
Soluzioni Esercizi

Soluzioni esercizi capitolo 1

Esercizio 1.1.

1. Valgono i seguenti fatti:

• · è commutativa. 8x, y 2 R : x · y = x + y + k = y + x + k =
y · x, dove nella seconda uguaglianza abbiamo sfruttato che +R

è

commutativa;

• · è associativa. 8x, y, z 2 R : (x · y) · z = (x + y + k) · z = (x + y +
k) + z + k = x + (y + k + z) + k = x + y · z + k = x · (y · z), dove

nella terza uguaglianza abbiamo sfruttato che +R
è associativa;

• �k 2 R è elemento neutro per ·. 8x 2 R : x · (�k) = x+(�k)+ k =
x, dove abbiamo sfruttato che �k è l’opposto di k rispetto a +R

;

• Ogni elemento di R è invertibile rispetto a ·. 8x 2 R : x · (�(x +
2k)) = x + (�(x + 2k)) + k = �k.

Abbiamo così dimostrato che (R, ·,�k) è un gruppo abeliano;

2. Valgono i seguenti fatti:

• · è commutativa. Immediato dalla commutatività di +R
;

• · è associativa. 8x, y, z 2 R : (x · y) · z =
p
(x · y)2 + z2 =

q
(
p

x2 + y2)2 + z2 =
p
(x2 + y2) + z2 =

p
x2 + (y2 + z2) =

p
x2 + (y · z)2 = x · (y · z);

• · non ha elemento neutro. Supponiamo per assurdo y 2 R sia ele-

mento neutro per ·, allora 8x 2 R : x · y = x, ossia 8x 2 R :p
x2 + y2 = x, dalla quale deduciamo 8x 2 R : x2 + y2 = x2

, e

quindi y = 0. Ma, ad esempio, (�3) · 0 =
p
(�3)2 + 02 =

p
32 =

3 6= �3, assurdo.

Dunque (R, ·) è un semigruppo abeliano che non è un monoide nè un

gruppo. Conseguentemente non ha senso domandarsi se in R esistano

elementi invertibili rispetto a ·;

3. Valgono i seguenti fatti:
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• · è commutativa. Immediato dalla commutatività di +R
;

• · non è associativa. Consideriamo x = 1, y = 0, z = �4, allora

(x · y) · z = ||x + y|+ z| = ||1 + 0|+ (�4)| = 3;

x · (y · z) = |x + |y + z|| = |1 + |0 + (�4)|| = 5;

• · non ammette elemento neutro. Supponiamo per assurdo y 2 R

sia elemento neutro per ·, allora 8x 2 R : x = x · y = |x + y| � 0,

assurdo.

Dunque (R, ·) non è nemmeno un semigruppo;

4. Valgono i seguenti fatti:

• · non è commutativa. Consideriamo x = 2, y = 3, allora:

x · y = 2 · 3 = 2 � 3 = �1;

y · x = 3 · 2 = 3 � 2 = 1;

• · non è associativa. Consideriamo x = 1, y = 4, z = 3, allora:

(x · y) · z = (x � y)� z = x � y � z = 1 � 2 � 3 = �4;

x · (y · z) = x � (y � z) = x � y + z = 1 � 2 + 3 = 2;

• · non ammette elemento neutro sinistro. Supponiamo per assurdo

x 2 R sia elemento neutro sinistro per ·, allora 8y 2 R : y = x · y =
x � y, ossia 8y 2 R : x = 2y, assurdo;

• 0 è elemento neutro destro per ·. Immediato dalla definizione di ·.

Dunque (R, ·) non è un semigruppo, né un monoide, né un gruppo.

5. Valgono i seguenti fatti:

• · è commutativa. Immediato dalla definizione di massimo;

• · è associativa. Siano x, y, z 2 R e definiamo

w1 = max{max{x, y}, z}
w2 = max{x, max{y, z}}

Allora per definizione di massimo si ha

x  max{x, y}  max{max{x, y}, z} = w1 (86)

y  max{x, y}  max{max{x, y}, z} = w1 (87)
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z  max{max{x, y}, z} = w1 (88)

Dalle (87) ed (88), per definizione di massimo, deduciamo max{y, z} 
w1, quindi da quest’ultima e dalla (86) abbiamo

w2 = max{x, max{y, z}}  w1.

Simmetricamente deduciamo w1  w2. Conseguentemente per an-

tisimmetria di  si ha w1 = w2, ossia, per arbitrarietà di x, y, z 2 R,

· è associativa;

• L’operazione non ammette elemento neutro. Infatti, se z 2 R fosse

elemento neutro per · si avrebbe 8x 2 R : x = z · x = max{z, x},

ossia 8x 2 R : z  x, assurdo in quanto (R,) non ammette

minimo.

Dunque (R, ·) è un semigruppo abeliano che non è un monoide, e, di

conseguenza, non ha senso domandarsi se siano presenti in R elementi

invertibili rispetto a ·;

6. Evidentemente · è associativa, commutativa, ammette 2 come elemen-

to neutro e 8x 2 R⇤
:

2

x è inverso di x. Dunque (R, ·, 2) è un gruppo
abeliano;

7. Valgono i seguenti fatti:

• · è commutativa. Immediato dalla commutatività di +R
e ·R;

• · è associativa. 8x, y, z 2 R \ {�1} :

(x · y) · z = (x + y + xy) · z = x + y + xy + z + xz + yz + xyz =

= x + y + z + xy + xz + yz + xyz

Osserviamo che quest’ultima espressione è invariante per permuta-

zioni di {x, y, z}, quindi x · (y · z) = (y · z) · x = (x · y) · z;

• 0 è elemento neutro per ·. Immediato dalla definizione di ·;
• Ogni elemento di R \ {1} è invertibile rispetto a ·. 8x 2 R \ {�1} :

x · ( �x
x+1

) = x + (�x)
x+1

+ �x2

x+1
= x2

x+1
+ �x2

x+1
= 0

Dunque (R \ {�1}, ·, 0) è un gruppo abeliano;

8. Valgono i seguenti fatti:

• · è commutativa. Immediato dalla definizione di ·;
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• · non è associativa. Consideriamo x = y = 1

2
e z = 1

4
, allora:

x · (y · z) = x ·
✓

y + z
y + z + 1

◆
y= 1

2
, z= 1

4= x ·
 

1

2
+ 1

4

1

2
+ 1

4
+ 1

!
x= 1

2=
1

2
· 3

7
=

1

2
+ 3

7

1

2
+ 3

7
+ 1

=
13

27
;

(x · y) · z =

✓
x + y

x + y + 1

◆
x=y= 1

2=

 
1

2
+ 1

2

1

2
+ 1

2
+ 1

!
· z

z= 1

4=
1

2
· 1

4
=

1

2
+ 1

4

1

2
+ 1

4
+ 1

=
3

4

7

4

=
3

7
;

• · non ammette elemento neutro. Infatti 8x, y 2 (0, 1) :

x + y
x + y + 1

= x · y = x () x + y = x2 + xy + x () y =
x2

1 � x

Dunque, ad esempio, per x = 2

3
si avrebbe y = 4

3
62 (0, 1), il che

implica che · non ammette alcun elemento neutro.

Dunque ((0, 1), ·) non è un semigruppo, quindi a maggior ragione non
è nemmeno un monoide o un gruppo.

Esercizio 1.2. Valgono i seguenti fatti:

• · è associativa. 8(q, m), (q0, m0), (q00, m00) 2 Q ⇥ Z⇤
:

(I) [(q, m) · (q0, m0)](q00, m00) = (q+mq0, mm0)(q00, m00) = ((q+mq0)+ (mm0)q00, (mm0)m00);

(II) (q, m)[(q0, m0)(q00, m00)] = (q, m)(q0+m0q00, m0m) = (q+m(q0+m0q00), m(m0m00)).

Dunque (I) e (II) sono coincidenti in quanto le operazioni su Q e Z⇤
sono

associative e commutative;

• (0, 1) è elemento neutro per ·. 8(q, m), (q0, m0), (q00, m00) 2 Q ⇥ Z⇤
:

(q, m) · (0, 1) = (q + m0, m1) = (q, m);

(0, 1)(q, m) = (0 + 1q, 1m) = (q, m).

Quindi (Q ⇥ Z⇤
, ·, (0, 1)) è un monoide.

Calcoliamo gli elementi invertibili di Q ⇥ Z⇤
rispetto a ·.

8(q, m), (q0, m0) 2 Q ⇥ Z⇤
: (q + mq0, mm0) = (q, m)(q0, m0) = (0, 1) ()
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()
(

q + mq0 = 0

mm0 = 1

Dalla seconda uguaglianza, essendo m, m0 2 Z⇤
, ricaviamo m = m0 = 1 op-

pure m = m0 = �1; nel primo caso, dalla prima uguaglianza del sistema

ricaviamo q0 = �q, mentre nel secondo caso troviamo q0 = q. Abbiamo quindi

ottenuto che gli elementi di Q ⇥ Z⇤
aventi un inverso destro rispetto a · sono

tutti e soli quelli della forma (q, 1) [il cui inverso destro è (�q, 1)] e (q,�1) [(il

cui inverso destro è (q,�1)]. D’altra parte

(�q, 1)(q, 1) = (�q + 1 · q, 1 · 1) = (0, 1)

quindi

U (G) = {(q, m) 2 Q ⇥ Z⇤ | m 2 {�1, 1}},

dalla quale deduciamo anche che G non è un gruppo (in quanto U (G) 6= G).

Infine, il monoide G non è commutativo. Ad esempio:

(2, 1) · (1, 2) = (2 + 1 · 1, 1 · 2) = (3, 2);

(1, 2) · (2, 1) = (1 + 2 · 2, 2 · 1) = (5, 2).

Esercizio 1.3. Valgono i seguenti fatti:

• · è associativa. 8(a, b), (a0, b0), (a00, b00) 2 Q⇤ ⇥ Q :

(I) [(a, b) · (a0, b0)] · (a00, b00) =
✓

aa0, ab0 +
b
a0

◆
· (a00, b00) =

 
(aa0)a00, (aa0)b00 +

ab0 + b
a0

a00

!
;

(II) (a, b)[(a0, b0)(a00, b00)] = (a, b)
✓

a0a00, a0b00 +
b0

a00

◆
=

✓
a(a0a00), a(a0b00 +

b0

a00

◆
+

b
a0a00

=

=

 
a(a0a00), a(a0b00) +

ab0 + b
a0

a00

!
.

