EMS-RSME JOINT MATHEMATICAL WEEKEND Bilbao, October 7-9, 2011

Global symplectic coordinates on Kähler manifolds

Andrea Loi

in collaboration with

A.J. Di Scala, R. Mossa, G. Roos, F. Zuddas

1

SYMPLECTIC COORDINATES

Let (M^{2n}, ω) be a symplectic manifold and let $\omega_0 = \sum_{j=1}^n dx_j \wedge dy_j$ be the standard symplectic form on \mathbb{R}^{2n} .

Theorem (Darboux): Given $p \in M$ there exist an open set $U_p \subset M$ and a diffeomorphism

$$\psi: U_p \to \psi_p(U_p) \subset \mathbb{R}^{2n}$$

such that

$$\psi^*\omega_0=\omega_{|U_p|}$$

Question: How large U_p can be taken?

Theorem (Gromov, Inv.Math. 1985): There exists a symplectic form ω on \mathbb{R}^{2n} , $n \geq 2$, such that $(\mathbb{R}^{2n}, \omega)$ cannot be symplectically embedded into $(\mathbb{R}^{2n}, \omega_0)$.

SYMPLECTIC COORDINATES: THE KÄHLER CASE

Theorem (D. McDuff, J. Diff. Geom. 1988): Let (M, ω) be a Kähler manifold. Assume that $\pi_1(M) = \{1\}$, M is complete and $K \leq 0$. Given $p \in M$ there exists a diffeomorphism

$$\psi_p: M \to \mathbb{R}^{2n}, \ \psi_p(p) = 0$$

satisfying $\psi_p^*\omega_0 = \omega$.

Theorem (E. Ciriza, Diff. Geom. Appl. 1993): Let $T \subset M$ be a complex and totally geodesic submanifold of M passing through p. Then, $\psi_p(T) = \mathbb{C}^k \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$, $\dim_{\mathbb{C}} T = k$.

PROBLEMS

1. Find <u>explicit</u> global symplectic coordinates on Kähler manifolds satisfying the assumptions of McDuff's theorem.

We will analyze the case of Hermitian symmetric spaces of noncompact type (HSSNT) and their compact duals.

2. Find an example of complete Kähler manifold (M, ω) diffeomorphic to \mathbb{R}^4 , such that K is positive somewhere and (M, ω) is globally symplectomorphic to (\mathbb{R}^4, ω_0) .

We will show that \mathbb{C}^2 equipped with a **Taub–NUT** Kähler form $\omega_m, m > 0$, (which is an example of complete Ricci flat not flat Kähler metric on \mathbb{C}^2) is globally symplectomorphic to (\mathbb{R}^4, ω_0) .

DEFINITION OF HSSNT

An HSSNT (M, ω) is a Kähler manifold, which is holomorphically isometric to a bounded symmetric domain (M, 0) of $M \subset \mathbb{C}^n$ centered at the origin $0 \in \mathbb{C}^n$ equipped with a multiple of the Bergman metric ω_B such that for all $p \in M$ the geodesic symmetry:

 $s_p : \exp_p(v) \mapsto \exp_p(-v), \forall v \in T_pM$

is a globally defined holomorphic isometry of M.

An HSSNT is a homogenous Kähler manifold (converse not true Pyateskii– Shapiro).

THE CASE OF THE UNIT DISK (1)

 $\mathbb{C}H^{1} = \{z \in \mathbb{C} \mid |z|^{2} < 1\}, \ \omega = \omega_{hyp} = \frac{i}{2} \frac{dz \wedge d\bar{z}}{(1-|z|^{2})^{2}} = -\frac{i}{2} \partial \bar{\partial} \log(1-|z|^{2}) = \frac{i}{2} \frac{dz \wedge d\bar{z}}{(1-|z|^{2})^{2}}$

We look for a map

$$\psi: \mathbb{C}H^1 \to \mathbb{R}^2, \psi(0) = 0$$

such that

$$\psi^*\omega_0 = \omega_{hyp}, \ \omega_0 = dx \wedge dy = \frac{i}{2}dz \wedge d\overline{z}$$

Assume $\psi(z) = f(r)z$, $r = |z|^2$. $\Rightarrow \psi^* \omega_0 = (2rf \frac{\partial f}{\partial r} + f^2) dx \wedge dy = \frac{\partial}{\partial r} (rf^2) dx \wedge dy = \omega_{hyp} = \frac{1}{(1-r)^2} dx \wedge dy$ $\Rightarrow \frac{\partial}{\partial r} (rf^2) = \frac{1}{(1-r)^2} \Rightarrow rf^2 = (1-r)^{-1} + C \Rightarrow C = -1, rf^2 = r(1-r)^{-1} \Rightarrow$ $f(r) = (1-r)^{-\frac{1}{2}}$

Hence

$$\psi(z) = rac{z}{\sqrt{1-|z|^2}}$$

THE CASE OF THE UNIT DISK (2)

