Soluzioni Esercizi

Soluzioni esercizi capitolo 1

Esercizio 1.1.
1. Valgono i seguenti fatti:

e . & commutativa. Vx,y € R:x-y = x+y+k=y+x+k =
y - x, dove nella seconda uguaglianza abbiamo sfruttato che +R &
commutativa;

e . eassociativa. Vx,y,z € R: (x-y)-z= (x+y+k)-z=(x+y+
kK)+z+k=x+Wy+k+z)+k=x+y-z+k =x-(y-2z), dove
nella terza uguaglianza abbiamo sfruttato che +R & associativa;

e —k € Reelementoneutroper-. Vx € R:x-(—k) =x+ (—k)+k =
x, dove abbiamo sfruttato che —k & I’opposto di k rispetto a +&;

e Ogni elemento di R & invertibile rispettoa -. Vx € R: x- (—(x +
2k)) =x+ (—(x+2k)) + k = —k.
Abbiamo cosi dimostrato che (IR, -, —k) & un gruppo abeliano;

2. Valgono i seguenti fatti:

e . & commutativa. Immediato dalla commutativita di +&;

e -2associativa. Vx,y,z € R: (x-y)-z=+/(x-y)?+2? = \/ (Vx2+y?)?2+22 =
VE+Y) + 2=V P+ ) = VPt (-2 =x- (y-2);

* - non ha elemento neutro. Supponiamo per assurdo y € R sia ele-
mento neutro per -, alloraVx € R : x-y = x, ossia Vx € R :
Vx%2+y? = x, dalla quale deduciamo Vx € ]R X2+y?=x%e

quindi y = 0. Ma, ad esempio, (—3) -0 = /(—3)2+ 02 = \/_ =

3 # —3, assurdo.

Dunque (R, -) & un semigruppo abeliano che non ¢ un monoide né un
gruppo. Conseguentemente non ha senso domandarsi se in R esistano
elementi invertibili rispetto a -;

3. Valgono i seguenti fatti:
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e . & commutativa. Immediato dalla commutativita di +X;

* - non e associativa. Consideriamox =1, y =0, z = —4, allora

(x-y)-z=[lx+yl+z[=[1+0[+ (=4 =3;
x-(y-z)=lx+ly+zl[=1+[0+(-4)|] =5

* - non ammette elemento neutro. Supponiamo per assurdo y € R
sia elemento neutro per -, alloraVx e R: x =x-y = [x+y| >0,
assurdo.

Dunque (R, -) non ¢ nemmeno un semigruppo;
4. Valgono i seguenti fatti:
* - non e commutativa. Consideriamo x = 2, y = 3, allora:
x-y=2-3=2-3=-1;
y-x=3-2=3-2=1;

* - non e associativa. Consideriamo x = 1, y = 4, z = 3, allora:
(x-y)z=x—y)—z=x—y—2z=1-2-3=—4;
x-(y-z)=x—(y—z)=x—y+z=1-2+4+3=2;

* . non ammette elemento neutro sinistro. Supponiamo per assurdo
x € R sia elemento neutro sinistro per -, alloraVy € R:y = x-y =
x —y,ossia Vy € R : x = 2y, assurdo;

* ( & elemento neutro destro per -. Inmediato dalla definizione di -.
Dunque (IR, -) non & un semigruppo, né un monoide, né un gruppo.
5. Valgono i seguenti fatti:
e . & commutativa. Immediato dalla definizione di massimo;
¢ . ¢ associativa. Siano x,y,z € R e definiamo
w1 = max{max{x,y},z}
wy = max{x, max{y,z}}

Allora per definizione di massimo si ha

x < max{x,y} < max{max{x,y}, z} = w; (86)

y < max{x,y} < max{max{x,y},z} = w (87)
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z < max{max{x,y},z} = w (88)

Dalle (87) ed (88), per definizione di massimo, deduciamo max{y,z} <
w1, quindi da quest’ultima e dalla (86) abbiamo

wy = max{x, max{y,z}} < w.

Simmetricamente deduciamo w; < w,. Conseguentemente per an-
tisimmetria di < si ha wy; = w», ossia, per arbitrarieta di x,y,z € R,
- @ associativa;

¢ L'operazione non ammette elemento neutro. Infatti, se z € R fosse
elemento neutro per - si avrebbe Vx € R : x = z-x = max{z, x},
ossia Vx € R : z < x, assurdo in quanto (R, <) non ammette
minimo.

Dunque (R, ) & un semigruppo abeliano che non & un monoide, e, di
conseguenza, non ha senso domandarsi se siano presenti in R elementi
invertibili rispetto a -;

6. Evidentemente - e associativa, commutativa, ammette 2 come elemen-
to neutro e Vx € R* : % e inverso di x. Dunque (R,-,2) & un gruppo
abeliano;

7. Valgono i seguenti fatti:

e . & commutativa. Immediato dalla commutativita di +X e -K;

e . @associativa. Vx,y,z € R\ {—1}:

(x-y)-z=(x+y+uxy) z=x+y+xy+z+xz+yz+xyz =

=x+y+z+xy+xz+yz+xyz
Osserviamo che quest’ultima espressione ¢ invariante per permuta-
zionidi {x,y,z}, quindix- (y-z) = (y-z) - x=(x-y) -z
¢ ( & elemento neutro per -. Inmediato dalla definizione di -;
e Ognielemento di R\ {1} & invertibile rispettoa -. Vx € R\ {—1} :

(=X (—X) —x2 _ x? —x2 _
X <x+1)_x+ 1 T T v T rea = 0

Dunque (R \ {—1},-,0) & un gruppo abeliano;
8. Valgono i seguenti fatti:

e . & commutativa. Immediato dalla definizione di -;
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* . non ¢ associativa. Consideriamo x =

y
x.(y.z):x.<y“> Ut T ati =1
y+z+1 3 +i+1 2

3. i+3 13
77 1,3 ,4 o7
7 s+5+1 2
x4y \x=y=%[ 3I+3 =211 3+1 3 3
(x-y)-z= Yty +1 = T.,.1,1 '225'1:1 1 -7 7
xty+ atatl atatl g
* - non ammette elemento neutro. Infatti Vx,y € (0,1) :
&—x =X < x+ —x2+x +x < = x
x+y+1 Y= y= Y Y =1=x

Dunque, ad esempio, per x = 3 si avrebbe y = 3 ¢ (0,1), il che
implica che - non ammette alcun elemento neutro.

Dunque ((0,1), -) non & un semigruppo, quindi a maggior ragione non
€ nemmeno un monoide o un gruppo.

Esercizio 1.2. Valgono i seguenti fatti:

* . @ associativa. V(q,m), (¢/,m’), (9", m") € Q x Z* :

D [(q,m)-(q",m")](q",m") = (q+mq',mm")(q",m") = ((g+mq") + (mm")q", (mm")m");
(1) (g,m)[(q",m")(q",m")] = (q,m)(q" +m'q", m'm) = (g+m(q' +m'q"), m(m'm")).

Dunque (I) e (II) sono coincidenti in quanto le operazioni su Q e Z* sono
associative e commutative;

e (0,1) & elemento neutro per -. ¥(q,m), (¢/,m’), (¢",m") € Q x Z* :
(q,m)-(0,1) = (9 +m0,m1) = (q,m);
(0,1)(q,m) = (0+1g,1m) = (q,m).
Quindi (Q x Z*,-,(0,1)) & un monoide.