Dunque (I) e (II) sono coincidenti in quanto le operazioni su Q⇤
e Q sono

associative e commutative;

• (1, 0) è elemento neutro per ·. 8a, b 2 Q ⇤ ⇥Q :

(a, b)(1, 0) =

✓
a1, a0 +

b
1

◆
= (a, b);

(1, 0)(a, b) =
✓

1a, 1b +
0

a

◆
= (a, b);
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• Ogni elemento di Q⇤ ⇥Q è invertibile. Mostriamo che (1

a ,�b) è l’inver-

so di (a, b) 2 Q⇤ ⇥ Q :

(a, b)
✓

1

a
,�b

◆
=

 
a

1

a
, a(�b) +

b
1

a

!
= (1, 0)

✓
1

a
,�b

◆
(a, b) =

✓
1

a
a,

1

a
b +

(�b)
a

◆
= (1, 0)

Abbiamo così dimostrato che (Q⇤ ⇥ Q, ·, (1, 0)) è un gruppo. Tale gruppo non
è abeliano, ad esempio:

(2, 1)(1, 2) =

✓
2 · 1, 2 · 2 +

1

1

◆
= (2, 5);

(1, 2)(2, 1) =

✓
1 · 2, 1 · 1 +

2

2

◆
= (2, 2).

Esercizio 1.4. È immediato osservare che le applicazioni in 1, 2, 3 e 5 definisco-

no delle operazioni binarie sui rispettivi insiemi.

1. Valgono i seguenti fatti:

• · è commutativa. Immediato dalla definizione di ·;
• · è associativa. 8(x1, y1), (x2, y2), (x3, y3) 2 R ⇥ R⇤

:

(I) ((x1, y1) · (x2, y2)) · (x3, y3) = (x1y2 + y1x2, y1y2) · (x3, y3) =

= ((x1y2 + y1x2)y3 + (y1y2)x3, (y1y2)y3);

(II) (x1, y1) · ((x2, y2) · (x3, y3)) = (x1, y1)(x2y3 + y2x3, y2y3) =

= (x1(y2y3) + y1(x2y3 + y2x3), y1(y2y3)),

e (I) e (II) sono coincidenti in quanto ·R distribuisce su +R
e tali

operazioni su R sono associative e commutative;

• (0, 1) è elemento neutro per ·. 8(x, y) 2 R ⇥ R⇤
: (x, y) · (0, 1) =

(x1 + y0, y1) = (x, y);

• Ogni elemento di R ⇥ R⇤ è invertibile rispetto a ·. 8(x, y) 2 R ⇥
R⇤

: (x, y) ·
⇣
�x
y2

,
1

y2

⌘
=
⇣

x
y + y

⇣
�x
y2

⌘
, y 1

y

⌘
= (0, 1).

Quindi (R ⇥ R⇤
, ·, (0, 1)) è un gruppo abeliano;

2. Valgono i seguenti fatti:
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• · è associativa. 8(x1, y1), (x2, y2), (x3, y3) 2 R⇤ ⇥ R :

(I) ((x1, y1) · (x2, y2)) · (x3, y3) = (x1x2, y1x2 + y2)(x3, y3) = ((x1x2)x3, (y1x2 +
y2)x3 + y3);

(II) (x1, y1) · ((x2, y2) · (x3, y3)) = (x1, y1) · (x2x3, y2x3 + y3) = (x1(x2x3), y1(x2x3)+
y2x3 + y3),

e (I) e (II) sono coincidenti in quanto ·R e tali operazioni sono asso-

ciative su R;

• (1, 0) è elemento neutro per ·. 8(x, y) 2 R ⇥ R⇤
:

(x, y) · (1, 0) = (x1, y1 + 0) = (x, y);

(1, 0) · (x, y) = (1x, 0x + y) = (x, y);

• Ogni elemento di R⇤ ⇥ R è invertibile rispetto a ·. 8(x, y) 2 R⇤ ⇥
R :

(x, y) ·
✓

1

x
,
�y
x

◆
=

✓
x

1

x
,

y
x
� y

x

◆
= (1, 0);

✓
1

x
,
�y
x

◆
· (x, y) =

✓
1

x
x,

�y
x

x + y
◆
= (1, 0);

• · non è commutativa.

(1, 2) · (3, 1) = (1 · 3, 2 · 3 + 1) = (3, 7);

(3, 1) · (1, 2) = (3 · 1, 1 · 1 + 2) = (3, 5).

Quindi (R⇤ ⇥ R, ·, (1, 0)) è un gruppo non abeliano;

3. L’elemento (0, 1) 2 R ⇥ R non ammette inverso rispetto a ·. Infatti, sup-

poniamo per assurdo (x, y) 2 R ⇥ R sia inverso di (0, 1) rispetto a ·,
allora (1, 0) = (x, y) · (0, 1) = (x0, y0 + 1) = (0, 1), assurdo.

Dunque (R ⇥ R, ·, (1, 0)) non è un gruppo;

4. L’applicazione · non è un’operazione. Ad esempio:

(1, 1) · (1, 1) = (0, 2) 62 R⇤ ⇥ R⇤

5. La struttura considerata è la ridotta moltiplicativa del campo C, che non
è un gruppo in quanto (0, 0) 2 R ⇥ R non ammette inverso rispetto alla

·.
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Esercizio 1.5. Chiaramente la parte complicata dell’esercizio è determinare le

strutture di semigruppo su {a, b}, dunque ci limitiamo a svolgere questa, de-

terminando poi tra queste quelle che sono anche strutture di gruppo.

Dare una struttura di semigruppo su A = {a, b} equivale a dare un’operazione

binaria · : A ⇥ A ! A associativa, che a sua volta equivale a dare un’opportu-

na tavola di moltiplicazione su {a, b}.

Ricordiamo che ogni semigruppo finito ha almeno un elemento idempotente

(cfr. Proposizione 1), dunque sulla diagonale della tavola moltiplicativa si deve

presentare necessariamente una delle seguenti tre situazioni:

(1)

· a b
a a
b b

(2)

· a b
a a
b a

(3)

· a b
a b
b b

Cominciamo analizzando i casi (2) e (3). Sappiamo che · deve essere associa-

tiva, quindi in particolare devono valere le seguenti uguaglianze:

(a · b) · a = a · (b · a) (89)

(b · a) · b = b · (a · b) (90)

In (2) osserviamo che se a · b = b, allora sostituendo in (90) si avrebbe a =
(b · a) · b, che forza b · a = b (altrimenti a = (b · a) · b = a · b = b, in contrasto

con a 6= b). D’altra parte, se fosse a · b = a, allora sostituendo in (90) si avrebbe

b · a = (b · a) · b, che forza b · a = a (altrimenti b = b · a = (b · a) · b = b · b = a, in

contrasto con a 6= b). Dunque per il caso (2) abbiamo le due seguenti possibili

strutture di semigruppo

· a b
a a b
b b a

· a b
a a a
b a a

Il (3) è simmetrico rispetto al caso (2), quindi le possibili strutture di semi-

gruppo in tale caso sono

· a b
a b a
b a b

· a b
a b b
b b b
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Nel caso (1) si nota facilmente che qualsiasi scelta si faccia per a · b e b · a in

{a, b} si ha che (89) e (90) sono soddisfatte, essendo a e b idempotenti, quindi

le possibili strutture di semigruppo per tale caso sono

· a b
a a a
b a b

· a b
a a a
b b b

· a b
a a b
b a b

· a b
a a b
b b b

Complessivamente siamo quindi giunti alle seguenti otto potenziali strutture

di semigruppo su {a, b}

(I)

· a b
a a b
b b a

(II)

· a b
a a a
b a a

(III)

· a b
a b a
b a b

(IV)

· a b
a b b
b b b

(V)

· a b
a a a
b a b

(VI)

· a b
a a a
b b b

(VII)

· a b
a a b
b a b

(VIII)

· a b
a a b
b b b

Verifichiamo che queste otto tavole moltiplicative effettivamente definiscono

delle strutture di semigruppo su {a, b}, ossia verifichiamo che in tutti gli otto

casi · è associativa.

Banalmente le operazioni in (II) e (IV) sono associative, mentre le operazioni

in (VI) e (VII) sono, rispettivamente, (x, y) 7�! x e (x, y) 7�! y che sappiamo

essere associative dall’Esempio 8. Inoltre notiamo che la tavola moltiplicativa

di (Z2,+, 0) è

+ 0 1

0 0 1

1 1 0

quindi (I), (III) ⇠= Z2, per cui definiscono strutture di semigruppo. D’altra

parte è facile rendersi conto che in (V) e (VIII), rispettivamente, moltiplicare

a sinistra o a destra per a e moltiplicare a sinistra o a destra per b restituisce

sempre, rispettivamente, a e b, quindi l’operazione è banalmente associativa,

in quanto, rispettivamente, qualsiasi stringa in cui compare a restituisce a e

qualsiasi stringa in cui compare b restituisce b, indipendentemente dall’ordine
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in cui si svolgano le operazioni, mentre ovviamente in una stringa di simboli

omogenea (ossia in cui compaiono solo a o solo b) l’ordine è irrilevante per

idempotenza di a e b.

Infine, come già notato sopra, (I) e (III) sono gruppi; del resto ogni gruppo è

un monoide cancellativo, quindi ammette uno e un solo idempotente (il suo

elemento neutro), per cui (V), (VI), (VII) e (VIII) non sono gruppi, mentre (II) e

(IV) non sono gruppi perché privi di elemento neutro.

Esercizio 1.6. No. È un fatto noto in teoria dei semigruppi che dato un semi-

gruppo S ogni idempotente di S è contenuto in uno e un solo sottogruppo mas-

simale di S, e tali sottogruppi massimali sono a due a due disgiunti. Quindi

ogni monoide M = (M, ·, 1) che ammetta un idempotente diverso dall’elemen-

to neutro 1M fornisce una risposta negativa alla domanda posta nell’esercizio.

Ad esempio, possiamo considerare la tavola moltiplicativa (VIII) dell’Esercizio

1.6: ({a, b}, ·, a) è un monoide, ma ({b}, ·, b) è un monoide con a 62 {b}.

Esercizio 1.7.

