mathbb{C}^n)$ G. Lu [G. Lu, Israel J. Math., 2006] shows that

 $F(\operatorname{Grass}_k(\mathbb{C}^n), \omega_{FS}) \leq [n/k].$

Let (M, ω) be a closed symplectic manifold. Its *Fefferman invariant* $F(M, \omega)$ is the largest integer p for which there exists a symplectic p-packing (not necessarily full) of ball of radius 1.

When $\operatorname{Grass}_k(\mathbb{C}^n)$ G. Lu [G. Lu, Israel J. Math., 2006] shows that

```
F(\operatorname{Grass}_k(\mathbb{C}^n), \omega_{FS}) \leq [n/k].
```

Problem : find a similar upper bound for HSSCT.

THANK YOU FOR YOUR ATTENTION!

• (monotonicity) for *c*_{*G*} follows immediately by the definition of Gromov width.

- (monotonicity) for c_G follows immediately by the definition of Gromov width.
- Given a symplectic embedding

$$\varphi: (B^{2n}(r), \omega_0) \to (M, \lambda \omega)$$

it is not hard to construct a symplectic embedding

$$\hat{\varphi}:\left(B^{2n}(rac{r}{\sqrt{|\lambda|}}),\omega_0\right)\to(M,\omega)$$

and viceversa. Thus (conformality) for c_G follows by the definition of Gromov width. \bigcirc go back

Lemma

Let (M, ω) be a monotone symplectic manifold (i.e. there exists $\lambda > 0$ such that

$$\omega(B) = \lambda c_1(M)(B)$$

for all spherical classes $B = [\mathbb{C}P^1] \in H^2(M,\mathbb{Z})$). Let $A \in H_2(M,\mathbb{Z})$ be an indecomposable spherical class. (it cannot be decomposed as a sum $A = A_1 + \cdots + A_k$, $k \ge 2$, of classes which are spherical and satisfy $\omega(A_i) > 0$ for $i = 1, \ldots, k$). Let *pt* denote the homology class of a point. Suppose that there exist submanifolds X and Y of M such that

$$\dim X + \dim Y = 4n - 2c_1(M)(A)$$

and so that

$$\Phi_A(pt, [X], [Y]) \neq 0.$$

If $\pi r^2 > \omega(A) = \int_A \omega$, there does **not** exist a symplectic embedding of $(B^{2n}(r), \omega_0)$ into (M, ω) .

Let

$$D_{I}[k, n] = \{ Z \in M_{k,n}(\mathbb{C}) \mid I_{k} - ZZ^{*} > 0 \}$$

be the first Cartan domain.

Let

$$D_{I}[k, n] = \{ Z \in M_{k, n}(\mathbb{C}) \mid I_{k} - ZZ^{*} > 0 \}$$

be the first Cartan domain.

The compact dual of $D_I[k, n]$ is the complex Grassmannian

 $(\operatorname{Grass}_k(\mathbb{C}^{n+k}), \omega_{FS}).$

Let

$$D_{I}[k, n] = \{ Z \in M_{k, n}(\mathbb{C}) \mid I_{k} - ZZ^{*} > 0 \}$$

be the first Cartan domain.

The compact dual of $D_I[k, n]$ is the complex Grassmannian

$$(\operatorname{Grass}_k(\mathbb{C}^{n+k}), \omega_{FS}).$$

The map

$$\Phi: D_{I}[k, n] \to M_{k, n}(\mathbb{C}) = \mathbb{C}^{kn} \subset \mathrm{Grass}_{k}(\mathbb{C}^{n+k})$$

defined by

$$\Phi(Z) = (I_k - ZZ^*)^{-\frac{1}{2}}Z$$

Let

$$D_{I}[k, n] = \{ Z \in M_{k, n}(\mathbb{C}) \mid I_{k} - ZZ^{*} > 0 \}$$

be the first Cartan domain.