Calcoliamo gli elementi invertibili di Q x Z* rispetto a .
V(gm), (g',m') € QxZ": (q+mq',mm’) = (q,m)(q',m') = (0,1) <=
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! __
— g+mg =0
mm' =1

Dalla seconda uguaglianza, essendo m, m’ € Z*, ricaviamo m = m' = 1 op-
pure m = m’ = —1; nel primo caso, dalla prima uguaglianza del sistema
ricaviamo q' = —¢, mentre nel secondo caso troviamo ' = 4. Abbiamo quindi
ottenuto che gli elementi di Q x Z* aventi un inverso destro rispetto a - sono
tutti e soli quelli della forma (g, 1) [il cui inverso destro & (—¢,1)] e (g, —1) [(il
cui inverso destro e (g, —1)]. D’altra parte

(=9, 1)(q1)=(-q+1-9,1-1)=(0,1)
quindi
UG) = {(qm) eQx2Z" | me{-11}},
dalla quale deduciamo anche che G non ¢ un gruppo (in quanto U (G) # G).

Infine, il monoide G non € commutativo. Ad esempio:

(2,1)-(1,2) = (2+1-1,1-2) = (3,2);
(1,2)-(2,1) = (1+2-2,2-1) = (5,2).

Esercizio 1.3. Valgono i seguenti fatti:

e . & associativa. V(a,b), (a',b"), (a”,b") € Q* xQ:

a//

I b
@ [(a,b)-(d',b)]-(a",b") = (aa’,ab’ + ;) (a",b") = ((aa')u”, (aa")b" + ab”) ;

(ID) (,b)[(a', ') (a", 0")] = (a,) (b+b) - (a<afa~>,a<afb~+b’) LA

a// a/a//
abl + b
= <a(a'a”),a(a/b”) 4+ @ ) )

ﬂ//

Dunque (I) e (II) sono coincidenti in quanto le operazioni su Q* e Q sono
associative e commutative;

* (1,0) & elemento neutro per -. Va,b € Q * xQ :

(a,b)(1,0) = (al,aO—l— l;) = (a,b);
(1,0)(a,b) = <1a,1b+ 2) = (a,b);
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¢ Ogni elemento di Q* x Q e invertibile. Mostriamo che (%, —b) e l'inver-
sodi(a,b) eQ*xQ:

(a,b) (i,—b) = (ai,a(—b) + §> = (1,0)
<i,—b> (a,b) = <ia,ib+(_ub>> ~ (1,0)

Abbiamo cosi dimostrato che (Q* x Q, -, (1,0)) & un gruppo. Tale gruppo non
e abeliano, ad esempio:

(2,1)(1,2) = <2-1,2-2+1> — (2,5);

(1,2)(2,1) = (1-2,1 14 ;) — (2,2).

Esercizio 1.4. E immediato osservare che le applicazioniin 1, 2, 3 e 5 definisco-
no delle operazioni binarie sui rispettivi insiemi.

1. Valgono i seguenti fatti:

e . & commutativa. Immediato dalla definizione di -;

e . &associativa. V(x1,y1), (x2,12), (x3,3) € R x R*:

M ((x1,y1) - (x2,¥2)) - (x3,¥3) = (%192 + y1%2, y1y2) - (X3,Y3) =

= ((x1y2 + y122)y3 + (y1y2)x3, (y1y2)y3);
) (x1,y1) - ((x2,42) - (x3,¥3)) = (x1,y1) (X2y3 + Y2X3,Y2Yy3) =
= (x1(yays) + y1(x2y3 + y2x3), y1(y2y3)),

e (I) e (II) sono coincidenti in quanto R distribuisce su +R e tali
operazioni su R sono associative e commutative;

e (0,1) & elemento neutro per -. V(x,y) € R xR*: (x,y)-(0,1) =
(1 +y0,y1) = (x,y);
e Ogni elemento di R x R* & invertibile rispetto a -. V(x,y) € R X

R (33) - (5 () ) - @)
Quindi (R x R*,-,(0,1)) & un gruppo abeliano;

2. Valgono i seguenti fatti:
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e . @associativa. ¥(x1,y1), (x2,y2), (x3,3) € R* xR :
M ((x1,y1) - (x2,2)) - (x3,y3) = (122, y1%2 +Y2) (x3,Y3) = ((¥1x2) %3, (Y122 +
Y2)X3 + y3);
D) (x1,y1) - ((x2,y2) - (x3,¥3)) = (x1,y1) - (x2x3, y2x3 +y3) = (x1(x2%3), y1(x2X3) +
Y2x3+Y3),

e (I) e (II) sono coincidenti in quanto -R e tali operazioni sono asso-
ciative su IR;

(1,0) & elemento neutro per -. V(x,y) € R x R*:

(x,y) - (1,0) = (x1,y1 +0) = (x,y);
(1,0)- (v, y) = (1x,0x +y) = (x,y);

Ogni elemento di R* x R & invertibile rispetto a -. V(x,y) € R* x
R:

* . non é commutativa.

(1/2) . (3/1) — <1 N 3/2 . 3—1'_ 1) - (3/7);
(3,1)-(1,2) =(3-1,1-1+2) = (3,5).
Quindi (R* X R, -, (1,0)) & un gruppo non abeliano;
. L'elemento (0,1) € R x R non ammette inverso rispetto a -. Infatti, sup-

poniamo per assurdo (x,¥) € R x R sia inverso di (0,1) rispetto a -,
allora (1,0) = (x,y) - (0,1) = (x0,y0+ 1) = (0, 1), assurdo.

Dunque (R X R, ,(1,0)) non & un gruppo;
. L'applicazione - non & un’operazione. Ad esempio:
(1,1)-(1,1) = (0,2) € R* x R*

. La struttura considerata ¢ la ridotta moltiplicativa del campo C, che non
¢ un gruppo in quanto (0,0) € R x R non ammette inverso rispetto alla
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Esercizio 1.5. Chiaramente la parte complicata dell’esercizio ¢ determinare le
strutture di semigruppo su {a, b}, dunque ci limitiamo a svolgere questa, de-
terminando poi tra queste quelle che sono anche strutture di gruppo.

Dare una struttura di semigruppo su A = {a, b} equivale a dare un’operazione
binaria - : A X A — A associativa, che a sua volta equivale a dare un’opportu-
na tavola di moltiplicazione su {a,b}.

Ricordiamo che ogni semigruppo finito ha almeno un elemento idempotente
(cfr. Proposizione 1), dunque sulla diagonale della tavola moltiplicativa si deve
presentare necessariamente una delle seguenti tre situazioni:

a b a b
(1) aja 2 ajla
b b b a
a b
(3) alb
b b

Cominciamo analizzando i casi (2) e (3). Sappiamo che - deve essere associa-
tiva, quindi in particolare devono valere le seguenti uguaglianze:

(a-b)-a=a-(b-a) (89)
(b-a)-b="b-(a-b) (90)

In (2) osserviamo che se a-b = b, allora sostituendo in (90) si avrebbe a =
(b-a)-b,che forzab-a = b (altrimentia = (b-a)-b =a-b = b, in contrasto
con a # b). D’altra parte, se fosse a - b = a, allora sostituendo in (90) si avrebbe
b-a=(b-a)-b,cheforzab-a = a(altrimentib =b-a = (b-a)-b=0b-b=a,in
contrasto con a # b). Dunque per il caso (2) abbiamo le due seguenti possibili
strutture di semigruppo

Il (3) & simmetrico rispetto al caso (2), quindi le possibili strutture di semi-
gruppo in tale caso sono

(SRS
ES T RN
(SRS e
S
S SR
S
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Nel caso (1) si nota facilmente che qualsiasi scelta si faccia pera-beb-ain
{a,b} siha che (89) e (90) sono soddisfatte, essendo a e b idempotenti, quindi
le possibili strutture di semigruppo per tale caso sono

a b a b
ala a ala a
bla b bbb

a b -la b
ala b ala b
bla b bbb

Complessivamente siamo quindi giunti alle seguenti otto potenziali strutture
di semigruppo su {a,b}

-la b a b -la b
Iy ala b (I ala a I alb a
b|b a bla a bla b
a b a b a b
IV) a|b b V) ala a (VI) al|a a
b|b b bla b b|b b
a b a b
(VII) ala b (VII) ala b
bla b b|b b

Verifichiamo che queste otto tavole moltiplicative effettivamente definiscono
delle strutture di semigruppo su {a, b}, ossia verifichiamo che in tutti gli otto
casi - € associativa.