1. Sia x 2 G, allora osserviamo che x 2 S () x�1 2 S, dal momento

che (x�1)�1 = x. Possiamo quindi affermare l’esistenza di X ⇢ S tale

che S = X [ X�1
, dove X \ X�1 = ∆ per definizione di S e |X| = |X�1|

per quanto appena visto (la corrispondenza biunivoca è data dalla X !
X�1

, x 7! x�1
). Di conseguenza S = |X [ X�1| = |X|+ |X�1| = 2|X| ⌘2

0;

2. Essendo G un gruppo finito si ha |G \S| = |G|� |S| ⌘2 |G|, dove l’ultima

relazione segue dal punto 1;

3. Supponiamo per assurdo |G \ S| = 1 (ossia l’unico elemento di G inver-

so di se stesso è 1G), allora dal punto 2 abbiamo |G| ⌘2 |G \ S| ⌘2 1,

ossia |G| dispari, in contrasto con l’ipotesi che G abbia un numero pari

di elementi.

Esercizio 1.8.

1. Siano x, y, z 2 Z tali che (x, y, z) 6= (0, 0, 0), allora

0

@
[1]3 [x]3 [y]3
[0]3 [1]3 [z]3
[0]3 [0]3 [1]3

1

A ·

0

@
[1]3 [x]3 [y]3
[0]3 [1]3 [z]3
[0]3 [0]3 [1]3

1

A ·

0

@
[1]3 [x]3 [y]3
[0]3 [1]3 [z]3
[0]3 [0]3 [1]3

1

A =

=

0

@
[1]3 [2x]3 [2y + xz]3
[0]3 [1]3 [2z]3
[0]3 [0]3 [1]3

1

A ·

0

@
[1]3 [x]3 [y]3
[0]3 [1]3 [z]3
[0]3 [0]3 [1]3

1

A =
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=

0

@
[1]3 [�x]3 [�y + xz]3
[0]3 [1]3 [�z]3
[0]3 [0]3 [1]3

1

A 6=

0

@
[1]3 [0]3 [0]3
[0]3 [1]3 [0]3
[0]3 [0]3 [1]3

1

A ;

Inoltre

0

@
[1]3 [�x]3 [�y + xz]3
[0]3 [1]3 [�z]3
[0]3 [0]3 [1]3

1

A ·

0

@
[1]3 [x]3 [y]3
[0]3 [1]3 [z]3
[0]3 [0]3 [1]3

1

A =

=

0

@
[1]3 [x � x]3 [y � xz + (�y + xz)]3
[0]3 [1]3 [z � z]3
[0]3 [0]3 [1]3

1

A =

0

@
[1]3 [0]3 [0]3
[0]3 [1]3 [0]3
[0]3 [0]3 [1]3

1

A .

Abbiamo così dimostrato che ogni elemento di G diverso dalla matrice

identità ha ordine 3. Dimostriamo ora, esibendo un controesempio, che

G non è abeliano.

0

@
[1]3 [1]3 [1]3
[0]3 [1]3 [0]3
[0]3 [0]3 [1]3

1

A ·

0

@
[1]3 [0]3 [1]3
[0]3 [1]3 [1]3
[0]3 [0]3 [1]3

1

A =

0

@
[1]3 [1]3 [0]3
[0]3 [1]3 [1]3
[0]3 [0]3 [1]3

1

A ;

0

@
[1]3 [0]3 [1]3
[0]3 [1]3 [1]3
[0]3 [0]3 [1]3

1

A ·

0

@
[1]3 [1]3 [1]3
[0]3 [1]3 [0]3
[0]3 [0]3 [1]3

1

A =

0

@
[1]3 [1]3 [2]3
[0]3 [1]3 [1]3
[0]3 [0]3 [1]3

1

A .

2. Supponiamo G sia un gruppo nel quale nessun elemento abbia ordine 3

e valga

8x, y 2 G : (xy)3 = x3y3
(91)

Vogliamo dimostrare che G è abeliano. Dividiamo la dimostrazione in

passi.

(i) 8x, y 2 G : [x, y]3 = (xyx�1y�1)3 = ((xyx�1)y�1)3
(91)
= (xyx�1)3(y�1)3 =

(xyx�1)(xyx�1)(xyx�1)y�3 = xy3x�1y�3 = [x, y3];

(ii) 8x, y 2 G : xy3x�1 = (xyx�1)3
(91)
= x3y3x�3

, per cui 8x, y 2 G :

x2y3 = y3x2
, ossia in G i cubi commutano con i quadrati, e dunque

8x, y 2 G : [x2
, y]3 (i)

= [x2
, y3] = 1G, dalla quale deduciamo 8x, y 2

G : [x2
, y] = 1G, in quanto per ipotesi in G non esistono elementi



136

aventi ordine 3 (si tenga conto del fatto che [x2
, y]3 = 1G se e solo

se o([x2
, y]) | 3, quindi [x2

, y] ha necessariamente ordine 1, ossia è

l’elemento neutro). Abbiamo quindi mostrato che in G i quadrati

commutano con ogni elemento;

(iii) 8x, y 2 G : (yx)2 = (yx)3(yx)�1
(91)
= y3x3x�1y�1 = y3x2y�1

, ossia

8x, y 2 G : yxyx = y3x2y�1
, dalla quale deduciamo 8x, y 2 G :

(xy)2 = y2x2
;

(iv) 8x, y 2 G : (xy)2
(iii)
= y2x2

(ii)
= x2y2

.

Conseguentemente per l’Osservazione 16 si ha che G è abeliano.

Esercizio 1.9. Vedere suggerimento.

Esercizio 1.10. Svolgiamo direttamente l’esercizio nella sua forma più genera-

le, ossia il caso di n 2 N�2 uomini condannati a morte e cappelli di k 2 N�2

colori diversi. Dimostriamo che i condannati possono sempre escogitare una

strategia che permetta ad almeno n � 1 di loro di salvarsi.

Siano G = (G, ·, 1G) un qualsiasi gruppo di ordine k (ad esempio, (Zk,+, [0]k),
U = {u1, . . . , un} l’insieme dei condannati, C = {c1, . . . , ck} l’insieme dei colori

dei cappelli ed f : C ! G una bigezione (ossia stiamo assegnando bigettiva-

mente ad ogni colore un elemento del gruppo G). Chiaramente il problema

è simmetrico rispetto alla possibile disposizione in fila indiana degli uomi-

ni, quindi da ora in avanti, senza perdita di generalità, assumiamo che essi

siano disposti (dal basso verso l’alto) secondo la sequenza (u1, . . . , un). Sia

g : U ! C un’applicazione qualsiasi (ossia una possibile assegnazione di cap-

pelli ai condannati). Chiaramente ogni siffatta g determina un elemento di G,

ossia l’elemento x = f (g(u2)) · . . . · f (g(un)), e tale elemento corrisponde al

colore f�1(x). Osserviamo che se l’ultimo condannato della fila indiana, ossia

il condannato u1, trasmette tale numero, allora il condannato u2 è certamen-

te in grado di determinare il colore del proprio capello: infatti esso dapprima

ritorna all’elemento x = u2 · u3 · . . . · un tramite la f (si ricordi che questa è

una bigezione), poi vedendo davanti a sé la sequenza (g(u3), . . . , g(un)) è in

grado di calcolare l’inverso y del prodotto f (g(u3)) · . . . · f (g(un)), dunque de-

terminare f (g(u2)) "per differenza", ossia f (g(u2)) = x · y, e infine applicare la

f�1
per determinare g(u2) . Similmente il condannato u3 sarà ora in grado di

determinare il colore del proprio cappello, infatti esso determinerà l’elemento

f (x), poi vedendo davanti a sé la sequenza (g(u4), . . . , g(un)) e potendo calco-

lare f (g(u2)) determinerà per differenza f (g(u3)), e infine il colore del proprio

cappello g(u3) applicando la f�1
. E così via.
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Soluzioni esercizi capitolo 2

Esercizio 2.2. Ricordiamo che

Dn = {1, r, r2
, . . . , rn�1

, s, r � s, r2 � s, . . . , rn�1 � s}
dove r è la rotazione in senso antiorario di angolo

2p
n , mentre s è una qualsiasi

riflessione in Dn. Chiaramente ogni riflessione ha ordine 2 indipendentemente

da n � 3. Cerchiamo di capire quali rotazioni abbiano ordine 2. Osserviamo

che la rotazione r ha ordine n, quindi 8k 2 {1, 2, . . . , n � 1} : r2k = (rk)2 =
1 () n | 2k, ma 2k < 2n, dunque l’unica possibilità è n = 2k, che implica n
pari e k =

n
2

.

Esercizio 2.5. Dimostriamo che se s = (a1 . . . ad) è un ciclo di Sn, allora

8 f 2 Sn : f � s � f�1 = ( f (a1) . . . f (ad)).

Poniamo 8i 2 {1, . . . , n} : f (ai) = bi, allora 8i 2 {1, . . . , n} : ai = f�1(bi). Dal

momento che le permutazioni sono bigezioni ed {1, . . . , n} = {a1, . . . , an}, si

ha pure {b1, . . . , bn} = {1, . . . , n}. Dimostriamo che 8i 2 {1, . . . , n} : ( f � s �
f�1)(bi) = ( f (a1) . . . f (ad))(bi) = (b1 . . . bd)(bi). Distinguiamo tre casi:

(i) i 2 {1, . . . , d � 1}, allora (b1 . . . bd)(bi) = bi+1 e ( f � s � f�1)(bi) =
( f � s)( f�1(bi)) = f (s(ai)) = f (ai+1) = bi+1;

(ii) i = d, allora (b1 . . . bd)(bi) = b1 e ( f � s � f�1)(bi) = ( f � s)( f�1(bi)) =
f (s(ai)) = f (a1) = b1;

(iii) i 2 {d+ 1, . . . , n}, allora bi 62 f ({a1, . . . , ad}), quindi f�1(bi) 62 {a1, . . . , ad},

per cui s( f�1(bi)) = f�1(bi), e conseguentemente ( f � s � f�1)(bi) =
f ( f�1(bi)) = bi = (b1 . . . bd)(bi).

Dunque se s1 = (a1 . . . ad) e s2 = (c1 . . . cd) sono cicli della stessa lunghezza

è sufficiente considerare una permutazione g 2 Sn tale che 8i 2 {1, . . . , d} :

g�1(ai) = ci e dedurre che, posto f = g�1
, si ha f�1 � s1 � f = g � s1 � g�1 =

(g(a1) . . . g(ad)) = (c1 . . . cd) = s2, ossia quanto cercato.

