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Aim of the talk: provide an overview of the main results (mo-

stly in the homogeneous and Kähler-Einstein case) on Kähler

immersions of Kähler manifolds into finite or infinite dimensional

complex space forms.

Advertising for the book: L., M. Zedda, Kähler immersions of

Kähler manifolds into complex space forms., Lectures Notes of

the Unione Matematica Italiana, Springer 2018.
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Complex space forms

A complex space form (S, gS) is a finite or infinite dimensional

Kähler manifold with constant holomorphic sectional curvature

H(gS).



Simply-connected and complete complex space forms

Complex Euclidean space CN≤∞ := (CN≤∞, g0)

C∞ := `2(C) (z = {zj} ∈ `2(C) iff
∑∞
j=1 |zj|

2 <∞)

ω0 = i
2∂∂̄|z|

2 = i
2
∑N
j=1 dzj ∧ dz̄j, |z|

2 = |z1|2 + · · ·+ |zN |2.

Complex hyperbolic space CHN≤∞ := ({z ∈ CN | |z|2 < 1}, ghyp)

ωhyp = − i
2∂∂̄ log(1− |z|2).

Complex projective space CPN≤∞ = (CN+1 \ {0}/z ∼ λz, gFS)

ωFS|U0
= i

2∂∂̄ log(1+|z|2), zj =
Zj
Z0

, j = 1, . . . , N , U0 = {Z0 6= 0}.



Kähler immersions into complex space forms

Let (M, g) be a (finite dimensional) Kähler manifold.

A Kähler immersion f : (M, g) → (S, gS) is a holomorphic map

(i.e. df ◦ J = JS ◦ df) which is isometric (i.e. f∗gS = g).

Terminology: A Kähler metric g on a complex manifold M is

projectively induced if (M, g) can be Kähler immersed into a finite

or infinite dimensional complex projective space.



1. The work of E. Calabi (1953)



Three theorems of Calabi

Theorem (rigidity) Given two Kähler immersions f1 and f2 from

a Kähler manifold (M, g) into (S, gS) there exists U ∈ Aut(S) ∩
Isom(S, gS) such that f2 = U ◦ f1.

Theorem (Calabi’s criterium) Let (M, g) be a Kähler manifold

and let p ∈ M . A neighbourhood U of p ∈ M can be Kähler

immersed into (S, gS) iff g is real-analytic and a “certain ∞×∞
matrix” associated to g is positive semidefinite on U with at least

λ1, . . . , λN positive eigenvalues, N = dimS.

Theorem (extension) A simply-connected Kähler manifold (M, g)

admits a Kähler immersion into (S, gS) iff there exists an open

set U ⊂M such that (U, g|U) can be Kähler immersed into (S, gS).



When (M, g) is the complex Euclidean space

Cn 9 CHN≤∞,CPN<∞ Cn tot.geod.−→ CN≤∞, n ≤ N

Calabi’s embedding:

Cn → CP∞ : z 7→ (. . . ,

√
1

j!
zj, . . .), |j| ≥ 0

zj = z
j1
1 · · · z

jn
n |j| = j1 + · · ·+ jn, j! = j1! · · · jn!



When (M, g) is the complex hyperbolic space

Let CHn
λ = (CHn, λghyp), λ > 0, CHn := CHn

1 = (CHn, ghyp)

CHn
λ 9 CN<∞,CPN<∞ CHn

λ → CHN≤∞ ⇔ λ = 1, n ≤ N

Calabi’s embeddings:

CHn
λ → `2(C) : z 7→

√
λ(. . . ,

√
(|j| − 1)!

j!
zj, . . .), |j| ≥ 1

CHn
λ → CP∞ : z 7→ (. . . ,

√
λ(λ+ 1) · · · (λ− 1 + |j|)

j!
zj, . . .), |j| ≥ 0

zj = z
j1
1 · · · z

jn
n , |j| = j1 + · · ·+ jn, j! = j1! · · · jn!