Let $\mathbb{C}P^1$ be the one-dimensional complex projective space, (namely the compact dual of $\mathbb{C}H^1$) endowed with the Fubini–Study form ω_{FS} . Then

$$\mathbb{R}^2 \cong \mathbb{C} \cong U_0 = \{z_0 \neq 0\} \subset \mathbb{C}P^1$$

and

$$\omega_{FS}|_{U_0} = \frac{i}{2} \frac{dz \wedge d\overline{z}}{(1+|z|^2)^2}$$

and it is easily seen that $\psi: \mathbb{C}H^1 \subset \mathbb{C} \subset \mathbb{C}P^1 \to \mathbb{C}, z \mapsto \frac{z}{\sqrt{1-|z|^2}}$ satisfies:

$$\psi^*\omega_{FS}=\omega_0,$$

where ω_0 is the restriction of ω_0 to $\mathbb{C}H^1 \subset \mathbb{C}$.

Summarizing we have proved a "symplectic duality" between $(\mathbb{C}H^1, \omega_{hyp})$ and $(\mathbb{C}P^1, \omega_{FS})$, namely there exists a diffeomorphism

$$\psi: \mathbb{C}H^1 \to \mathbb{R}^2 \cong \mathbb{C} \cong U_0 \subset \mathbb{C}P^1$$

satisfying:

$$\psi^*\omega_0 = \omega_{hyp} \qquad \qquad \psi^*\omega_{FS} = \omega_0$$

THE FIRST CARTAN DOMAIN (1)

Let

$$D_I[n] = \{Z \in M_n(\mathbb{C}) \mid I_n - ZZ^* > 0\}$$

be the first Cartan domain equipped with the hyperbolic form

$$\omega_{hyp} = -\frac{i}{2}\partial\bar{\partial}\log\det(I_n - ZZ^*)$$

The compact dual of $D_I[n]$ is $\operatorname{Grass}_n(\mathbb{C}^{2n})$ endowed with the Fubini-Study form

$$\omega_{FS} = P^* \omega_{FS}$$

obtained as follows:

$$D_{I}[n] \subset M_{n}(\mathbb{C}) = \mathbb{C}^{n^{2}} \subset \operatorname{Grass}_{n}(\mathbb{C}^{2n}) \xrightarrow{P=Plucker} \mathbb{C}P^{N},$$
$$N = \begin{pmatrix} 2n \\ n \end{pmatrix} - 1.$$

THE FIRST CARTAN DOMAIN (2)

Theorem: The map

$$\Psi: D_I[n] \to M_n(\mathbb{C}) = \mathbb{C}^{n^2}$$

defined by

$$\Psi(Z) = (I_n - ZZ^*)^{-\frac{1}{2}}Z$$

is a diffeomorphism. Its inverse is given by

$$\Psi^{-1}: \mathbb{C}^{n^2} \to D_I[n], \ X \mapsto (I_n + XX^*)^{-\frac{1}{2}}X.$$

Moreover, Ψ is a *symplectic duality* namely,

$$\Psi^*\omega_0 = \omega_{hyp} \qquad \qquad \Psi^*\omega_{FS} = \omega_0$$

where

$$\omega_0 = \frac{i}{2} \partial \bar{\partial} \operatorname{tr}(ZZ^*)$$

and

$$\omega_{FS} = rac{i}{2} \partial \overline{\partial} \log \det(I_n + ZZ^*)$$
 on $\mathbb{C}^{n^2} \subset \mathrm{Grass}_n(\mathbb{C}^{2n})$

JORDAN TRIPLE SYSTEMS

A Hermitian Jordan triple system is a pair $(\mathcal{M}, \{, ,\})$, where \mathcal{M} is a complex vector space and $\{, ,\}$ is a \mathbb{R} -trilinear map

 $\{,,\}: \mathcal{M} \times \mathcal{M} \times \mathcal{M} \to \mathcal{M}, (u, v, w) \mapsto \{u, v, w\}$

 \mathbb{C} -bilinear and simmetric in u and w and \mathbb{C} -antilinear in v and satisfying the **Jordan identity**:

$$\{x, y, \{u, v, w\}\} - \{u, v, \{x, y, w\}\} =$$
$$= \{\{x, y, u\}, v, w\} - \{u, \{v, x, y\}, w\}.$$

Let $u, v \in \mathcal{M}$, and let $D(u, v) : \mathcal{M} \to \mathcal{M}$ be the operator on \mathcal{M} defined by

$$D(u, v)(w) = \{u, v, w\}$$

A HJTS is called **positive** and we write **HPJTS** if

$$(u,v) \mapsto \operatorname{tr} D(u,v)$$

is positive definite.