Esercizio 2.6. Cominciamo osservando che possiamo limitarci a considerare

1  k  l. Infatti, per il teorema della divisione euclidea 9q, r 2 N tali che

k = qk + r, dove 0  r < k, quindi

sk = sqk+r = (sk)qsr = sr

Inoltre la tesi è ovviamente valida nel caso k 2 {1, l}, quindi ci limitiamo a

considerare 1 < k < l. Dalla teoria (cfr. Proposizione 15), essendo sk 6= id
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sappiamo che supp(sk) = supp(s), ossia le due permutazioni muovono gli

stessi elementi. Supponiamo s = (a1 . . . al). Per il teorema fondamentale delle
permutazioni sk

ammette una e una sola decomposizione s1 � . . . � st nel pro-

dotto di cicli disgiunti, dove ovviamente supp(si) coincide con l’orbita di un

suo qualsiasi elemento rispetto alla sk
. Sia i 2 {1, . . . , l}, allora gli elementi

dell’orbita di ai rispetto a sk
hanno la forma amk+i (mod l) con m 2 N. Os-

serviamo che 8u, v 2 N : uk + i ⌘l vk + i () (u � v)k ⌘l 0, per cui il

più piccolo u � v positivo che realizza l’uguaglianza è
l

(l, k)
. Segue che gli

elementi di

⇢
ai, ak+i, a2k+i, . . . , a⇣ l

(l,k)�1

⌘
k+i

�
sono distinti e costituiscono l’or-

bita di ai, ossia il supporto del ciclo fattore che lo muove. Conseguentemente

8j 2 {1, . . . , t} :

l(sj) = o(sj) =
l

(l, k)

Esercizio 2.7. Per quanto visto nell’esercizio precedente, se un ciclo s di lun-

ghezza l e k 2 N+
realizzano sk = s1 � . . . � st, con s1, . . . , st cicli disgiunti,

allora necessariamente t = (l, k). Nello specifico k = t realizza tale condizione

(l = mt ) t | l). Supponiamo

s1 = (a11 a12 . . . a1m)

s2 = (a21 a22 . . . a2m)

...

st = (at1
at2 . . . atm)

e consideriamo il seguente ciclo s = (a11 a21 . . . at1 a12 a22 . . . at2 . . . a1m a2m . . . atm).
Per verifica diretta si ha che sk = s1 � . . . � st.

Esercizio 2.8. Osserviamo che se t è una trasposizione qualsiasi di Sn, allora

l’applicazione F : An ! {h 2 Sn | sign(h) = �1}, f 7! f � t è bigettiva, dal

momento che è una involuzione (ossia è inversa di se stessa). In particolare,

quindi

Sn = An [ {h 2 Sn | sign(h) = �1} = An [ (An � t)

per cui Sn ✓ hAn, ti ✓ Sn, e dunque Sn = hAn, ti.

Esercizio 2.9. Se s2
è un ciclo, allora, essendo supp(s2) = supp(s), si ha

o(s)
(2, o(s))

= o(s2) = o(s), quindi (2, o(s)) = 1, ossia l è dispari. Il viceversa e i

restanti punti sono immediati dall’Esercizio 2.6.
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Soluzioni esercizi capitolo 3

Esercizio 3.1.

1. H è un sottogruppo di G, infatti 8a1, a2 2 Q+
: ln(a1)� ln(a2) = ln

✓
a1

a2

◆
2

H;

2. H non è un sottogruppo di G, infatti 8n1, n2 2 N+
: ln(n1)� ln(n2) =

ln
✓

n1

n2

◆
, il quale non è necessariamente un elemento di H. Infatti, ad

esempio, per ogni
n1

n2

2 Q \N si ha
n1

n2

62 H, dal momento che ln : R+ !
R è una bigezione, quindi 8x 2 R, 9!y 2 R+

: x = ln(y);

3. H non è un sottogruppo di G. Infatti osserviamo che tan(p/4) = 1,

dunque p/4 2 H, ma p/4 + p/4 = p/2 62 H, dal momento che la

tangente non è nemmeno definita per p/2.

4. H è un sottogruppo di G, infatti: 8m1, n1, m2, n2 2 Z : (2m13
n1)(2m23

n2)�1 =
2

m13
n12

�m23
�n2 = 2

m1�m23
n1�n2 2 H;

5. H è un sottogruppo di G, infatti 8(x1, y1), (x2, y2) 2 G : y1 = 2x1, y2 =
2x2 ) y1 � y2 = 2x1 � 2x2 = 2(x1 � x2), ossia (x1, y1) � (x2, y2) =
(x1 � x2, y1 � y2) 2 H.

Esercizio 3.3. Sia X un insieme, vogliamo dimostrare che (P(X),4, ∆) è un

gruppo abeliano.

• 4 è commutativa. Immediato dalla definizione della differenza simme-

trica;

• 4 è associativa. Siano 8A, B, C 2 P(X) e denotiamo con A0
, B0

, C0
i loro

complementari in X, allora:

(A4B)4C = ((A \ B) [ (B \ A))4C =

= [(((A \ B) [ (B \ A))) \ C] [ [C \ ((A \ B) [ (B \ A))] =

= [((B0 \ A) [ (A0 \ B)) \ C0] [ [C \ ((B0 \ A) [ (A0 \ B))0] =

= [((B0 \ A) [ (A0 \ B)) \ C0] [ [C \ ((B [ A0) \ (A [ B0))] =

= [((B0 \ A) [ (A0 \ B)) \ C0] [ [C \ ((B \ A) [ (A0 \ B0))] =

= ((A \ B0 \ C0) [ (A0 \ B \ C0)) [ (A \ B \ C) [ (A0 \ B0 \ C0) =
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= (A \ B \ C) [ (A \ B0 \ C0) [ (A0 \ B \ C0) [ (A0 \ B0 \ C).

Osserviamo ora che l’espressione ottenuta è invariante per permutazioni

dell’insieme {A, B, C}, dunque (A4B)4C = (B4C)4A = A4(B4C),
dove nella seconda uguaglianza abbiamo sfruttato la commutatività di

4. Dall’arbitrarietà di A, B, C 2 P(X) otteniamo che 4 è associativa;

• ∆ è elemento neutro per 4. Immediato dalla definizione di 4;

• Ogni elemento di P(X) è invertibile rispetto a 4. Si osserva immedia-

tamente che 8A 2 P(X) : A4A = ∆.

È così dimostrato che (P(X),4, ∆) è un gruppo abeliano.

Sia Y 2 P(X), allora P(Y) ✓ P(X), dunque 8A, B 2 P(Y) : A4B 2 P(X), e

ovviamente ∆ 2 P(Y), quindi (P(Y),4, ∆)  (P(X),4, ∆).

Esercizio 3.7. Abbiamo già mostrato nell’Esercizio 2.2 che Dn ha esattamente

n elementi di ordine 2 se e solo se n è dispari. Abbiamo anche visto che tali

elementi di ordine 2 sono le simmetrie, dunque gli n elementi che non hanno

ordine 2 sono le rotazioni, e chiaramente la composizione di rotazioni è ancora

una rotazione.

Esercizio 3.8.

1. SX è finito in quanto per ipotesi X è finito, dunque anche H ✓ SX è ne-

cessariamente finito, quindi per verificare che si tratta di un sottogrup-

po di SX è sufficiente verificarne la stabilità rispetto alla composizione.

8 f , g 2 H, 8x 2 A : ( f � g)(x) = f (g(x)) 2 A, dal momento che essendo

f , g 2 H si ha x 2 A ) g(x) 2 A ) f (g(x)) 2 A;

2. Consideriamo X = R ed A = N. Allora la funzione

s : R ! R

x 7! x + 1

è un elemento di H, ma la sua inversa

s�1
: R ! R

x 7! x � 1

non è un elemento di H, dal momento che s�1(0) = �1 62 N.
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Esercizio 3.9.

1. Sia f 2 Sn \ {id}, allora sappiamo dalla teoria (cfr. Lemma 2) che f può

essere scritta come prodotto di N( f ) trasposizioni. D’altra parte l’identità

id può essere scritta come prodotto di una trasposizione qualsiasi con se

stessa, quindi si ha quanto cercato;

2. È sufficiente dimostrare che riusciamo a generare la permutazione iden-

tità ed ogni trasposizione, poi la tesi seguirà nel caso generale dal punto

precedente. Chiaramente id = (1 2)(1 2). Ricordiamo che (cfr. Esercizio
2.5) 8 f 2 Sn, 8(a1 . . . ad) 2 Sn : f � (a1 . . . ad) � f�1 = ( f (a1) . . . f (ad)),
per cui 8i, j 2 {1, . . . , n} \ {1} (se uno tra i e j fosse 1 non ci sarebbe niente

da dimostrare), i < j :

(i j) = (i 1)(1 j)(1 i)

3. Preliminarmente osserviamo che id 2 An è prodotto di tre cicli, dal mo-

mento che id = (1 2 3)(1 2 3)(1 2 3). Sia ora f 2 An \ {id}, allora esi-

stono t1, t2, . . . , t2k�1, t2k trasposizioni tali che f = t1t2 . . . t2k�1t2k, dal

momento che N( f ) ⌘2 0. Per ottenere la tesi è sufficiente mostrare che

il prodotto di due trasposizioni può essere espresso come prodotto di

3-cicli. Siano (a b), (c d) 2 Sn due trasposizioni. Distinguiamo tre casi:

(i) |{a, b} \ {c, d}| = 2, quindi necessariamente {a, b} = {c, d}, e dun-

que (a b) = (c d), per cui (a b)(c d) = (a b)(a b) = id, che abbiamo

già visto potersi esprimere come prodotto di 3-cicli;

(ii) |{a, b} \ {c, d}| = 1. Senza perdita di generalità supponiamo b = c,

allora (a b)(c d) = (a b)(b d) = (a b d);
(iii) |{a, b} \ {c, d}| = 0, allora (a b)(c d) = (a b)(b c)(b c)(c d) =

(a b c)(b c d).

4. Per quanto visto nel punto precedente ogni f 2 An è prodotto di 3-cicli,

quindi è sufficiente mostrare che ogni 3-ciclo è generato da {(1 2 3), (1 2 4), . . . , (1 2 n)}.