When (M, g) is the complex projective space

Let CPnλ = (CPn, λgFS), λ > 0, CPn := CPn1 = (CPn, gFS)

CPnλ 9 CN≤∞,CHN≤∞

Let k ∈ Z+ and Nk := (n+k)!
n!k! − 1. Then the map

CPnk
Vk→ CPNk : [Z] 7−→ [. . . ,

√
|j|!
j!

Zj, . . .],

Zj = Z
j0
0 · · ·Z

jn
n , |j| = j0 + · · ·+ jn = k, j! = j0! · · · jn! is a Kähler

embedding, i.e. it is a holomorphic embedding satisfying

V ∗k gFS = kgFS



Some consequences of Calabi’s work

1. Any abelian variety equipped the flat metric cannot be Kähler

immersed into CPN<∞.

2. Any compact Riemann surface of genus ≥ 2 with the hyper-

bolic metric cannot be Kähler immersed into CPN<∞ or into an

abelian variety equipped with the flat metric.



2. Related results



Codimension restrictions

Theorem (B. O’Neill, 1965) Let (Mn, g) and (SN , gS) be finite

dimensional complex space forms (not necessarily complete and

simply-connected). If (M, g) can be Kähler immersed into (S, gS)

and N − n ≤ n(n+1)
2 then the immersion is totally geodesic.

Theorem (N. Mok, 2005) Let (Mn, g) and (SN , gS) be com-

pact and finite dimensional complex space forms (not necessarily

simply-connected). If (M, g) can be Kähler immersed into (S, gS)

and N − n ≤ n− 1 then the immersion is totally geodesic.



The work of A. Ros

Theorem (A. Ros, 1984) Let (M, g) be a compact Kähler mani-

fold which can be Kähler embedded into CPN<∞. If K > 1
2 then

the embedding is totally geodesic.

Theorem (A. Ros, 1985) Let (M, g) be a compact Kähler mani-

fold which can be Kähler immersed into CPN<∞. If H > 2 then

the immersion is totally geodesic.

Theorem (A. Ros, 1985) Let (M, g) be a compact Kähler ma-

nifold which can be Kähler embedded into CPN<∞. Then H ≥ 2

iff the second fundamental form is parallel.



Relatives Kähler manifolds

Two Kähler manifolds M1 and M2 are relatives (A. J. Di Scala,

L., Ann. Scuola Norm. Sup. Pisa 2010) if there exists a Kähler

manifold N , dimN > 0, which is a Kähler submanifold of both

M1 and M2.

Theorem (M. Umehara, 1987) Any two finite dimensional Kähler

manifolds (M, g) and (N,G) with constant holomorphic sectional

curvature of different sign are not relatives.



3. H.K.m. into complex space forms



H.K.m. into finite dimensional complex space forms

Theorem A (A. J. Di Scala, 2002) If a h.K.m. admits a Kähler

immersion into CN<∞ then the immersion is totally geodesic.

Theorem B (D. Alekseevsky, A. J. Di Scala, 2003) If a h.K.m.

admits a Kähler immersion into CHN<∞ then the immersion is

totally geodesic.

Theorem C (M. Takeuchi, 1978) Let (M, g) be a h.K.m. which

can be Kähler immersed into CPN<∞. Then M is compact,

ω is integral, π1(M) = 1 and the immersion is an embedding.

Viceversa if (M, g) is a compact h.K.m such that ω is integral, and

π1(M) = 1 then (M, g) can be Kähler embedded into CPN<∞.



Homogeneous Kähler manifolds into `2(C) = C∞

Theorem 1 (A. J. Di Scala, H. Hishi, L., 2012) Let (M, g) be a

n-dimensonal h.K.m. which can be Kähler immersed into `2(C).