Banalmente le operazioni in (II) e (IV) sono associative, mentre le operazioni
in (VI) e (VII) sono, rispettivamente, (x,y) — x e (x,y) — y che sappiamo
essere associative dall’Esempio 8. Inoltre notiamo che la tavola moltiplicativa
di (Z,+,0) &

+10 1

00 1

1110
quindi (I), (Il) = Z,, per cui definiscono strutture di semigruppo. D’altra
parte e facile rendersi conto che in (V) e (VIII), rispettivamente, moltiplicare
a sinistra o a destra per a e moltiplicare a sinistra o a destra per b restituisce
sempre, rispettivamente, a e b, quindi 'operazione e banalmente associativa,
in quanto, rispettivamente, qualsiasi stringa in cui compare a restituisce a e
qualsiasi stringa in cui compare b restituisce b, indipendentemente dall’ordine
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in cui si svolgano le operazioni, mentre ovviamente in una stringa di simboli
omogenea (ossia in cui compaiono solo a o solo b) l'ordine e irrilevante per
idempotenza dia e b.

Infine, come gia notato sopra, (I) e (III) sono gruppi; del resto ogni gruppo e
un monoide cancellativo, quindi ammette uno e un solo idempotente (il suo
elemento neutro), per cui (V), (VI), (VII) e (VIII) non sono gruppi, mentre (II) e
(IV) non sono gruppi perché privi di elemento neutro.

Esercizio 1.6. No. E un fatto noto in teoria dei semigruppi che dato un semi-
gruppo S ogni idempotente di S € contenuto in uno e un solo sottogruppo mas-
simale di S, e tali sottogruppi massimali sono a due a due disgiunti. Quindi
ogni monoide M = (M, -, 1) che ammetta un idempotente diverso dall’elemen-
to neutro 1y fornisce una risposta negativa alla domanda posta nell’esercizio.
Ad esempio, possiamo considerare la tavola moltiplicativa (VIII) dell’Esercizio
1.6: ({a,b},-,a) & un monoide, ma ({b},,b) & un monoide cona ¢ {b}.

Esercizio 1.7.

1. Sia x € G, allora osserviamo che x € S <= x~ 1 € S, dal momento
che (x71)~! = x. Possiamo quindi affermare l'esistenza di X C S tale
che S = XU X!, dove XN X! = @ per definizione di S e | X| = | X!
per quanto appena visto (la corrispondenza biunivoca e data dalla X —
X1, x — x71). Diconseguenza S = | XU X~ !| = |X|+ |X~!| =2|X| =
0;

2. Essendo G un gruppo finitosiha |G\ S| = |G| — |S| =2 |G|, dove l'ultima
relazione segue dal punto 1;

3. Supponiamo per assurdo |G \ S| = 1 (ossia l'unico elemento di G inver-
so di se stesso € 1), allora dal punto 2 abbiamo |G| =, |G\ S| =2 1,
ossia |G| dispari, in contrasto con l'ipotesi che G abbia un numero pari
di elementi.

Esercizio 1.8.

1. Siano x,y,z € Z tali che (x,y,z) # (0,0,0), allora

[0]5 [0]z [1] 05 [0]z [1] 3 (03 [1]s
[1]s [2x]3 [2y + xz]3 15 [x]s [y

= | [0]z [l]s 2z]5 05 [1s [z]s | =
[0]5 [0]s [1]3 05 [0]z [1]
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Inoltre

[0]5 [1]5

Abbiamo cosi dimostrato che ogni elemento di G diverso dalla matrice
identita ha ordine 3. Dimostriamo ora, esibendo un controesempio, che
G non ¢ abeliano.

(1] [1]s [1]3 [1]5 [0]3 [1]3 (1] [1]s [0]3
0]z 1]z [0]z|-([0]z [1]3 [z ] = [0z [1]z [1]3];
[0]s [0z [1]3 [0]3 [0]3 3

[1]5 [0]3 [1]3 s [1]s [1]3 [1]s [1]s [2]s
0l [1]s [1]s]-|[0]s [1]s [0]s] = |[0]s [1]s [1]5]-
[0]5 [0]3 [1]3 [0]5 [0]3 [1]3 [0]3 [0]3 [1]3

. Supponiamo G sia un gruppo nel quale nessun elemento abbia ordine 3
e valga

Vx,y € G: (xy)® = x%)° (91)

Vogliamo dimostrare che G & abeliano. Dividiamo la dimostrazione in
passi.

(i) Vx,y € G: [x, yF’ (xyx y 1)} = ((xyx y 13 2 (g 13y 1)? =
(xyx 1) (xyx D (eyx Ny 2 = xPx 7y 3 =[x, 07

(i) Vx,y € G : xyPx~! = (xyx~1)3 @) x3y3x~3, per cui Vx,y € G :

x?y® = y3x?, ossia in G i cubi commutano con i quadrati, e dunque
Vx,y € G: [x%y]? ® [x2,1?] = 1g, dalla quale deduciamo Vx,y €
G : [x%,y] = 1g, in quanto per ipotesi in G non esistono elementi



136

aventi ordine 3 (si tenga conto del fatto che [x?,y]> = 1g se e solo
se o([x?,y]) | 3, quindi [x?,y] ha necessariamente ordine 1, ossia &
l’elemento neutro). Abbiamo quindi mostrato che in G i quadrati
commutano con ogni elemento;

(iii) Vx,y € G : (yx)? = (yx)3(yx)! —)yxxy = y3x%y~1, ossia
Vx, y € G yxyx = y3x?y~!, dalla quale deduciamo Vx,y E G:

(xy)? = yx%;
(iv) Vx,y € G : (xy)? 2 @) y2x? = i x%y2.

Conseguentemente per I’Osservazione 16 si ha che G e abeliano.

Esercizio 1.9. Vedere suggerimento.

Esercizio 1.10. Svolgiamo direttamente 1'esercizio nella sua forma piti genera-
le, ossia il caso di n € IN>, uomini condannati a morte e cappelli di k € IN>»
colori diversi. Dimostriamo che i condannati possono sempre escogitare una
strategia che permetta ad almeno n — 1 di loro di salvarsi.

Siano G = (G, -, 1g) un qualsiasi gruppo di ordine k (ad esempio, (Zy, +, [0]x),
U ={uy,..., u,}l'insieme dei condannati, C = {cy, ..., cx} l'insieme dei colori
dei cappellied f : C — G una bigezione (ossia stiamo assegnando bigettiva-
mente ad ogni colore un elemento del gruppo G). Chiaramente il problema
e simmetrico rispetto alla possibile disposizione in fila indiana degli uomi-
ni, quindi da ora in avanti, senza perdita di generalita, assumiamo che essi
siano disposti (dal basso verso l'alto) secondo la sequenza (uq,...,u,). Sia
g : U — C un’applicazione qualsiasi (ossia una possibile assegnazione di cap-
pelli ai condannati). Chiaramente ogni siffatta ¢ determina un elemento di G,
ossia l'elemento x = f(g(uz)) ... f(g(un)), e tale elemento corrisponde al
colore f~1(x). Osserviamo che se 1'ultimo condannato della fila indiana, ossia
il condannato uq, trasmette tale numero, allora il condannato u, & certamen-
te in grado di determinare il colore del proprio capello: infatti esso dapprima
ritorna all’elemento x = uy - uz - ... - u, tramite la f (si ricordi che questa &
una bigezione), poi vedendo davanti a sé la sequenza (g(u3),...,g(un)) € in
grado di calcolare I'inverso y del prodotto f(g(u3)) -...- f(g(un)), dunque de-
terminare f(g(uy)) "per differenza", ossia f(g(u2)) = x -y, e infine applicare la
f~! per determinare g(u>) . Similmente il condannato u3 sara ora in grado di
determinare il colore del proprio cappello, infatti esso determinera I’elemento
f(x), poi vedendo davanti a sé la sequenza (g(u4),...,8(u,)) e potendo calco-
lare f(g(uy)) determinera per differenza f(g(u3)), e infine il colore del proprio
cappello ¢(u3) applicando la f 1. E cosi via.
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Soluzioni esercizi capitolo 2