Siano i, j, k 2 {1, . . . , n} \ {1, 2}, a due a due distinti, allora (1 2 k)(1 2 i)(1 2 k)�1 =
(2 k i) = (i 2 k) e (1 2 j)(i 2 k)(1 2 j)�1 = (i j k), per cui

(i j k) = (1 2 j)(1 2 k)(1 2 i)(1 2 k)�1(1 2 j)�1

D’altra parte, se uno e uno solo tra i, j, k sta in {1, 2}, che senza perdita di

generalità possiamo assumere sia i, dato che alla peggio possiamo rino-

minarli, allora (1 2 k)(1 2 j)(1 2 k)�1 = (2 k j) e (1 2 j)(2 k j)(1 2 j)�1 =
(j k 1) = (1 j k), per cui

(1 j k) = (1 2 j)(1 2 k)(1 2 j)(1 2 k)�1(1 2 j)�1
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Infine, supponiamo esattamente due tra i, j, k siano in {1, 2}. A meno di

riordinare e rinominare gli indici si presentano esattamente due casi. Se

i = 1, j = 2 non abbiamo niente da dimostrare, mentre se i = 1, k = 2,

allora (i j k) = (1 j 2) = (j 2 1) = (1 2 j)�1
.

5. Abbiamo visto in (2) che Sn è generato da {(1 2), (1 3), . . . , (1 n)}, quindi

è sufficiente verificare che tale insieme è generato da {(1 2), (1 2 . . . n)}.

Mostriamolo procedendo per induzione su n 2 N�3.

Passo base (n = 3): Chiaramente

(1 3) = (1 2)(1 2 . . . n)(1 2)(1 2 . . . n)�1(1 2)

Passo induttivo: Supponiamo la tesi vera per n � 1 2 N�3. Allora

(1 n) = (1 n � 1)(1 2 . . . n)(n�2)(1 2)(1 2 . . . n)�(n�2)(1 n � 1)

dalla quale segue la tesi essendo, per ipotesi induttiva, (1 n� 1) generato

da {(1 2), (1 2 . . . n)}.

Esercizio 3.10. Per il Teorema di Lagrange si ha |G| = [G : K]|K|, ma applicando

nuovamente il Teorema di Lagrange si ha anche |K| = [K : H]|H|, per cui [G :

H]|H| = |G| = [G : K][K : H]|H|, e dunque [G : H] = [G : K][K : H].

Soluzioni esercizi capitolo 4

Esercizio 4.3. Dalla teoria sappiamo che

Z(GLn(Zp)) = {aIn | a 2 Z⇤
p}

Quindi |Z(GLn(Zp))| = p � 1. Per quanto riguarda la seconda parte dell’e-

sercizio, invece, considerato un qualsiasi campo K e k 2 K⇤
, e fissata una

matrice B 2 GLn(K) tale che det(B) = k (essa esiste, infatti basta conside-

rare la matrice diagonale B = diag(k, 1, . . . , 1)), consideriamo l’applicazione

SLn(K) ! {C 2 GLn(K) | det(C) = k}, A 7! AB, che chiaramente è in-

vertibile con inversa data dalla {C 2 GLn(K)} ! SLn(K), A 7! CB�1
(si

osservi che entrambe le applicazioni sono ben definite in virtù del Teorema di Bi-
net). Conseguentemente, essendo det : GLn(Zp) ! {1, 2, . . . , p � 1} suriettiva,

concludiamo |SLn(Zp)| =
|GLn(Zp)|

p � 1
.
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Esercizio 4.4. Consideriamo K = hH, xi, allora H  K  G, per cui per

l’Esercizio 3.10 si ha p = [G : H] = [G : K][K : H]. Essendo p un primo, de-

duciamo che uno dei due fattori è p e l’altro 1. Ma [K : H] > 1 (dal momento

che x 2 K, x 62 H, dunque xH = H), quindi [G : K] = 1, per cui K = G.

Dunque la tesi diventa H E< H, x >. Ricordiamo che un elemento di hH, xi
ha la forma ga1

1
· . . . · gan

n , dove n 2 N+
, {g1, . . . , gn} ✓ H [ {x}, a1, . . . , an 2 Z.

Mostriamo la tesi procedendo per induzione su n e sfruttando il primo criterio

di normalità.

Passo base (n=1): Se g1 2 H, allora ovviamente Hga
1

1  H, mentre se g1 = x ciò

segue dall’ipotesi xH = Hx;

Passo induttivo: Supponiamo la tesi valida per un certo n 2 N+
, allora

(ga1

1
· . . . · gan

n · gan+1

n+1
)�1H(ga1

1
· . . . · gan

n · gan+1

n+1
) = g�an+1

n+1
(ga1

1
· . . . · gan

n )�1H(ga1

1
· . . . · gan

n )gan+1

n+1


 g�an+1

n+1
Hgan+1

n+1
 H,

dove il primo  è conseguenza dell’ipotesi induttiva, mentre il secondo segue

dal passo base.

Esercizio 4.5. Cominciamo dimostrando che H E G. Supponiamo per assurdo

esista s 2 G tale che o(s) = 2 con Hs 6 H, ossia esiste h 2 H \ {1} tale che

o(shs) = 2, quindi sh2s = (shs)(shs) = 1, per cui h2 = 1, in contrasto con

l’ipotesi h 2 H \ {1}.

Passiamo all’abelianità. Osserviamo che 8s 2 G \ H, 8h 2 H : o(sh) = 2, dal

momento che sh 62 H (in caso contrario si avrebbe sh 62 H, assurdo). Quindi

8s 2 G \ H, 8h 2 H : shsh = 1 ) shs = h�1
. Dunque 8h1, h2 2 H : [h1, h2] =

h1h2h�1

1
h�1

2
= h1h2(sh1s)(sh2s) = h1h2sh1h2s = (h1h2)(h1h2)�1 = 1. È così

dimostrato che H è abeliano.

Infine h 2 H ) h�1 2 H, per cui h = 1 oppure h 6= h�1
(altrimenti o(h) = 2,

in contrasto con la definizione di H), quindi n ⌘2 1, ossia |H| dispari.

Esercizio 4.6. L’inclusione è ovvia dalle definizioni. Per quanto all’Esercizio 4.8
si ha Z(S3) = {id}, mentre Z(A3) = A3 6= {id} (|A3| = 3!

2
, quindi A3

⇠= Z3,

per cui A3 abeliano).

Esercizio 4.7. Cominciamo trattando il caso i cui o(xy) = n 2 N+
. Se o(xy) =

1, allora xy = 1 ) y = x�1 ) yx = x�1x = 1 ) o(xy) = 1 = o(yx) )
o(yx) | o(xy). Ora supponiamo che o(xy) = n + 1 2 N+

per qualche n 2 N.

Non è difficile osservare che x(yx)n+1y = (xy)n+2 = (xy)n+1(xy) = xy, per
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cui (yx)n+1 = 1 ) o(yx) | n + 1 = o(xy).

Simmetricamente o(xy) | o(yx), quindi o(xy) = o(yx).
Chiaramente, per quanto appena mostrato, i due ordini coincidono anche se

o(xy) non è finito.

Per quanto riguarda la seconda parte dell’esercizio, 8y 2 G : o(yxy�1) =
o(xy�1y) = o(x) = k, quindi, essendo per ipotesi x l’unico elemento di G
avente ordine k, yxy�1 = x ) yx = xy, e dunque x 2 Z(G).

Esercizio 4.8. Sia f 2 Z(Sn), allora, in particolare, per definizione si ha che f e

(1 2 . . . n) commutano. Ma allora id = [ f , (1 2 . . . n)] = f (1 2 . . . n) f�1(1 2 . . . n)�1 =
( f (1) f (2) . . . f (n))(1 2 . . . n)�1

, per cui

( f (1) f (2) f (3) . . . f (n)) = (1 2 3 . . . n) (92)

D’altra parte anche f e (1 2) devono commutare, per cui procedendo simil-

mente si ottiene

( f (1) f (2)) = (1 2) (93)

Dalla (93) deduciamo che f (1) = 1 e f (2) = 2 oppure f (1) = 2 e f (2) = 1;

ma nel secondo caso dalla (92) si otterrebbe 1 = f (2) = 3, assurdo. Dunque

f (1) = 1, f (2) = 2 e dalla (92) deduciamo f = id.

Esercizio 4.9. Sia f 2 Z(An), allora per ogni i 2 {3, . . . , n} si ha che f e

(1 2 i) commutano. Procedendo come nell’esercizio precedente deduciamo

che 8i 2 {3, . . . , n} :

( f (1) f (2) f (i)) = (1 2 i)

Ma chiaramente ciò è possibile se e solo se f = id.

Esercizio 4.10. Ricordiamo che se r = r 2p
n

e s 2 Dn è una qualunque riflessione,

allora

Dn = {id, r, r2
, . . . , rn�1

, s, s � r, . . . , s � rn�1}

Cominciamo osservando che nessuna riflessione s può stare nel centro Z(Dn).
Infatti se s 2 Dn, allora rs = sr ) r�1 = srs = r ) r2 = id, in contrasto con

il fatto che o(r) = n � 3. Sia ora k 2 {0, 1, . . . , n � 1}, allora se rk 2 Z(Dn) si

deve avere in particolare srk = rks = s(srks) = sr�k ) r2k = id, dalla quale

deduciamo che o(r) = n | 2k < 2n, dunque n = 2k. Infine osserviamo che
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se k = n
2

, allora per ogni riflessione s si ha sr
n
2 s = r�

n
2 = r

n
2 , ossia r

n
2 s = sr

n
2 .

Quindi se n è dispari il centro è banale, mentre se n è pari il centro è {id, r
n
2 }.

Soluzioni esercizi capitolo 5

Esercizio 5.1. 8x, y 2 R⇤
: f (x) f (y) = f (x) + f (y) + f (x) f (y) = (x � 1) +

(y � 1) + (x � 1)(y � 1) = (x � 1)y + y � 1 = xy � 1 = f (xy). D’altra parte f
è chiaramente bigettiva (la sua inversa è la G ! R⇤

, x 7! x + 1, ben definita

in quanto �1 62 G). È così dimostrato che f è un isomorfismo R⇤ ! G.

Esercizio 5.2.

1. Consideriamo l’applicazione f : R ! S1
, x 7! ei2px

. Dalle proprietà

delle potenze si ha che f è un omomorfismo, inoltre ker( f ) = {x 2 R |
f (x) = (1, 0)} = {x 2 R | (cos(2px), sin(2px)) = (1, 0)} = Z, dove

l’ultima uguaglianza segue dal fatto che cos(2px) = 1 e sin(2px) = 0

se e solo se 2px = 2pk per qualche k 2 Z, ossia x = k 2 Z. Infine,

osserviamo che f è suriettiva per definizione di S1
, quindi per il primo

teorema di isomorfismo si ha R/Z = R/ker( f ) ⇠= S1
.