Then (M, g) = Ck × CHn1
λ1
× · · · × CHnl

λl
. Moreover, the immersion

is given, up to a unitary transformations, by

f0 × f1 × · · · × fl,

where f0 is the linear inclusion Ck tot.geod.−→ `2(C) and each fr :

CHnr
λr
−→ `2(C), r = 1, . . . , l, are Calabi’s embeddings.



Homogeneous Kähler manifolds into CH∞

Theorem 2 (A. J. Di Scala, H. Hishi, L., 2012) Let (M, g) be a

n-dimensional h.K.m. which can be Kähler immersed into CH∞.

Then, up to a unitary transformations, (M, g) = CHn tot.geod.−→
CH∞.



Homogeneous Kähler manifolds into CP∞

Theorem 3 (A. J. Di Scala, H. Hishi, L., 2012) Let (M, g) be

a h.K.m. which can be Kähler immersed into CP∞. Then ω is

integral, π1(M) = 1 and the immersion is an embedding.

Theorem 4 (L., R. Mossa, 2014) Let (M, g) be a simply-connected

h.K.m. whose associated Kähler form ω is integral. Then there

exist m0 > 0 and a Kähler embedding (M,m0g)→ CP∞.



The Wallach set of a bounded symmetric domain

Let Ω be an irreducible bounded symmetric domain. The Wal-

lach set∗ W (Ω) ⊂ R+ which “looks like”:

0 · · · ·︸ ︷︷ ︸—————————

↑
discrete part of W (Ω)

↑
continuous part of W (Ω)

A property of the Wallach set: W (Ω) = R+ (and hence the

discrete part of W (Ω) is empty) if and only if Ω = CHn.

∗W (Ω) consists of all λ ∈ R+ such that there exists a Hilbert space Hλ whose
reproducing kernel is K

λ

γ , where γ is the genus of Ω and K is the Bergman
kernel of Ω.



The Wallach set and Kähler immersions into CP∞

Theorem W (L., M. Zedda, 2010) Let (Ω, gB) be a irreducible
bounded symmetric domain (gB the Bergman metric). Then
(Ω, λgB) can be Kähler immersed into CP∞ if and only if λγ ∈
W (Ω) \ {0}, where γ denotes the genus of Ω.

Consequence: Let (Ω, gB) 6= CHn be a irreducible bounded
symmetric domain. One can find λ > 0 such that λγ /∈W (Ω):

0 · · · · ∗ —————————

↑
λγ /∈W (Ω)

By Theorem W, λgB is not projectively induced and λωB is in-
tegral (this shows the necessity of taking m0 > 1 in Theorem
4).



Corollary of Theorem W: The complex hyperbolic space CHn

is the only irreducible bounded symmetric domain (Ω, gB) where

λgB is projectively induced, for all λ > 0. Equivalently, CHn is the

only irreducible bounded symmetric domain which can be Kähler

immersed into `2(C).

Lemma H (A. J. Di Scala, H. Hishi, L., 2012) Let (Ω, gΩ)

be a homogeneous bounded domain. If (Ω, gΩ) can be Kähler

immersed into `2(C), then (Ω, gΩ) = CHn1
λ1
× · · · × CHnl

λl
.



4.The Kähler-Einstein case



Kähler-Einstein into CN<∞ and CHN<∞

Theorem (M. Umehara, 1987) If a KE manifold admits a Kähler

immersion into CHN<∞ (resp. CN<∞) then the immersion is

totally geodesic.

Conjecture A: Let M be a complex manifold equipped either

with an extremal Kähler metric g† or with a Kähler Ricci soliton

(g,X)‡. If (M, g) admits a Kähler immersion into CHN<∞ (resp.

CN<∞) then (M, g) is KE (and hence totally geodesic).

†The (1,0)-part of the Hamiltonian vector field associated to the scalar
curvature of g is holomorphic.
‡Ricg = λ g + LXg, where X is the real part of a holomorphic vector field.



Conjecture A cannot cannot be extended to CH∞

A Kähler metric g on a complex manifold is radial if it admits a

Kähler potential Φ : U → R which depends only on |z1|2 + · · ·+
|zn|2 (U does not necessarily contains the origin).