Esercizio 2.2. Ricordiamo che

D, = {1,r,r2,...,r”_l,s,ros,rzos,...,r”_1 os}

dove r e la rotazione in senso antiorario di angolo 27”, mentre s € una qualsiasi
riflessione in D,,. Chiaramente ogni riflessione ha ordine 2 indipendentemente
da n > 3. Cerchiamo di capire quali rotazioni abbiano ordine 2. Osserviamo
che la rotazione 7 ha ordine n, quindi Vk € {1,2,...,n —1} : r?* = (+)2 =
1 <= n | 2k, ma 2k < 2n, dunque 1'unica possibilita & n = 2k, che implica n

n
iek= .
parie >

Esercizio 2.5. Dimostriamo che se ¢ = (a7 ... a4) & un ciclo di S,, allora

VfeS,:fooof = (f(ar) ... flag)).

Poniamo Vi € {1,...,n} : f(a;) = b;, alloraVi € {1,...,n} : a; = f~(b;). Dal
momento che le permutazioni sono bigezioni ed {1,...,n} = {ay,...,a,}, si
ha pure {by,...,b,} = {1,...,n}. Dimostriamo che Vi € {1,...,n} : (fooo
FH(b) = (f(ar) ... f(ag))(b;) = (by ... by)(b;). Distinguiamo tre casi:

()i € {1,...,d —1}, allora (by ... by)(b;) = b1 e (fooo f1)(b) =
(foa)(f1(by) = flo(a)) = flain1) = biry;

(i) i = d, allora (by ... by)(b;) = bre (fooof 1)(bi) = (foo)(f (b)) =
flo(ai)) = f(a1) = by;

(iii) i € {d+1,...,n},allorab; ¢ f({a1,...,a;}),quindi f~1(b;) & {a1,...,a4},
per cui o(f~1(b;)) = f1(b;), e conseguentemente (f oo f~1)(b;) =
b;

FF100) = b= (br . b (5.

Dunque se 07 = (a1 ... ag) e 0p = (c1 ... ¢4) sono cicli della stessa lunghezza
e sufficiente considerare una permutazione ¢ € S, tale che Vi € {1,...,d} :
¢ 1(a;) = c; e dedurre che, posto f = ¢~ !,siha f logiof =gocog ! =
(g(a1) ... g(ag)) = (c1 ...cq) = 09, Ossia quanto cercato.

Esercizio 2.6. Cominciamo osservando che possiamo limitarci a considerare
1 < k < 1. Infatti, per il teorema della divisione euclidea 3g,v € IN tali che
k = gk +r,dove 0 < r < k, quindi

U'k _ 0.qk+r — (Uk)qo.r — o

Inoltre la tesi & ovviamente valida nel caso k € {1, I}, quindi ci limitiamo a
considerare 1 < k < [. Dalla teoria (cfr. Proposizione 15), essendo ok £ id
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sappiamo che supp(c*) = supp(c), ossia le due permutazioni muovono gli
stessi elementi. Supponiamo ¢ = (ay ... a;). Per il teorema fondamentale delle
permutazioni X ammette una e una sola decomposizione ¢y o ... o 0y nel pro-
dotto di cicli disgiunti, dove ovviamente supp(c;) coincide con 1’orbita di un
suo qualsiasi elemento rispetto alla ¢*. Siai € {1,...,1}, allora gli elementi
dell’orbita di a; rispetto a o* hanno la forma a,,; +i (mod 1) con m € IN. Os-
serviamo che Vu,v € N : uk+i = vk+i <= (u—0v)k = 0, per cui il

piu piccolo u — v positivo che realizza 1'uguaglianza & . Segue che gli

[
(1K)
elementi di {ai, Agriy Aktis -+ -, 0 ( ! 1>k+1} sono distinti e costituiscono 1’or-

do-

bita di a;, ossia il supporto del ciclo fattore che lo muove. Conseguentemente
Vie{l,...,t}:

Esercizio 2.7. Per quanto visto nell’esercizio precedente, se un ciclo ¢ di lun-
ghezza I e k € INT realizzano ok = o0...00, conoy,...,0: cicli disgiunti,
allora necessariamente t = (I, k). Nello specifico k = t realizza tale condizione
(I =mt =t |I). Supponiamo

o = (6111 ainp ... Lllm)

0oy = (azl ax ... azm)

Oy = (llfl agp ... Eltm)

e consideriamo il seguente ciclo o = (411 a1 ... 41222 .. A2 - .. A1y Appy - - - Atm)-
Per verifica diretta si ha che 0¥ = 77 0... 0 0}.

Esercizio 2.8. Osserviamo che se T € una trasposizione qualsiasi di S, allora
'applicazione F : A, — {y € S, | sign(yy) = —1}, f — f o T & bigettiva, dal
momento che & una involuzione (ossia € inversa di se stessa). In particolare,
quindi

Sp=A,U{n €S, |sign(n)=-1} = A, U(A,0T)
percui S, C (A,, ) C Sy, edunque S, = (A, 7).

Esercizio 2.9. Se 02 & un ciclo, allora, essendo supp(c?) = supp(c), si ha
o(c)
(2,0(0))

restanti punti sono immediati dall’Esercizio 2.6.

= 0(0?) = o(c), quindi (2,0(c)) = 1, ossia I & dispari. Il viceversa e i
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Soluzioni esercizi capitolo 3

Esercizio 3.1.

1. H éun sottogruppo di G, infatti Vay, ay € Q™ : In(ay) — In(ay) = In (?) €
2
H;
2. H non & un sottogruppo di G, infatti Vny,n, € NV : In(ny) — In(ny) =

n . . . .
In <nl>' il quale non e necessariamente un elemento di H. Infatti, ad
2

esempio, per ogni % € Q\Nsiha % ¢ H, dal momento che In : RT™ —
2 2
R & una bigezione, quindi Vx € R, 3ly € R" : x = In(y);

3. H non & un sottogruppo di G. Infatti osserviamo che tan(rt/4) = 1,
dunque /4 € H, ma /4 + /4 = n/2 ¢ H, dal momento che la
tangente non € nemmeno definita per 77 /2.

4. H éunsottogruppo di G, infatti: Vmy,ny, my, ny € Z : (2™M3M)(2m3")~1 =
271’!131112—77123—712 — Zml—m23n1—n2 c H/

5. H & un sottogruppo di G, infatti V(x1,y1), (x2,¥2) € G : y1 = 2x1, Yo =
2xp = Y1 — Y2 = 2x1 —2xp = 2(x7 — xp), ossia (x1,y1) — (x2,y2) =
(x1—x2,y1—y2) €EH

Esercizio 3.3. Sia X un insieme, vogliamo dimostrare che (P(X), A, @) & un
gruppo abeliano.

e A & commutativa. Immediato dalla definizione della differenza simme-

trica;

e A @ associativa. Siano VA, B,C € P(X) e denotiamo con A’, B/, C’ i loro
complementari in X, allora:

(AAB)AC = ((A\ B) U (B\ A))AC =
)

= [(((A\B)U(B\A)))\CJU[C\ ((A\B)U(B\ A))] =
=[(BPnA)U(A'NB))NCTU[CN((B'NA)U(A'NB))] =
[(BnA)UA'NnB)NCJulCN((BUA)YN(AUB))] =
=[(BBnA)U(A'NnB))NnCJul[CN((BNA)U(A'NB))] =
=((ANB' NCHYUANBNC)UANBNC)U(A'NB' NC') =
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=(ANBNC)U(ANB' NnCHYuA'nBNCHYU(A' NnB' NC).