The compact dual of $D_I[k, n]$ is the complex Grassmannian

$$(\operatorname{Grass}_k(\mathbb{C}^{n+k}), \omega_{FS}).$$

The map

$$\Phi: D_{I}[k, n] \to M_{k, n}(\mathbb{C}) = \mathbb{C}^{kn} \subset \mathsf{Grass}_{k}(\mathbb{C}^{n+k})$$

defined by

$$\Phi(Z)=(I_k-ZZ^*)^{-\frac{1}{2}}Z$$

is a diffeomorphism such that

$$\Phi^*\omega_{FS}=\omega_0.$$

A map c^k from the set C(2n, k) of all tuples $(M, \omega; \alpha_1, \ldots, \alpha_k)$ consisting of a 2*n*-dimensional connected symplectic manifold (M, ω) and *k* nonzero homology classes $\alpha_i \in H_*(M; \mathbb{Q})$, $i = 1, \ldots, k$ to $[0, +\infty]$ is called a *k*-pseudo symplectic capacity [G. Lu, Israel J. Math., 2006] if it satisfies the following properties:

A map c^k from the set C(2n, k) of all tuples $(M, \omega; \alpha_1, \ldots, \alpha_k)$ consisting of a 2*n*-dimensional connected symplectic manifold (M, ω) and *k* nonzero homology classes $\alpha_i \in H_*(M; \mathbb{Q})$, $i = 1, \ldots, k$ to $[0, +\infty]$ is called a *k*-pseudo symplectic capacity [G. Lu, Israel J. Math., 2006] if it satisfies the following properties:

• (pseudo monotonicity) if there exists a symplectic embedding $\varphi: (M, \omega_1) \to (M, \omega_2)$ then, for any $\alpha_i \in H_*(M_1; \mathbb{Q}), i = 1, ..., k$,

 $c^{(k)}(M_1,\omega_1;\alpha_1,\ldots,\alpha_k) \leq c^{(k)}(M_2,\omega_2;\varphi_*(\alpha_1),\ldots,\varphi_*(\alpha_k));$

A map c^k from the set C(2n, k) of all tuples $(M, \omega; \alpha_1, \ldots, \alpha_k)$ consisting of a 2*n*-dimensional connected symplectic manifold (M, ω) and *k* nonzero homology classes $\alpha_i \in H_*(M; \mathbb{Q})$, $i = 1, \ldots, k$ to $[0, +\infty]$ is called a *k*-pseudo symplectic capacity [G. Lu, Israel J. Math., 2006] if it satisfies the following properties:

• (pseudo monotonicity) if there exists a symplectic embedding $\varphi: (M, \omega_1) \to (M, \omega_2)$ then, for any $\alpha_i \in H_*(M_1; \mathbb{Q}), i = 1, ..., k$,

$$c^{(k)}(M_1,\omega_1;\alpha_1,\ldots,\alpha_k) \leq c^{(k)}(M_2,\omega_2;\varphi_*(\alpha_1),\ldots,\varphi_*(\alpha_k));$$

(conformality) c^(k)(M, λω; α₁,..., α_k) = |λ|c^(k)(M, ω; α₁,..., α_k), for every λ ∈ ℝ \ {0} and all homology classes α_i ∈ H_{*}(M; Q) \ {0}, i = 1,..., k;

A map c^k from the set C(2n, k) of all tuples $(M, \omega; \alpha_1, \ldots, \alpha_k)$ consisting of a 2*n*-dimensional connected symplectic manifold (M, ω) and *k* nonzero homology classes $\alpha_i \in H_*(M; \mathbb{Q})$, $i = 1, \ldots, k$ to $[0, +\infty]$ is called a *k*-pseudo symplectic capacity [G. Lu, Israel J. Math., 2006] if it satisfies the following properties:

• (pseudo monotonicity) if there exists a symplectic embedding $\varphi : (M, \omega_1) \to (M, \omega_2)$ then, for any $\alpha_i \in H_*(M_1; \mathbb{Q}), i = 1, ..., k$,

$$c^{(k)}(M_1,\omega_1;\alpha_1,\ldots,\alpha_k) \leq c^{(k)}(M_2,\omega_2;\varphi_*(\alpha_1),\ldots,\varphi_*(\alpha_k));$$

- (conformality) c^(k)(M, λω; α₁,..., α_k) = |λ|c^(k)(M, ω; α₁,..., α_k), for every λ ∈ ℝ \ {0} and all homology classes α_i ∈ H_{*}(M; Q) \ {0}, i = 1,..., k;
- (nontriviality)

 $c^{(k)}(B^{2n}(1),\omega_0;pt,\ldots,pt) = \pi = c^{(k)}(Z^{2n}(1),\omega_0;pt,\ldots,pt)$, where pt denotes the homology class of a point. \bullet go back