2. Consideriamo l’applicazione g : Z ! S1
, z 7! ei( 2p

n )z
. Dalle proprietà

delle potenze si ha che g è un omomorfismo il cui nucleo è ker(g) = {z 2
Z | ei( 2p

n )z = 1} = nZ e la cui immagine è Un (da ciò segue anche che

Un è un sottogruppo di S1
), quindi per il primo teorema di isomorfismo si ha

Zn = Z/nZ = Z/ker( f ) ⇠= Un.

3. Dimostriamo più in generale che se G è un gruppo di ordine 2n che am-

mette un elemento g1 di ordine 2 ed un elemento g2 di ordine n tali che

g1g2g1 = g�1

2
, allora G ⇠= Dn. Non è difficile vedere, sfruttando le ipote-

si, che G = {1, g2, g2

2
, . . . , gn�1

2
, g1, g1g2 . . . , g1gn�1

2
}. Consideriamo l’ap-

plicazione f : Dn ! G definita tramite la 8k 2 {0, 1, . . . , n � 1}, 8j 2
{0, 1} : f (sjrk) = gj

1
gk

2
. Evidentemente f è una bigezione per costruzio-

ne, quindi non ci resta da mostrare altro se non che f è un omomorfismo

di gruppi. Osserviamo che si presentano cinque casi:

• f (ss) = f (1) = 1 = g1g1 = f (s) f (s);

• f (rk1rk2) = f (rk1+k2) = gk1+k2

2
= gk1

2
gk2

2
= f (rk1) f (rk2);

• f ((srk)s) = f (r�k) = f (rn�k) = gn�k
2

= g�k
2

= g1gk
2
g1 = f (srk) f (s);

• f (s(srk)) = f (rk) = gk
2
= g1(g1gk

2
) = f (s) f (srk);

• f ((srk1)(srk2)) = f ((srk1s)rk2) = f (r�k1rk2) = f (rk2�k1) = gk2�k1

2
=

g�k1

2
gk2

2
= (g1gk1

2
)(g1gk2

2
) = f (srk1) f (srk2).
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È così dimostrato che f definisce un isomorfismo.

Nel caso in esame dell’esercizio notiamo che o(r) = n, o(s) = 2 e srs =
r�1

. Dico che | hr, si | = 2n. Infatti un elemento di tale sottogruppo

generato ha la forma rksm
oppure smrk

per qualche k 2 {0, 1, . . . , n �
1} e m 2 {0, 1}, ma osserviamo che (se m = 1 e k 6= 0) si ha rks =
ssrks = sr�k = srn�k

, quindi possiamo assumere gli elementi siano tut-

ti della forma smrk
con m 2 {0, 1} e k 2 {0, 1, . . . , m � 1}. Osservia-

mo ora che le ipotesi sugli ordini implicano che gli elementi dell’insieme

{1, r, . . . , rn�1
, s, sr, . . . , srn�1} sono tutti distinti (in particolare si osservi

che non esiste alcun k 2 {0, 1, . . . , n� 1} tale che s = rk
, dal momento che

se così fosse si avrebbe 1 = s(1) = rk(1) = uk
, in contrasto con o(u) = n),

da cui segue quanto asserito sulla cardinalità del sottogruppo generato.

Esercizio 5.3.

1.

2. Cominciamo dimostrando che SU(2) è un sottogruppo di GL2(C). Siano

A =

✓
a b
�b a

◆

B =

✓
g d
�d g

◆

Elementi di SU(2), allora

A�1B =

✓
a �b
b a

◆✓
g d
�d g

◆
=

✓
ag + bd ad � bg
bg � ad bd + ag

◆
=

 
ag + bd ad � bg

�ad � bg ag + bd

!

Infine osserviamo che per il Teorema di Binet si ha det(A�1B) = det(A�1)det(B) =
1, dunque A�1B 2 SU(2). Dato che chiaramente SU(2) 6= ∆ (ad esem-

pio perché la matrice identità è un suo elemento), è così dimostrato che

SU(2) è un sottogruppo di GL2(C).

Consideriamo l’applicazione S3 ! SU(2), (a, b) 7!
✓

a b
�b a

◆

Mostriamo che f un omomorfismo di gruppi. Siano (a, b), (g, d) 2 S3
, allora

f ((a, b)(g, d)) = f (ag� bd, ad+ bg) =

✓
ag � bd ad + bg

�a · d � bg a · g � bd

◆
=

✓
a b
�b a

◆✓
g d
�d g

◆
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= f (a, b) f (g, d)

Inoltre ker( f ) =

⇢
(a, b) 2 S3 |

✓
a b
�b a

◆
=

✓
1 0

0 1

◆�
= {(1, 0)}, dunque f è

iniettiva, mentre la suriettività è immediata dalle definizioni. È così dimostrato

che f è un isomorfismo di gruppi.

Esercizio 5.4. Supponiamo per assurdo Z e Q siano isomorfi, allora necessa-

riamente Q dovrebbe essere ciclico, dal momento che Z lo è (cfr. Proposizione

43). Ma per ogni
m
n

2 Q :
m + 1

n
62
Dm

n

E
=
n am

n
2 Q|a 2 Z

o
, dal momento

che m - m + 1.

Esercizio 5.5.

• Supponiamo per assurdo (Q,+) e (Q⇤
, ·) (risp. (R,+) e (R⇤

, ·)) siano iso-

morfi, allora per definizione esiste f : Q ! Q⇤
(risp. R ! R⇤

) isomorfi-

smo. Dalla suriettività di f si ha l’esistenza di x 2 Q (risp. x 2 R) tale che

f (x) = �1, quindi f (2x) = f (x + x) = f (x) f (x) = (�1)2 = 1 = f (0),
dalla quale per iniettività di f deduciamo 2x = 0, ossia x = 0, e quindi

1 = f (0) = �1, assurdo;

• ex
: R ! R+

è un isomorfismo tra i gruppi (R,+) e (R+
, ·);

• Supponiamo per assurdo (Q,+) e (Q+
, ·) siano isomorfi, allora per defi-

nizione esiste f : Q ! Q+
isomorfismo. Dal momento che f è suriettiva

esiste q 2 Q tale che f (q) = 2, ma allora 2 = f ( q
2
+ q

2
) = f ( q

2
)2

, e dunque

f ( q
2
) =

p
2, assurdo.

Esercizio 5.6. Dalla teoria sappiamo che sappiamo che G/Z(G) ⇠= Inn(G)

1. Da quanto ricordato in apertura segue Inn(S3) ⇠= S3, dal momento che

S3 ha centro banale. Inoltre sappiamo che Inn(S3) ✓ Aut(S3), quindi

|Aut(S3)| � |Inn(S3)| = |S3| = 6. D’altra parte dall’Esercizio 5.8 segue

che gli automorfismi di S3 preservano l’ordine, quindi ogni h 2 Aut(S3)
induce una permutazione sull’insieme delle trasposizioni di S3, e vice-

versa, essendo S3 generato dalle sue trasposizioni, ogni siffatta permuta-

zione induce un automorfismo di S3. Ne segue che |Aut(S3)|  6, per

cui Inn(S3) = Aut(S3) e |Aut(S3)| = 6;

2. Segue da quanto ricordato in apertura sfruttando l’Esercizio 4.9;
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3. Segue da quanto ricordato in apertura sfruttando l’Esercizio 4.10.

Esercizio 5.7. Per definizione G = hXi = {ga1

1
· . . . · gan

n | n 2 N+
, g1, . . . , gn 2

X, a1, . . . , an 2 Z}. Quindi se x 2 G si ha che esistono n 2 N+
, g1, . . . , gn 2

X, a1, . . . , an 2 Z tali che x = ga1

1
· . . . · gan

n , per cui f (x) = f (ga1

1
· . . . · gan

n ) =
f (g1)a1 · . . . · f (gn)an = g(g1)a1 · . . . · g(gn)an = g(ga1

1
· . . . · gan

n ) = g(x). Dal-

l’arbitrarietà di g di conclude f = g.

Esercizio 5.8.

1. f (xo(x)) = f (1) = 1, ossia f (x)o(x) = 1, per cui o( f (x)) | o(x);

2. Dimostriamo che f ha nucleo banale. x 2 ker( f ) ) f (x) = 1, quindi per

ipotesi o(x) = o( f (x)) = o(1), da cui deduciamo x = 1.

L’ultima affermazione è immediata da 1. considerando la proiezione canonica

sul quoziente p : G ! G/N.

Esercizio 5.9. Si ricordi che il quoziente R⇤
/ hpi è per definizione costitui-

to dalle classi laterali sinistre (o equivalentemenete destre) del sottogruppo

(normale) hpi. Cominciamo deducendo condizioni necessarie affinché un ele-

mento di tale quoziente abbia ordine n. Supponiamo o(x hpi) = n. Osser-

viamo che per ogni x 2 R⇤
si ha (x hpi)n = xn hpi = hpi se e solo se

xn 2 hpi = {pm | m 2 Z}, ossia esiste m 2 Z tale che xn = pm
. Si noti

che per n dispari si deve avere necessariamente x > 0, mentre per n pari esiste

m 2 Z tale che xn = pm
se e solo se esiste m 2 Z tale che (�x)n = pm

, e

x 6⇠ �x. Conseguentemente possiamo cominciare analizzando il caso x > 0.

Se xn = pm
con m � n, possiamo applicare la divisione con resto e ottenere

m = qn+ r, dove 0  r < n, allora xn = pm = pqn+r
se e solo se (p�qx)n = pr

,

e p�qx ⇠ x, in quanto (pqx�1)x = pq 2 hpi, ossia x hpi = (p�1x) hpi, quindi

senza perdita di generalità possiamo assumere 0  m < n. Osserviamo ora che

m ed n devono essere coprimi. Infatti, supponiamo per assurdo (m, n) = k � 2,

allora esistono m0
, n0 2 N+

tali che m = km0
e n = kn0

, e in particolare si os-

servi che necessariamente 1 < n0
. Allora (xn0

)k = xn = pm = (pm0
)k

, dalla

quale (essendo sia x che p positivi) deduciamo xn0
= pm0

, in contrasto con l’i-

potesi che x hpi abbia ordine n. Abbiamo quindi dedotto che necessariamente

0  m < n ed (m, n) = 1, dunque nel caso dispari esistono al più j(n) (dove

con j denotiamo la funzione di Eulero, ossia la funzione che associa ad 1 il natu-

rale 1 e ad ogni n 2 N�2 il numero di naturali positivi strettamente più piccoli

di n e coprimi con esso) elementi di ordine n, mentre nel caso pari ne esistono

al più 2j(n). Per concludere la dimostrazione è sufficiente quindi esibire nel

caso dispari j(n) elementi distinti di R⇤ hpi aventi ordine n, mentre in quello
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pari 2j(n). È di verifica immediata che per n dispari possiamo considerare la

famiglia {p
n
k hpi | 0 < k < n, (n, k) = 1}, mentre in quello pari possiamo

considerare {±p
n
k hpi | 0 < k < n, (n, k) = 1}.