Osserviamo ora che 1’espressione ottenuta € invariante per permutazioni
dell'insieme {A, B, C}, dunque (AAB)AC = (BAC)AA = AA(BAC),
dove nella seconda uguaglianza abbiamo sfruttato la commutativita di
A\. Dall’arbitrarieta di A, B,C € P(X) otteniamo che A & associativa;

* (0 & elemento neutro per A. Immediato dalla definizione di A;

e Ogni elemento di P(X) ¢ invertibile rispetto a A. Si osserva immedia-
tamente che VA € P(X) : AAA = Q.

E cosi dimostrato che (P (X), A\, @) & un gruppo abeliano.

SiaY € P(X), allora P(Y) C P(X), dunque VA,B € P(Y) : AAB € P(X), e
ovviamente @ € P(Y), quindi (P(Y), A, D) < (P(X), A, D).

Esercizio 3.7. Abbiamo gia mostrato nell’Esercizio 2.2 che D, ha esattamente
n elementi di ordine 2 se e solo se n & dispari. Abbiamo anche visto che tali
elementi di ordine 2 sono le simmetrie, dunque gli n elementi che non hanno
ordine 2 sono le rotazioni, e chiaramente la composizione di rotazioni € ancora
una rotazione.

Esercizio 3.8.

1. Sx e finito in quanto per ipotesi X & finito, dunque anche H C Sx & ne-
cessariamente finito, quindi per verificare che si tratta di un sottogrup-
po di Sx e sufficiente verificarne la stabilita rispetto alla composizione.
Vf,g e HVx e A:(fog)(x) = f(g(x)) € A, dal momento che essendo
f,g€ Hsihax e A= g(x) e A= f(g(x)) € A;

2. Consideriamo X = R ed A = IN. Allora la funzione

s:R— R
x—x+1

¢ un elemento di H, ma la sua inversa

ssT:R—> R
x—x—1

non & un elemento di H, dal momento che s~1(0) = —1 ¢ IN.
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Esercizio 3.9.

1. Sia f € S, \ {id}, allora sappiamo dalla teoria (cfr. Lemma 2) che f pud
essere scritta come prodotto di N(f) trasposizioni. D’altra parte 'identita
id puo essere scritta come prodotto di una trasposizione qualsiasi con se
stessa, quindi si ha quanto cercato;

2. E sufficiente dimostrare che riusciamo a generare la permutazione iden-
tita ed ogni trasposizione, poi la tesi seguira nel caso generale dal punto
precedente. Chiaramente id = (1 2)(1 2). Ricordiamo che (cfr. Esercizio
25) Vf €S, V(al ce lld) €S, ZfO (a1 .. ﬂd) Of_1 = (f(lill) e f(ad)),
percuiVi,j € {1,...,n}\ {1} (se uno traie j fosse 1 non ci sarebbe niente
da dimostrare), i < j:

(i) = 1A j)(10)

3. Preliminarmente osserviamo che id € A, € prodotto di tre cicli, dal mo-
mento che id = (123)(123)(123). Siaora f € A, \ {id}, allora esi-
stono Ty, T, ..., Tok—1, Tok trasposizioni tali che f = Ty ... 1Tk, dal
momento che N(f) =, 0. Per ottenere la tesi & sufficiente mostrare che
il prodotto di due trasposizioni puod essere espresso come prodotto di
3-cicli. Siano (a b), (c d) € S, due trasposizioni. Distinguiamo tre casi:

(i) [{a, b} N{c d}| =2, quindi necessariamente {a,b} = {c,d}, e dun-
que (ab) = (cd), percui (ab)(cd) = (ab)(ab) = id, che abbiamo
gia visto potersi esprimere come prodotto di 3-cicli;

(i) [{a, b} N{c,d}| = 1. Senza perdita di generalita supponiamo b = ¢,
allora (ab)(cd) = (ab)(bd) = (abd);

(i) [{a,b} N{c,d}| = 0, allora (a b)(cd) = (ab)(bc)(bc)(cd) =
(abc)(bed).

4. Per quanto visto nel punto precedente ogni f € A, & prodotto di 3-cicli,
quindi e sufficiente mostrare che ogni 3-ciclo & generatoda {(123),(124),...,(12n)}.
Sianoi,j,k € {1,...,n}\{1,2},adueaduedistinti, allora (12k)(12i)(12 S
(2ki)=(i2k)e (12])(i2k)(12j)~! = (ij k), per cui

(ijk) = (12/)A2k)(120)(12K) 12/

D’altra parte, se uno e uno solo tra 7, j, k sta in {1,2}, che senza perdita di
generalita possiamo assumere sia i, dato che alla peggio possiamo rino-
minarli, allora (12k)(127)(12k)"!' = 2kj)e(12/)(2kj)(12j)~ ! =
(jk1) = (1jk), per cui

(1jK) = (12j)12K)12/) 12k 112))"
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Infine, supponiamo esattamente due tra i, j, k siano in {1,2}. A meno di
riordinare e rinominare gli indici si presentano esattamente due casi. Se
i =1, j = 2 non abbiamo niente da dimostrare, mentresei =1, k = 2,

allora (ijk) = (1j2)=(j21)=(12j)".

5. Abbiamo visto in (2) che S, & generato da {(12),(13),...,(1n)}, quindi
e sufficiente verificare che tale insieme & generato da {(12),(12 ... n)}.
Mostriamolo procedendo per induzione su n € IN>3.

Passo base (n = 3): Chiaramente

(13)=(12)(12...n)(12)(12 ... n)"}(12)

Passo induttivo: Supponiamo la tesi vera per n — 1 € IN>3. Allora

In)=1n-1)12...0)"2a2)12 ... n) " 2D(1n-1)

dalla quale segue la tesi essendo, per ipotesi induttiva, (1 n — 1) generato
da{(12),(12 ... n)}.

Esercizio 3.10. Per il Teorema di Lagrange si ha |G| = |G : K]|K|, ma applicando
nuovamente il Teorema di Lagrange si ha anche |K| = [K : H]|H|, per cui [G :
H||H| = |G| =[G : K][K : H]|H|, e dunque [G : H] = [G : K][K : H].

Soluzioni esercizi capitolo 4

Esercizio 4.3. Dalla teoria sappiamo che

Z(GLy(Zy)) = {al, | a € Z;}

Quindi |Z(GL,(Zp))| = p — 1. Per quanto riguarda la seconda parte dell’e-
sercizio, invece, considerato un qualsiasi campo K e k € K*, e fissata una
matrice B € GL,(K) tale che det(B) = k (essa esiste, infatti basta conside-
rare la matrice diagonale B = diag(k,1,...,1)), consideriamo l'applicazione
SL,(K) — {C € GL,(K) | det(C) = k}, A — AB, che chiaramente & in-
vertibile con inversa data dalla {C € GL,(K)} — SL,(K), A — CB~! (si
osservi che entrambe le applicazioni sono ben definite in virtt1 del Teorema di Bi-
net). Conseguentemente, essendo det : GL,(Z,) — {1,2,...,p — 1} suriettiva,
GL.(Z,)

concludiamo |SL,(Z;)| = 1



143

Esercizio 4.4. Consideriamo K = (H,x), allora H < K < G, per cui per
I'Esercizio 3.10 siha p = [G : H| = [G : K][K : H]. Essendo p un primo, de-
duciamo che uno dei due fattori & p e l'altro 1. Ma [K : H| > 1 (dal momento
che x € K, x ¢ H, dunque xH = H), quindi [G : K| = 1, per cui K = G.
Dunque la tesi diventa H << H, x >. Ricordiamo che un elemento di (H, x)
halaforma gy'-...-gy", doven € NT,{g1,...,gn} CHU{x}, ay,..., 0, € Z.
Mostriamo la tesi procedendo per induzione su 7 e sfruttando il primo criterio
di normalita.