§. radial if it admits a Kähler potential Φ : U → R which depends

only on |z1|2 + · · ·+ |zn|2 (U does not necessarily contains the

origin).

Theorem(L., F. Zuddas, in preparation) There exist nonhomo-

geneous radial KE manifolds different from the hyperbolic metric

which can be Kähler immersed into CH∞ (and hence into `2(C)).

§Ricg = λ g + LXg, where X is the real part of a holomorphic vector field.



Conjecture B: Let (D, gB) be a bounded domain D ⊂ Cn equip-

ped with the Bergman metric gB. If gB is Einstein and (D, gB)

can be Kähler immersed into into CH∞ (or into `2(C)), then

(D, gB) = CHn.



Kähler-Einstein into CPN<∞

Theorem¶ (B. Smyth, 1967) A compact KE manifold of com-
plex dimension n which admits a Kähler embedding into CPn+1

is totally geodesic or the complex quadric Q = {Z2
0 +· · ·+Z2

n+1 =
0}.

Theorem (S. S. Chern, 1967) A KE manifold of complex dimen-
sion n which admits a Kähler immersion into CPn+1 is totally
geodesic or an open subset of the complex quadric.

Theorem‖ (J. Hano, 1975) Let M ⊂ CPN<∞ be a complete
intersection. If the restriction of gFS to M is Einstein then M is
totally geodesic or the complex quadric.
¶Extended to cscK by S. Kobayashi (1967) and by M. Kon (1975) to cscK
and immersions.
‖Extended to Kähler-Ricci solitons by L. Bedulli and A. Gori (2014).



Theorem (K. Tsukada, 1986) A KE manifold of complex dimen-

sion n which admits a Kähler immersion into CPn+2 is totally

geodesic or an open subset of the complex quadric.

Theorem (F. Salis, 2017) A rotation invariant KE manifold

of complex dimension n which admits a Kähler immersion in-

to CPn+k, k ≥ 3, is an open subset of one of the following: CPn,

CP2
2 , CP1 × CP1.

Theorem (D. Hulin, 2000) A compact KE manifold which admi-

ts a Kähler embedding into CPN<∞ has positive scalar curvature.

Open problem: Drop the embedding assumption.



Conjecture C: A KE manifold which admits a Kähler immer-

sion into CPN<∞ is an open subset of a compact and simply-

connected h.K.m. and the immersion is an embedding.

Conjecture D: Let M be a complex manifold equipped either

with an extremal Kähler metric g or with a Kähler Ricci soliton

(g,X). If (M, g) admits a Kähler immersion into into CPN<∞

then (M, g) is KE.



Conjecture C cannot cannot be extended to CP∞

Let Ω 6= CHd be an irreducible bounded symmetric domain of

complex dimension d, genus γ, volume V (Ω) and Bergman Kernel

K(z, z). Let NΩ(z, z) = V (Ω)K(z, z) and consider the Cartan-

Hartogs domain

MΩ =
{

(z, w) ∈ Ω× C, |w|2 < NΩ(z, z)
γ

d+1

}
.

with the complete and nonhomogeneous KE metric gΩ (A. Wang,

W. Yin, L. Zhang, G. Roos, Science in China, 2006) whose

associated Kähler form is

ωΩ = −
i

2
∂∂̄ log[NΩ(z, z)

γ
d+1 − |w|2].



Theorem (L., M. Zedda, 2010) (MΩ, cgΩ) can be Kähler em-

bedded into CP∞ for c >> 1.

Theorem (Y. Hao, A. Wang, L. Zhang, 2015) Let Ω1 and Ω2

irreducible bounded symmetric domains and

MΩ1×Ω2
=
{

(z1, z2, w) ∈ Ω1 ×Ω2 × C, |w|2 < NΩ1×Ω2
(z1, z2)

}
.

where

NΩ1×Ω2
(z1, z2) = NΩ1

(z1, z1)
γ1

d1+d2+1NΩ2
(z2, z2)

γ2
d1+d2+1.