Esercizio 5.10. Si ha o((1 3)) = 2, o((1 2 3 4)) = 4 e (1 3)(1 2 3 4)(1 3) =
(3 2 1 4) = (4 3 2 1) = (1 2 3 4)�1

, inoltre con argomenti simili a quelli utilizzati

nel terzo punto dell’Esercizio 5.2 si dimostra che il sottogruppo generato da tali

permutazioni in S4 ha ordine 8. Quindi per il risultato generale ottenuto nel

terzo punto dell’Esercizio 5.2 si ha h(1 3), (1 2 3 4)i ⇠= D4.

Soluzioni esercizi capitolo 6
Esercizio 6.1. Consideriamo l’applicazione f : R ⇥ {�1, 1} ! R⇤

, (x, s) 7!
sex

. Dal momento che ex
: R ! R+

è bigettiva, la f risulta essere una bigezio-

ne. Per concludere è sufficiente mostrare che f è un omomorfismo.

Esercizio 6.2.

1. Utilizziamo il criterio di sottogruppo. 8x, y 2 G : (x, x)�1(y, y) = (x�1
, x�1)(y, y) =

(x�1y, x�1y) 2 D;

2. Supponiamo D E G, allora 8x, y 2 G : (x, y�1xy) = (x�1xx, y�1xy) =
(x�1

, y�1)(x, x)(x, y) = (x, y)�1(x, x)(x, y) 2 D, per cui x = y�1xy, ossia

yx = xy. Viceversa, se G è abeliano allora G ⇥ G è abeliano, quindi ogni

suo sottogruppo è normale.

Esercizio 6.3. Consideriamo G = Z2 ⇥ Z2 e siano N1 = h(1, 0)i, N2 = h(0, 1)i
ed N3 = h(1, 1)i, allora le condizioni 1. e 2. sono soddisfatte, ma chiaramente

Z2 ⇥ Z2 6⇠= N1 ⇥ N2 ⇥ N3
⇠= Z2 ⇥ Z2 ⇥ Z2.

Esercizio 6.4. Useremo il Teorema prodotto per dimostrare la tesi. A tale propo-

sito, osserviamo i seguenti fatti:

(i) Sia f (g) 2 f (G) \ ker( f ), allora f (g) = f ( f (g)) = 1, dove la prima

uguaglianza vale per l’ipotesi f � f = f e la seconda in quanto f (g) 2
ker( f ), ossia f (G) \ ker( f ) = {1};

(ii) 8g 2 G : f ( f (g)�1g) = f ( f (g))�1 f (g) = f (g)�1 f (g) = 1, quindi

f (g)�1g 2 ker( f ), e dunque g = f (g)( f (g)�1)g 2 f (G)ker( f ), ossia

G = f (G)ker( f );

(iii) Essendo G abeliano, f (G) E G.
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La tesi è quindi conseguenza del Teorema prodotto.

Esercizio 6.5.

1. Immediato dalle definizioni;

2. eF : K ! G ⇥ H è un omomorfismo, allora 8i 2 {1, 2} : fi = pi � eF
omomorfismo in quanto composizione di omomorfismi, inoltre 8x 2 K :

F(x) = ( f1(x), f2(x)) = ((p1 � eF)(x), (p2 � eF)(x)) = eF(x), per cui F = eF.

Esercizio 6.6. Supponiamo tutti gli elementi di G \ {1} abbiano ordine 2, allora,

in particolare, ogni elemento di G è inverso di se stesso. Siano x, y 2 G, allora

xyxy = 1, ossia xy = yx, quindi G è abeliano. Sia a 2 G \ {1} un elemento di

ordine 2, allora | hai | = 2, per cui G \ hai 6= ∆. Sia b 2 G \ hai, allora o(b) = 2.

a, b sono distinti per scelta e hanno entrambi ordine 2, quindi ab 6= 1 (se ab = 1,

allora a = b�1 = b, in contrasto con l’ipotesi che siano distinti). D’altra parte

a, b 62 {1}, quindi ab 62 {a, b}. Conseguentemente ha, bi = {1, a, b, ab} sono

tutti distinti. Sia c 2 G \ ha, bi, allora o(c) = 2. Osserviamo che per come

è stato scelto c si ha che ac, bc e abc sono tre elementi distinti di G che non

coincidono con nessuno degli elementi di {1, a, b, ac}. Di conseguenza

G = {1, a, b, c, ab, ac, bc, abc}

Quindi G = ha, bi hci, inoltre ha, bi hci E G (dal momento che G è abeliano) e

ha, bi \ hci = {1}, dunque dal teorema prodotto si ha

G ⇠= ha, bi hci ⇠= (Z2 ⇥ Z2)⇥ Z2
⇠= Z2 ⇥ Z2 ⇥ Z2

.

Esercizio 6.7.

(i) Dato che b 62 H = hai, le classi laterali destre hai e hai b sono distinte.

Quindi

G = hai [ hai b = {1, a, a2
, a3

, b, ab, a2b, a3b}

in quanto gli elementi dell’insieme al membro più a destra della catena

di uguagliaglianze è costituito da otto elementi distinti di G;

(ii) Chiaramente ba 62 {1, a, a2
, a3

, b} (in caso contrario si avrebbe b 2 hai, in

contrasto con la scelta di b).
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Esercizio 6.8.

(i) Supponiamo per assurdo si abbia ba = a2b, allora si avrebbe a = 1a =
b2a = b(ba) = ba2b = (ba)(ab) = (a2b)(ab) = a2(ba)b = a2(a2b)b =
a4b2 = 1, ossia a = 1, in contrasto con l’ipotesi o(a) = 4;

(ii) Dall’esercizio 6.7 sappiamo che G = {1, a, a2
, a3

, b, ab, a2b, a3b}, quindi se

ab = ba ovviamente G risulta essere abeliano. G = hai hbi, inoltre hai \
hbi = {1} e per abelianità di G tali sottogruppi sono normali, dunque dal

teorema prodotto concludiamo G ⇠= hai ⇥ hbi ⇠= Z4 ⇥ Z2;

(iii) Si ha |G| = 8 = 2 · 4, inoltre o(a) = 4 e o(b) = 2 e, dall’ipotesi ba = a3b,

bab = a3b2 = a3 = a�1
, quindi, per quanto visto nel terzo punto della

soluzione dell’Esercizio 5.2, si ha G ⇠= D4.

Esercizio 6.9.

(i) Dall’Esercizio 6.7 sappiamo che G = {1, a, a2
, a3

, b, ab, a2b, a3b}. Per ipote-

si tutti gli elementi di G \ H hanno ordine 4, quindi a2
è l’unico elemento

di ordine 2 di G, e conseguentemente o(b2) = o(b)
(o(b),2) =

4

2
= 2 ) a2 = b2

;

(ii) – Supponiamo per assurdo ba = a2b, allora ba = b3
(dato che a2 = b2

per il punto precedente), e quindi a = b2 = a2
, quindi a = 1, in

contrasto con l’ipotesi o(a) = 4;

– Supponiamo per assurdo ba = ab, allora (a3b)2 = (a3)2b2 = a6b2 =
a8 = 1, quindi a3b = a2

, e dunque ab = 1, assurdo.

(iii) Dai precedenti punti si ha G = {1, a, a2
, a3

, b, ab, a2b, ba}. Esibiamo un

isomorfismo esplicito con Q8

G �! Q8

1 7�! id

a 7�! i

a2 7�! �1

a3 7�! �i

b 7�! j

ab 7�! k

a2b 7�! �j

a3b 7�! �k
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(iv) Si vedano gli esercizi precedenti e i punti precedenti del presente eserci-

zio.

Esercizio 6.10. Svolgiamo direttamente l’esercizio nella sua forma più gene-

rale, ossia mostriamo che un gruppo G di ordine 2p, con p primo dispari, è

isomorfo a Z2p (se abeliano) oppure a Dp (se non abeliano).

Supponiamo G sia un gruppo abeliano di ordine 2p, p primo dispari. Dico che

in G esiste almeno un elemento di ordine 2p. Supponiamo per assurdo G non

abbia alcun elemento di ordine 2p. Per l’Esercizio 1.7 esiste x 2 G avente ordine

2. Osserviamo ora che non esiste alcun y 2 G tale che o(y) = p, altrimenti per

la Proposizione 30 si avrebbe o(xy) = mcm(o(x), o(y)) = 2p (dal momento che

(2, p) = 1 ed x, y commutano, essendo G abeliano), in contrasto con l’assunto

che nessun elemento di G abbia ordine 2p. Conseguentemente, per il teorema
di Lagrange, ogni elemento di G \ {1} ha ordine 2. Dato che 2p � 2 · 3 = 6, in G
esistono almeno due elementi distinti x, y aventi ordine 2, ma allora, essendo

G abeliano, si ha hx, yi = {1, x, y, xy}  G, in contrasto con il teorema di La-
grange (dato che ovviamente 4 - 2p). Conseguentemente in G esiste almeno un

elemento di ordine 2p e G ⇠= Z2p.

Supponiamo G sia un gruppo non abeliano di ordine 2p, p primo dispari. Per

l’Esercizio 1.7 esiste x 2 G avente ordine 2. D’altra parte non tutti gli elementi

di G possono avere ordine 2 (altrimenti G sarebbe abeliano), quindi esiste al-

meno un elemento y che non ha ordine 2, da cui segue o(y) = p per il teorema
di Lagrange (se fosse o(y) = 2p si avrebbe G ⇠= Z2p, e quindi G ciclico in con-

trasto con l’ipotesi che sia non abeliano). Mostriamo ora che tutti gli elementi

in G \ hyi hanno ordine 2. Supponiamo per assurdo esista z 2 G \ hyi tale che

o(z) 6= 2, allora, essendo per ipotesi G non abeliano, per teorema di Lagrange si

ha o(z) = p. Dalla teoria (cfr. Capitolo 3) sappiamo che

| hxi hyi | = | hyi || hzi |
| hyi \ hzi | ,

quindi

| hyi \ hzi | = | hyi || hzi |
| hyi hzi | =

p2

| hyi hzi | ,

per cui | hyi hzi | 2 {1, p, p2}. Tuttavia {1, y, y2
, ..., yp�1

, x} ✓ hyi hzi, quindi

| hyi hzi | � p+ 1 . D’altra parte hyi hzi ✓ G, quindi | hyi hzi |  |G| = 2p < p2
.