Passo base (n=1): Se g1 € H, allora ovviamente H&' < H, mentre se g; = x ci0
segue dall’ipotesi xH = Hx;

Passo induttivo: Supponiamo la tesi valida per un certo n € INT, allora

o n X -1 o n & o« it 2\ —1 «
(81" - 8n" &u1) H(gY & 8 1) = &yt (81 - &n) T HIg'
< &1 HE < H,
dove il primo < & conseguenza dell’ipotesi induttiva, mentre il secondo segue

dal passo base.

Esercizio 4.5. Cominciamo dimostrando che H < G. Supponiamo per assurdo
esista s € G tale che o(s) = 2 con H® £ H, ossia esiste h € H \ {1} tale che
o(shs) = 2, quindi sh?s = (shs)(shs) = 1, per cui k> = 1, in contrasto con
l'ipotesih € H\ {1}.

Passiamo all’abelianita. Osserviamo che Vs € G\ H,Vh € H : o(sh) = 2, dal
momento che sh ¢ H (in caso contrario si avrebbe sh ¢ H, assurdo). Quindi
Vs € G\ H,Vh € H : shsh =1 = shs = h~!. Dunque Vhy,hy € H : [hy,hp] =
hihohy 'yt = hihy(shis)(shos) = hihoshihos = (hiho)(mhy) ™' = 1. E cosi
dimostrato che H e abeliano.

Infineh € H= h~! € H, percuih = 1 oppure h # h~! (altrimenti o(h) = 2,
in contrasto con la definizione di H), quindi n = 1, ossia |H| dispari.

Esercizio 4.6. L'inclusione e ovvia dalle definizioni. Per quanto all’Esercizio 4.8
siha Z(S3) = {id}, mentre Z(A;3) = Az # {id} (|As| = 3, quindi A3 = Z,
per cui A3 abeliano).

Esercizio 4.7. Cominciamo trattando il caso i cuio(xy) =n € N*. Se o(xy) =
Lalloraxy =1=y=x!=yr=x'x=1= o(xy) =1 = o(yx) =
o(yx) | o(xy). Ora supponiamo che o(xy) = n+1 € INT per qualche n € IN.
Non ¢ difficile osservare che x(yx)"*ly = (xy)"™2 = (xy)""!(xy) = xy, per

- 8n")8

Xn4+1
n+1 S
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cui (yx)" =1=o(yx) | n+1 = o(xy).

Simmetricamente o(xy) | o(yx), quindi o(xy) = o(yx).
Chiaramente, per quanto appena mostrato, i due ordini coincidono anche se
o(xy) non e finito.

Per quanto riguarda la seconda parte dell’esercizio, Vy € G : o(yxy™!) =
o(xy~ly) = o(x) = k, quindi, essendo per ipotesi x 1'unico elemento di G
avente ordine k, yxy~! = x = yx = xy, e dunque x € Z(G).

Esercizio 4.8. Sia f € Z(S,), allora, in particolare, per definizione si ha che f e
(12 ... n) commutano. Maalloraid = [f,(12 ... n)] = f(12 ... n)f1(12...

(f(1) f(2) ... f(m))(12 ... n)~", percui
(f(1) f(2) fB) ... f(n)) = (123 ... n) (92)

D’altra parte anche f e (1 2) devono commutare, per cui procedendo simil-
mente si ottiene

(f(1) f(2)) = (12) (93)

Dalla (93) deduciamo che f(1) = 1e f(2) = 2 oppure f(1) =2e f(2) = 1;
ma nel secondo caso dalla (92) si otterrebbe 1 = f(2) = 3, assurdo. Dunque
f(1) =1, f(2) = 2 e dalla (92) deduciamo f = id.

Esercizio 4.9. Sia f € Z(A,), allora per ogni i € {3,...,n} si ha che f e
(1 2 i) commutano. Procedendo come nell’esercizio precedente deduciamo
cheVie {3,...,n}:

(f(1) f(2) f(i)) = (124)

Ma chiaramente cio e possibile se e solo se f = id.

Esercizio 4.10. Ricordiamo che se r = r2x e s € Dy, € una qualunque riflessione,
n
allora

D, = {id,r,*,...,r" Ls,50r,...,50r" 1}

Cominciamo osservando che nessuna riflessione s puo stare nel centro Z(D,,).
Infatti se s € D,,, allora rs = sr = r~! = srs = r = r? = id, in contrasto con
il fatto che o(r) = n > 3. Siaora k € {0,1,...,n — 1}, allora se rk e Z(Dy) si
deve avere in particolare sr* = rks = s(srs) = sr* = 12 = id, dalla quale
deduciamo che o(r) = n | 2k < 2n, dunque n = 2k. Infine osserviamo che
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n

n .. . . n _ n .ooon n
se k = 75, allora per ogni riflessione s si ha sr2s = r~2 = r2, ossia r2s = sr2.
. . AT P N N o N . n

Quindi se n & dispari il centro & banale, mentre se n & pari il centro & {id, rz}.

Soluzioni esercizi capitolo 5

Esercizio 5.1. Vx,y € R* : f(x)f(y) = f(x)+ fly) + f(x)f(y) = (x —1) +
-1+ x-1)y—-1)=x-1y+y—1=xy—1= f(xy). D'altra parte f
e chiaramente bigettiva (la sua inversa ¢ la G — R*, x — x + 1, ben definita
in quanto —1 ¢ G). E cosi dimostrato che f € un isomorfismo R* — G.

Esercizio 5.2.

1. Consideriamo l'applicazione f : R — S!, x + €. Dalle proprieta
delle potenze si ha che f & un omomorfismo, inoltre ker(f) = {x € R |
f(x) = (1,0)} = {x € R | (cos(2mx),sin(2tx)) = (1,0)} = Z, dove
'ultima uguaglianza segue dal fatto che cos(27tx) = 1 e sin(2mx) = 0
se e solo se 2rtx = 27tk per qualche k € Z, ossia x = k € Z. Infine,
osserviamo che f & suriettiva per definizione di S!, quindi per il primo
teorema di isomorfismo siha R/Z = R /ker(f) = S'.

2. Consideriamo 'applicazione g : Z — S!, z )2, Dalle proprieta
delle potenze si ha che g & un omomorfismo il cui nucleo & ker(g) = {z €
Z | )z = 1} = nZ e la cui immagine & U, (da cid segue anche che
U, & un sottogruppo di S'), quindi per il primo teorema di isomorfismo si ha
Zy=2Z/nZ = Z/ker(f) = U,.

3. Dimostriamo pit1 in generale che se G & un gruppo di ordine 21 che am-
mette un elemento g; di ordine 2 ed un elemento g, di ordine # tali che
818281 = & !, allora G = D,,. Non & difficile vedere, sfruttando le ipote-

si, che G = {1,92,8%,..., 85 1, 91,8182--.,8185 '}. Consideriamo l’ap-
plicazione f : D, — G definita tramite la Vk € {0,1,...,n — 1}, Vj €

{0,1} : f(s/rk) = ¢ gk. Evidentemente f & una bigezione per costruzio-
ne, quindi non ci resta da mostrare altro se non che f & un omomorfismo
di gruppi. Osserviamo che si presentano cinque casi:

(ss) = f(1) =1=g181 = f(s)f(s);

() = ek = g7 = 1 = FP 00

((s7%)s) = f(rh) = f(rmF) = g5 7% = g7 = g18581 = f(s7) f(s);
(s(s7)) = f(*) = g5 = g1(g185) = f(5)f(s7");

(

(s7)(sr'2)) = f((sriis)r) = f(rbir) = frlah) = g™ =
1857 = (8185')(9187°) = F(sr) f(sr™).
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E cosi dimostrato che f definisce un isomorfismo.