Then for c >> 1 the Kähler metric cgΩ1×Ω2
with

ωΩ1×Ω2
= −

i

2
∂∂̄ log[NΩ1×Ω2

(z1, z2)− |w|2].

is KE complete, nonhomogeneous and projectively induced.



5.The Ricci flat case



Conjecture E: A Ricci flat projectively induced Kähler metric is

flat.



The Taub-NUT metrics

The Taub-NUT metrics is the family of Kähler metrics gm on C2

whose associated Kähler forms are given by

ωm =
i

2
∂∂̄

[
u2 + v2 +m(u4 + v4)

]
, m ≥ 0,

where |z1| = em(u2−v2)u, |z2| = em(v2−u2)v. For m = 0, g0 is flat

metric and for m 6= 0, gm is Ricci flat (not flat) and complete (C.

LeBrun, Proceedings of Symposia in Pure Mathematics, 1991).

Theorem (L., M. Zedda, F. Zuddas, 2012) For m > 1
2 the Kähler

metric gm on C2 is not projectively induced.

Open problem: Show that gm is projectively induced iff m = 0.



Radial projectively induced Ricci flat Kähler metrics

A Kähler metric g is said to be stable-projectively induced if

there exists ε > 0 such that λg is projectively induced for all

λ ∈ (1− ε,1 + ε).

Theorem (L., F. Salis, F. Zuddas, 2018) The only Ricci-flat,

stable-projectively induced and radial Kähler metric is the flat

one.

Open problem: Drop the assumption on stability in the theo-

rem.



Corollary: The Eguchi-Hanson metric namely the Ricci flat and

complete Kähler metric gEH on Ĉ2 (the blow-up of C2 at the

origin) given in Ĉ2 \ E = C2 \ {0} (E exceptional divisor) by the

potential

Φ(x) =
√
x2 + 1 + logx− log(1 +

√
x2 + 1), x = |z1|2 + |z2|2

is not projectively induced.



Calabi’s Ricci flat metrics on the canonical bundle

Let (M, g) be a compact KE manifold of complex dimension n−1
and with associated Kähler form ωg and Einstein constant k0 > 0.
Let π : Λn−1M →M be the canonical line bundle over M ,

Calabi (1979) shows that there exists a smooth function u :
[0,+∞)→ R (which can be written explicitely) such that if ωg =
i

2π∂∂̄Φ on U , then the function Ψ : π−1(U)→ R defined by

Ψ = Φ ◦ π + u
(
det(g)−1|ξ|2

)
is a Kähler potential on π−1(U) for a Ricci flat and complete
metric gC on Λn−1M .

Theorem (L., M. Zedda, F. Zuddas, 2020) The metric gC is
not projectively induced.



Corollary: For any c > 0 cgEH is not projectively induced.

Remark: The metrics cgEH, c > 0, on Ĉ2 are examples of Ric-

ci flat and complete Kähler metrics which cannot be (locally)

Kähler immersed into any finite or infinite dimensional complex

space form for all c > 0. Other examples of such metrics were

constructed by Calabi (1953).



Conjecture E cannot be weakened to scalar flat metrics

S. Simanca (1991) constructs a scalar flat Kähler complete (not

Ricci-flat) metric gS on Ĉ2 whose Kähler potential on Ĉ2 \ E =

C2 \ {0} can be written as

ΦS(|z|2) = |z|2 + log |z|2, |z|2 = |z1|2 + |z2|2.

Theorem (F. Cannas Aghedu, L., 2019) (Ĉ2, gS) can be Kähler

embedded into CP∞.



Conjecture F: Let M be a complex manifold equipped with an

extremal Kähler metric g. If (M, g) admits a Kähler immersion

into CP∞ then (M, g) is cscK.