The quadratic representation

$$Q: \mathcal{M} \to End(\mathcal{M})$$

is defined by

$$2Q(u)(v) = \{u, v, u\}, \ u, v \in \mathcal{M}.$$

The Bergman operator

$$B(u,v):\mathcal{M}\to\mathcal{M}$$

is given by the equation

$$B(u,v) = Id_{\mathcal{M}} - D(u,v) + Q(u)Q(v)$$

$\mathbf{HPJTS} \longrightarrow \mathbf{HSSNT}$

 $(\mathcal{M}, \{, ,\}) \longrightarrow (\mathcal{M}, 0) = \{u \in \mathcal{M} \mid B(u, u) >> 0\}_0$, where ">>" means positive definite w.r.t. $(u, v) \mapsto \operatorname{tr} D(u, v)$.

The **Bergman form** ω_{Berg} of M is defined as:

$$\omega_{Berg}=-rac{i}{2}\partialar\partial\log\det B.$$

We also define (in the irreducible case)

$$\omega_{hyp} = -rac{i}{2g}\partial\overline{\partial}\log\det B(z,z)$$

 $HSSNT \longrightarrow HPJTS$ $(M,0) \longrightarrow (\mathcal{M} = T_0 M, \{,,\}), \text{ where}$ $\boxed{\{u,v,w\} = -\frac{1}{2} (R_0(u,v)w + JR_0(u,Jv)w)}$

(W. Bertram, Lectures Notes in Math. N. 1754)

THE FIRST CARTAN DOMAIN AS HPJTS

Let $\mathcal{M} = M_n(\mathbb{C})$ with the triple product

$$\{u, v, w\} = uv^*w + wv^*u, \ u, v, w \in M_n(\mathbb{C})$$
$$\operatorname{tr} D(u, u) = \operatorname{tr}(uu^*)$$
$$B(u, v)(w) = (I_n - uv^*)w(I_n - v^*u)$$

The HSSNT (M, 0) associated to $(M_n(\mathbb{C}), \{,,\})$ is the first Cartan domain $D_I[n] = \{Z \in M_n(\mathbb{C}) \mid I_n - ZZ^* > 0\}$ $\omega_{hyp} = \frac{\omega_{Berg}}{2n} = -\frac{i}{2}\partial\bar{\partial}\log\det(I_n - ZZ^*)$

COMPACTIFICATIONS OF HPJTS

Let (M, ω_{hyp}) be an HSSNT and let (M^*, ω_{FS}) be its compact dual equipped with the Fubini–Study form ω_{FS} .

More precisely, one has the following inclusions:

$$(M,0) \stackrel{Harish-Chandra}{\subset} \mathcal{M} = T_0 \mathcal{M} \cong \mathbb{C}^n \stackrel{Borel}{\subset} \mathcal{M}^* \stackrel{BW}{\hookrightarrow} \mathbb{C}P^N$$

and we set

$$\omega_{FS} = \mathsf{BW}^* \omega_{FS}.$$

Remark: The local expression of ω_{FS} restricted to \mathcal{M} is given (in the irreducible case) by

$$\omega_{FS} = \frac{i}{2g} \partial \bar{\partial} \log \det B(z, -z)$$
$$\omega_{hyp} = -\frac{i}{2g} \partial \bar{\partial} \log \det B(z, z)$$

Theorem (A. J. Di Scala – L., Adv. Math. 2008): Let (M, ω_{hyp}) be an HSSNT and (M^*, ω_{FS}) its compact dual. Then the map

$$\Psi_M: M \to \mathcal{M} \cong \mathbb{C}^n \subset M^*, \ z \mapsto B(z,z)^{-\frac{1}{4}z}$$

satisfies the following properties:

(D) Ψ_M is a diffeomorphism and its inverse is given by

$$\Psi_M^{-1}: \mathcal{M} \cong \mathbb{C}^n \subset M^* \to M, \ z \mapsto B(z, -z)^{-\frac{1}{4}}z$$

(S) Ψ_M is a simplectic duality, i.e.:

$$\Psi_M^* \omega_0 = \omega_{hyp} \qquad \qquad \Psi_M^* \omega_{FS} = \omega_0$$

where $\omega_0 = \frac{i}{2} \partial \overline{\partial} \operatorname{tr} D(u, u)$ is the flat Kähler form on \mathcal{M} .

(H) the map

$$\Psi: HSSNT \to \mathsf{Diff}_0(M, \mathcal{M}), \ M \mapsto \Psi_M$$

is **hereditary**, i.e.: for all $(T,0) \stackrel{i}{\hookrightarrow} (M,0)$ complete, complex and totally geodesic submanifold one has

$$\Psi_M|_T = \Psi_T, \ \Psi_M(T) = \mathcal{T} \subset \mathcal{M},$$

where \mathcal{T} is the HPJTS associated to T.

Idea of the proof: show the result for classical Cartan's domains and then use Jordan algebras to extend the result to the exceptional domains.

Remark: One can give an alternative proof of the theorem (A. J. Di Scala, G. Roos, L., *The bisymplectomorphism group of a bounded symmetric domain*, Transformation group, 2008) using spectral decomposition tools of a HPJTS.