Nel caso in esame dell’esercizio notiamo che o(r) = n, 0(s) = 2 e srs =
r~1. Dico che | (r,s)| = 2n. Infatti un elemento di tale sottogruppo
generato ha la forma r*s™ oppure s"r* per qualche k € {0,1,...,n —
1} e m € {0,1}, ma osserviamo che (se m = 1 e k # 0) si ha rs =
ssrfs = sr=F = sr"k, quindi possiamo assumere gli elementi siano tut-
ti della forma s"r con m € {0,1} ek € {0,1,...,m — 1}. Osservia-
mo ora che le ipotesi sugli ordini implicano che gli elementi dell'insieme
{1,7,...,7"1,s,sr,...,5r" "1} sono tutti distinti (in particolare si osservi
che non esiste alcunk € {0,1,...,1n — 1} tale che s = X, dal momento che
se cosi fosse si avrebbe 1 = 5(1) = r¥(1) = ¥, in contrasto con o(u) = n),
da cui segue quanto asserito sulla cardinalita del sottogruppo generato.

Esercizio 5.3.
1.

2. Cominciamo dimostrando che SU(2) & un sottogruppo di GL,(C). Siano

)
3

A

wo]
Il Il
h VR
|
>l | R

Elementi di SU(2), allora

a2 (4 -G08 B0 - (3% 2)

® -5 7 By—ab BS+ay

Infine osserviamo che per il Teorema di Binet siha det(A~'B) = det(A~!)det(B) =

1, dunque A~!'B € SU(2). Dato che chiaramente SU(2) # @ (ad esem-
pio perché la matrice identita € un suo elemento), & cosi dimostrato che
SU(2) & un sottogruppo di GL,(C).

—P

Mostriamo che f un omomorfismo di gruppi. Siano (&, B), (v,d) € S, allora

Consideriamo l'applicazione S* — SU(2), («, B) — ( “ ‘i)

F((0B)(7,0)) = flay—pamo+p7) = (TSP WHPT) (5 B (

x-0—py w-y—po —p a

v 0

)
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= f(a,B)f(7,9)

Inoltre ker(f) — {(oc, B)es? <_"‘[3 f) - (é g’)} — {(1,0)}, dunque f &

iniettiva, mentre la suriettivita & immediata dalle definizioni. E cosi dimostrato
che f € un isomorfismo di gruppi.

Esercizio 5.4. Supponiamo per assurdo Z e Q siano isomorfi, allora necessa-
riamente Q dovrebbe essere ciclico, dal momento che Z lo & (cfr. Proposizione

43). Ma per ogni% €Q: mt 1 ¢ <T> = {% €Qlae Z}, dal momento

n n
che m {m+1.

Esercizio 5.5.

* Supponiamo per assurdo (Q, +) e (Q*, -) (risp. (R, +) e (R*, -)) siano iso-
morfi, allora per definizione esiste f : Q — Q* (risp. R — R*) isomorfi-
smo. Dalla suriettivita di f si ha l'esistenza di x € Q (risp. x € R) tale che
£(x) = —1, quindi f(2x) = f(x+x) = f()f(x) = (~1)> = 1 = £(0),
dalla quale per iniettivita di f deduciamo 2x = 0, ossia x = 0, e quindi
1= f(0) = —1, assurdo;

e ¢*: R — R™ & unisomorfismo tra i gruppi (R, +) e (RT,-);

¢ Supponiamo per assurdo (Q,+) e (QT, -) siano isomorfi, allora per defi-
nizione esiste f : Q — Q™ isomorfismo. Dal momento che f & suriettiva
esiste g € Q tale che f(q) =2, maallora2 = f(3 + 1) = f(3)? e dunque
f(3) = v/2, assurdo.

Esercizio 5.6. Dalla teoria sappiamo che sappiamo che G/Z(G) = Inn(G)

1. Da quanto ricordato in apertura segue Inn(S3) = Ss, dal momento che
S3 ha centro banale. Inoltre sappiamo che Inn(S3) C Aut(Ss3), quindi
|Aut(S3)| > |Inn(S3)| = |S3| = 6. D’altra parte dall’Esercizio 5.8 segue
che gli automorfismi di Sz preservano 'ordine, quindi ogni € Aut(Ss)
induce una permutazione sull’insieme delle trasposizioni di S3, e vice-
versa, essendo S3 generato dalle sue trasposizioni, ogni siffatta permuta-
zione induce un automorfismo di S3. Ne segue che |Aut(S3)| < 6, per
cui Inn(S3) = Aut(Ss3) e |Aut(S3)| = 6;

2. Segue da quanto ricordato in apertura sfruttando 1'Esercizio 4.9;
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3. Segue da quanto ricordato in apertura sfruttando 1’Esercizio 4.10.

Esercizio 5.7. Per definizione G = (X) = {gy' ... - gn" [ n € N¥,g1,..., 41 €
X,a1,...,04 € Z}. Quindi se x € G si ha che esistonon € N¥t,¢1,...,9, €
X,0q,...,00 € Ztaliche x = ' -...-gy", percui f(x) = f(g' ... - gn") =

Flg)™ - fgn) = g(g1)™ - g(gn)™ = g8y - gu") = g(x). Dal-
I’arbitrarieta di g di conclude f = g.

Esercizio 5.8.

1. f(x°®)) = £(1) =1, ossia f(x)°) =1, per cui o(f(x)) | o(x);

2. Dimostriamo che f ha nucleo banale. x € ker(f) = f(x) = 1, quindi per
ipotesi o(x) = o(f(x)) = 0(1), da cui deduciamo x = 1.

L'ultima affermazione e immediata da 1. considerando la proiezione canonica
sul quoziente 7 : G — G/N.

Esercizio 5.9. Si ricordi che il quoziente R*/ (71) & per definizione costitui-
to dalle classi laterali sinistre (o equivalentemenete destre) del sottogruppo
(normale) (77). Cominciamo deducendo condizioni necessarie affinché un ele-
mento di tale quoziente abbia ordine n. Supponiamo o(x (7)) = n. Osser-
viamo che per ogni x € R* si ha (x(m))" = x" () = () se e solo se
x" e (m) = {n" | m € Z}, ossia esiste m € Z tale che x" = ™. Si noti
che per n dispari si deve avere necessariamente x > 0, mentre per n pari esiste
m € Z tale che x" = 1™ se e solo se esiste m € Z tale che (—x)" = 7, e
x 7% —x. Conseguentemente possiamo cominciare analizzando il caso x > 0.
Se x" = 7™ con m > n, possiamo applicare la divisione con resto e ottenere
m=qn+r,dove0 < r < n,allorax" = " = 7" " seesolose (7 7x)" = n’,
e 1 7x ~ x, in quanto (7t7x~1)x = 71 € (7r), ossia x (1) = (7t~ 'x) (77), quindi
senza perdita di generalita possiamo assumere 0 < m < n. Osserviamo ora che
m ed n devono essere coprimi. Infatti, supponiamo per assurdo (m,n) =k > 2,
allora esistono m’,n’ € IN* tali che m = km’ e n = kn’, e in particolare si os-
servi che necessariamente 1 < n’. Allora (x" )k = x" = 7" = (7" ), dalla
quale (essendo sia x che 71 positivi) deduciamo x" = 77, in contrasto con I'i-
potesi che x (71) abbia ordine n. Abbiamo quindi dedotto che necessariamente
0 <m < ned (mn) =1, dunque nel caso dispari esistono al pitt ¢(n) (dove
con ¢ denotiamo la funzione di Eulero, ossia la funzione che associa ad 1 il natu-
rale 1 e ad ogni n € IN>; il numero di naturali positivi strettamente pit1 piccoli
di n e coprimi con esso) elementi di ordine 7, mentre nel caso pari ne esistono
al pitt 2¢(n). Per concludere la dimostrazione & sufficiente quindi esibire nel
caso dispari ¢(n) elementi distinti di R* (77) aventi ordine n, mentre in quello
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pari 2¢(n). E di verifica immediata che per n dispari possiamo considerare la
famiglia {7t¥ (7r) | 0 < k < n, (n,k) = 1}, mentre in quello pari possiamo
considerare {7k (1) | 0 < k < n, (n,k) =1}.