Conjecture G: Let M be a complex manifold equipped with a

Kähler Ricci soliton (g,X). If (M, g) admits a Kähler immersion

into CP∞ then (M, g) is KE.



6. Sketch of the proofs of Theorem 1, 2, 3, 4



Sketch of the proof of Theorem 1

(M, g)
f→ `2(C) we want to prove that:

(M, g) = Ck × CHn1
λ1
× · · · × CHnl

λl
and f = f0 × f1 × · · · × fl.

1. Theorem FC + Calabi’s rigidity theorem+ max principle ⇒

F = Ck × 6F × 6C Kähler
↪−→ (M, g) → `2(C)

π↓
(Ω, gΩ)

2. Riemannian geometry + homogeneity ⇒

(M, g)
Kähler

= Ck × (Ω, gΩ) ⇒ (Ω, λgΩ)→ `2(C), ∀λ > 0.



3. S. Bochner (1947) ⇒ (Ω, λgΩ)→ CP∞, ∀λ > 0.

4. Lemma H ⇒ (Ω, gΩ) = CHn1
λ1
× · · · × CHnl

λl
⇒

⇒ (M, g) = Ck × CHn1
λ1
× · · · × CHnl

λl
.

5. The fact that the immersion f is, up to a unitary transforma-

tion, of the form f = f0 × f1 × · · · × fl follows by the reducibility

of a Kähler product into `2(C) and by Calabi’s rigidity theorem.

�



Sketch of the proof of Theorem 2 (based on Theorem 1)

If (M, g)→ CH∞ we want to prove that

(M, g) = CHn tot.geod.−→ CH∞.

1. (M, g)→ CH∞ ⇒ (M, g)→ `2(C).

2. Theorem 1 ⇒ (M, g) = Ck×CHn1
λ1
×· · ·×CHnl

λl
⇒M = CHn. �



Sketch of the proof of Theorem 3

Let f : (M, g)→ CP∞ be a Kähler immersion.

The integrality of ω = f∗ωFS is immediate since ωFS is integral.

Th. FC ⇒
F = Ck × 6F×C Kähler

↪−→ (M, g) → CP∞
π↓

(Ω, gΩ)

⇒ M
top
=

Ω× Cn × C is simply-connected.

Calabi’s rigidity ⇒ f ◦ g = Ug ◦ f , ∀g ∈ G = Aut(M) ∩ Isom(M, g)
⇒ f(M) is a h.K.m. ⇒ f(M) ⊂ CP∞ is simply-connected.

f : M → f(M) is a local isometry ⇒ f is a covering map ⇒ f is
injective. �



Sketch of the proof of Theorem 4

Let (M, g) be a simply-connected h.K.m. with ω integral we want
to show that (M,m0g)→ CP∞, for some m0 ∈ Z.

1. Let L be a holomorphic line bundle with c1(L) = [ω] and
consider the Hilbert space

Hm = {s ∈ H0(L) |
∫
M
hm(s, s)

ωn

n!
<∞}

where hm is an Hermitian metric on Lm such that Ric(hm)∗∗ =
mω.

2. There exists m0 ∈ Z such that Hm0 6= {0} (J. Rosenberg, M.
Vergne, 1984);
∗∗Ric(hm) = − i

2
∂∂̄ loghm(σ(x), σ(x)), where σ : U → Lm is a trivialising

holomorphic section of Lm.



3. Consider the smooth function on M given by:

εm0(x) =
∞∑
j=0

hm0(sj(x), sj(x)),

where {s0, . . . , . . . , } is an orthonormal basis of Hm0.

Homogeneity + π1(M) = 1 ⇒ εm0(x) is a positive constant.

4. Therefore the “Kodaira map”

ϕm0 : M → CP∞, x 7→ [s0(x), . . . , sdm0
(x)]

is well-defined and it satisfies

ϕ∗m0
ωFS = m0ω +

i

2
∂∂̄ log εm0 = m0ω.

�



Thank you for your attention!