Siamo così giunti ad un assurdo, e quindi 8z 2 G \ hpi : o(z) = 2. Conseguen-

temente l’elemento xy ha ordine 2, infatti in caso contrario si avrebbe x 2 hyi,
in contrasto con l’ipotesi che o(x) = 2, per cui xyx = y�1

. Da quanto visto nel

terzo punto della soluzione dell’Esercizio 5.2 concludiamo G ⇠= Dp.
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Soluzioni esercizi capitolo 7
Esercizio 7.1.

1. Si ha (in notazione additiva) (cfr. Proposizione 27)

|H + K| = |H||K|
|H \ K|

Quindi |H||K| = |H + K||H \ K|, dalla quale per definizione deduciamo

|H + K| | |H||K|;

2. Segue dal Teorema numerico tenendo conto del fatto che H e K sono anche

sottogruppi di H + K (anch’esso abeliano in quanto sottogruppo di un

gruppo abeliano).

Esercizio 7.2.

• n = 28: Z2 ⇥ Z14 è un gruppo di ordine 28 non ciclico (si ricordi che

G1 ⇥ G2 è ciclico se e solo se G1 e G2 sono gruppi finiti aventi cardinalità

coprime);

• n = 30: si ha 30 = 2 · 3 · 5, quindi per il lemma di decomposizione primaria
si ha G ⇠= Z2 ⇥ Z3 ⇥ Z5

⇠= Z30, quindi G ciclico;

• n = 130: si ha 130 = 2 · 5 · 13, quindi come nel caso precedente otteniamo

G ⇠= Z130, quindi G ciclico;

• n = 131: si ha che 131 è primo, quindi G ⇠= Z131, e dunque G ciclico.

Esercizio 7.3. Sappiamo che Inn(G) ⇠= G/Z(G) e Inn(G)  Aut(G). Dun-

que se Aut(G) è ciclico concludiamo che anche Inn(G) è ciclico (in quanto

sottogruppo di un gruppo ciclico), e quindi anche G/Z(G) lo è (in quanto

isomorfo ad un gruppo ciclico). Conseguentemente esiste g 2 G tale che

G/Z(G) = hgZ(G)i. Siano g1, g2 2 G, allora per quanto detto poc’anzi esi-

stono n1, n2 2 N tali che g1Z(G) = gnZ(G) e g2Z(G) = gmZ(G), ossia

esistono z1, z2 2 Z(G) soddisfacenti g�ng1 = z1 e g�mg2 = z2, e quindi

g1 = gnz1 e g2 = gmz2. Di conseguenza g1g2 = (gnz2)(gmz2) = gn(z1gm)z2 =
gn(gmz1)z2 = (gngm)(z1z2) = (gmgn)(z2z1) = gm(gnz2)z1 = (gmz2)(gnz1) =
g2g1. Dall’arbitrarietà di g1, g2 2 G deduciamo che G è abeliano.

Esercizio 7.4 Si presentano due casi: p 6= q (e quindi G ⇠= Zp ⇥Zq per il lemma
di decomposizione prima) oppure p = q; nel secondo caso, a sua volta, dalla

classificazione dei gruppi di ordine p2
, si ha G ⇠= Zp2 oppure G ⇠= Zp ⇥ Zp.

Distinguiamo i tre casi.
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• G ⇠= Zp ⇥ Zq: Dal teorema di Lagrange si ha che un sottogruppo H di G
può avere solo ordini {1, p, q, pq}. Mostriamo che esiste uno e un solo

sottogruppo di G di ordine p. L’esistenza è assicurata dal lemma di Cau-
chy. Dimostriamo l’unicità. Siano H e K sottogruppi di G di ordine p,

allora

|HK| = |H||K|
|H \ K| =

p2

|H \ K|

per abelianità di G si ha che HK è un sottogruppo di G, inoltre osservia-

mo che H \ K  H, quindi applicando nuovamente il teorema di Lagrange
si ha |H \ K| 2 {1, p}. Ma osserviamo che tale cardinalità non può essere

1, dato che in tal caso si avrebbe |HK| = p2
, in contrasto con il teorema

di Lagrange (dato che p2 - pq, essendo p e q primi distinti). Conseguen-

temente |H \ K| = p, dalla quale deduciamo H = K (dato che H \ K è

sottoinsieme sia di H che di K ed entrambi hanno cardinalità p per ipote-

si). Analogamente si dimostra che in G esiste esattamente uno e un solo

sottogruppo di ordine q. Dunque G ha esattamente quattro sottogruppi

(a meno di isomorfismi questi sono quello banale, Zp, Zq e Zp ⇥ Zq);

• G ⇠= Zp2 : dal teorema di Lagrange si ha che un sottogruppo H di G può

avere solo ordini {1, p, p2}. Mostriamo che esiste uno e un solo sotto-

gruppo di G di ordine p. L’esistenza segue ancora una volta dal lemma
di Cauchy. Dimostriamo l’unicità. Siano H e K sottogruppi di G aventi

ordine p, allora

|HK| = |H||K|
|H \ K|

Dato che H \ K  H, per il teorema di Lagrange si ha |H \ K| 2 {1, p}. Ma

osserviamo che se |H \K| = 1, allora si avrebbe che H, K E G (essendo G
abeliano), H \ K = {1} e HK = G (dal momento che |HK| = p2 = |G|),
e dunque per il teorema prodotto G ⇠= Zp ⇥ Zp, in contrasto con l’ipotesi

G ⇠= Zp2 (si osservi che Z2
p 6⇠= Zp ⇥ Zp). Dunque |H \ K| = p, per cui

H = K. Dunque G ha esattamente tre sottogruppi (a meno di isomorfismi

questi sono quello banale, Zp e Zp2 ;

• G ⇠= Zp ⇥ Zp: dal teorema di Lagrange si ha che un sottogruppo H di G
può avere solo ordini {1, p, p2}. Siano H e K due sottogruppi di ordine

p, allora per il teorema di Lagrange (essendo H \ K  H) si ha |H \ K| 2
{1, p}. Se |H \ K| = p deduciamo H = K, in caso contrario abbiamo che

H e K si intersecano nel solo elemento neutro 1. Conseguentemente in G
si hanno al più

p2�1

p�1
= p + 1 sottogruppi di ordine p. Dimostriamo ora

che si hanno esattamente p + 1 sottogruppi di ordine p. Supponiamo per

assurdo si abbiano esattamente H1, . . . , hk, con 1  k < p+ 1, sottogruppi
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di G di ordine p, allora per quanto visto poc’anzi si ha |H1 [ . . . [ HK| =
(p � 1)k + 1 < (p � 1)(p + 1) + 1 = p2 � 1 + 1 = p2

, dunque (essendo

|G| = p2
) si ha che esiste x 2 G \ (H1 [ . . . [ Hk). Dal momento che

x 6= 1 si ha necessariamente o(x) = p (si osservi che o(x) 6= p2
, dato che

se così non fosse si avrebbe G ⇠= Zp2), quindi hxi è un sottogruppo di G
di ordine p differente da Hi per ogni i 2 {1, . . . , k}. Assurdo. Dunque

G ha esattamente p + 1 sottogruppi di ordine p, e quindi ha esattamente

p + 3 sottogruppi (quello banale, i p + 1 di ordine p e G stesso).

Esercizio 7.6. Cominciamo osservando che se j : Zm ⇥ Zn ! Zm ⇥ Zn è un

omomorfismo di gruppi, allora si ha j([x]m, [y]n) = j(([x]m, [0]n)+ ([0]m, [y]n)) =
j([x]m, [0]n)+ j([0]m, [y]n) per ogni x, y 2 Z. Siano h1 : Zm ! Zm ⇥Zn, [x]m 7!
([x]m, [0]n) e h2 : Zn ! Zm ⇥ Zn, [y]m 7! ([0]m, [y]n) (si osservi che tali appli-

cazioni sono omomorfismi di gruppo). Osserviamo ora che h1 : Zm ! Zm ⇥
Zn coincide con la coppia di omomorfismi (p1 � h1, p2 � h1) e che l’omomorfi-

smo p2 � h1 : Zm ! Zn è banale (ossia ker(p2 � h1) = Zm) in quanto Zm e Zn
sono due gruppi finiti con cardinalità coprime. Similmente si osserva che l’o-

momorfismo h2 : Zn ! Zm ⇥ Zn coincide con la coppia (p1 � h2, p2 � h2) e che

l’omomorfismo p1 � h2 : Zn ! Zm è banale. Consideriamo gli omomorfismi

j1 = p1 � h1 : Zm ! Zm e j2 = p2 � h2 : Zn ! Zn. In definitiva, quindi, per

ogni x, y 2 Z si ha j([x]m, [y]n) = j([x]m, [0]n) + j([0]m, [y]n) = h1([x]m) +
h2([y]n) = ((p1 � h1)([x]m), [0]n) + ([0]m, (p2 � h2)([y]n)) = (j1([x]m), [0]n) +
([0]m, j2([y]n)) = (j1([x]m), j2([y]n)). Conseguentemente j = j1 ⇥ j2, come

cercato.

Esercizio 7.7. Si ha hxi = {ax | a 2 Z} e hyi = {by | b 2 Z}, per cui

hxi+ hyi = {ax+ by | a, b 2 Z} = ha, bi = G, dove la penultima uguaglianza

segue dall’abelianità di G. D’altra parte

|G| = | hxi+ hyi | = | hxi || hyi |
| hxi \ hyi | ,

per cui o(x)o(y) = | hxi || hyi | = |G|| hxi \ hyi |, e quindi |G| | o(x)o(y), dalla

quale deduciamo quanto cercato (p | |G| ) p | o(x)o(y) ) p | o(y), dove

l’ultima implicazione è conseguenza del fatto che p è primo e p - o(x) per

ipotesi).