Esercizio 5.10. Sihao((13)) = 2,0((1234)) =4e(13)(1234)(13) =
(3214) = (4321) = (1234)~!, inoltre con argomenti simili a quelli utilizzati
nel terzo punto dell’Esercizio 5.2 si dimostra che il sottogruppo generato da tali
permutazioni in S4 ha ordine 8. Quindi per il risultato generale ottenuto nel
terzo punto dell’Esercizio 5.2 siha ((13),(1234)) = Dy.

Soluzioni esercizi capitolo 6

Esercizio 6.1. Consideriamo 1’applicazione f : R x {—1,1} — R*, (x,s) —
se*. Dal momento che ¢* : R — R™ ¢ bigettiva, la f risulta essere una bigezio-
ne. Per concludere ¢ sufficiente mostrare che f € un omomorfismo.

Esercizio 6.2.

1. Utilizziamo il criterio di sottogruppo. Vx,y € G : (x,x) "1y, y) = (x L x D (y,y) =
(x"'y,xly) € D;

2. Supponiamo D < G, allora Vx,y € G : (x,y txy) = (x lxx,y lxy) =
(x7 Ly H(x, %) (x,y) = (x,y) " 1(x,x)(x,y) € D, per cui x = y~'xy, ossia
yx = xy. Viceversa, se G & abeliano allora G x G ¢ abeliano, quindi ogni
suo sottogruppo € normale.

Esercizio 6.3. Consideriamo G = Z; x Z; e siano N1 = ((1,0)), N, = ((0,1))
ed N3 = ((1,1)), allora le condizioni 1. e 2. sono soddisfatte, ma chiaramente
ZzXZQ%]\hXNQXNggZzXZzXZz.

Esercizio 6.4. Useremo il Teorema prodotto per dimostrare la tesi. A tale propo-
sito, osserviamo i seguenti fatti:

() Sia f(g) € f(G)Nker(f), allora f(g) = f(f(g)) = 1, dove la prima
uguaglianza vale per l'ipotesi f o f = f e la seconda in quanto f(g) €

ker(f), ossia f(G) Nker(f) = {1};

(i) Vg € G : f(f(g)7'g) = f(f(8)'f(g) = f(g)'f(g) = 1, quindi
f(8)7'g € ker(f), e dunque g = f(g)(f(g)"1)g € f(G)ker(f), ossia
G = f(G)ker(f);

(iii) Essendo G abeliano, f(G) < G.
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La tesi € quindi conseguenza del Teorema prodotto.

Esercizio 6.5.
1. Immediato dalle definizioni;

2. F: K = G x H & un omomorfismo, allora Vi € {1,2} : fi = pjoF
omomorfismo in quanto composizione di omomorfismi, inoltre Vx € K :

F(x) = (fi(x), f2(x)) = ((pro F)(x), (p2 0 F)(x)) = F(x), per cui F = F.

Esercizio 6.6. Supponiamo tutti gli elementi di G \ {1} abbiano ordine 2, allora,
in particolare, ogni elemento di G e inverso di se stesso. Siano x,y € G, allora
xyxy = 1, ossia xy = yx, quindi G & abeliano. Siaa € G\ {1} un elemento di
ordine 2, allora | (a) | =2, percui G \ (a) # @. Siab € G\ (a), allora o(b) = 2.
a, b sono distinti per scelta e hanno entrambi ordine 2, quindiab # 1 (seab =1,
allora a = b~! = b, in contrasto con l'ipotesi che siano distinti). D’altra parte
a,b ¢ {1}, quindi ab ¢ {a,b}. Conseguentemente (a,b) = {1,a,b,ab} sono
tutti distinti. Sia ¢ € G\ (a,b), allora o(c) = 2. Osserviamo che per come
& stato scelto c¢ si ha che ac, bc e abc sono tre elementi distinti di G che non
coincidono con nessuno degli elementi di {1, 4,b, ac}. Di conseguenza

G ={1,a,b,c,ab,ac,bc,abc}

Quindi G = (a,b) (c), inoltre (a,b) (c) < G (dal momento che G ¢ abeliano) e
(a,b) N (c) = {1}, dunque dal teorema prodotto si ha

G§<El,b><c>g(22XZZ)XZngZX22XZZ

Esercizio 6.7.
(i) Dato che b ¢ H = (a), le classi laterali destre (a) e (a) b sono distinte.
Quindi
G={(a)yU{a)b=1{1,a, a?,a°,b,ab,a’b, a3b}

in quanto gli elementi dell’insieme al membro pit1 a destra della catena
di uguagliaglianze e costituito da otto elementi distinti di G;

(ii) Chiaramente ba ¢ {1,a,4?, 4% b} (in caso contrario si avrebbe b € (a), in
contrasto con la scelta di b).
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Esercizio 6.8.

(i) Supponiamo per assurdo si abbia ba = 42D, allora si avrebbe a = 1a
b?a = b(ba) = ba*h = (ba)(ab) = (ab)(ab) = a®(ba)b = a*(a’b)b =
a*h? = 1, ossia a = 1, in contrasto con l'ipotesi 0(a) = 4;

(ii) Dall’esercizio 6.7 sappiamo che G = {1,4a,4?,43,b,ab, a*b,a>b}, quindi se
ab = ba ovviamente G risulta essere abeliano. G = (a) (b), inoltre (a) N
(b) = {1} e per abelianita di G tali sottogruppi sono normali, dunque dal
teorema prodotto concludiamo G = (a) x (b) = Z4 x Zy;

(iii) Siha |G| =8 = 2-4, inoltre o(a) = 4 e o(b) = 2 e, dall'ipotesi ba = a’b,
bab = a®b?* = a® = a~1, quindi, per quanto visto nel terzo punto della
soluzione dell’Esercizio 5.2, siha G = Dy.

Esercizio 6.9.

(i) Dall’Esercizio 6.7 sappiamo che G = {1, 4, a?,a3,b,ab,a’b,ab}. Per ipote-
si tutti gli elementi di G \ H hanno ordine 4, quindi a? & 'unico elemento

di ordine 2 di G, e conseguentemente o(b?) = % =3=2=a*=0%
(ii) - Supponiamo per assurdo ba = a®b, allora ba = b> (dato che a* = b?

per il punto precedente), e quindi a = b?> = a2, quindi a = 1, in
contrasto con l'ipotesi 0(a) = 4;

— Supponiamo per assurdo ba = ab, allora (a®b)? = (a%)?b* = a®? =
a =1, quindi a3b =a%, e dunque ab = 1, assurdo.

(iii) Dai precedenti punti si ha G = {1,4,4?,a>,b,ab,a?b,ba}. Esibiamo un
isomorfismo esplicito con Qg

G— Qs
1+—id
a—i
a? — —1
a’— —i
br—j
ab — k
a*h —s —j

a3b —s —k
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(iv) Sivedano gli esercizi precedenti e i punti precedenti del presente eserci-
Zio.

Esercizio 6.10. Svolgiamo direttamente 1’esercizio nella sua forma pit1 gene-
rale, ossia mostriamo che un gruppo G di ordine 2p, con p primo dispari, &
isomorfo a Z, (se abeliano) oppure a Dy, (se non abeliano).

Supponiamo G sia un gruppo abeliano di ordine 2p, p primo dispari. Dico che
in G esiste almeno un elemento di ordine 2p. Supponiamo per assurdo G non
abbia alcun elemento di ordine 2p. Per 1’Esercizio 1.7 esiste x € G avente ordine
2. Osserviamo ora che non esiste alcun y € G tale che o(y) = p, altrimenti per
la Proposizione 30 si avrebbe o(xy) = mcm(o(x),0(y)) = 2p (dal momento che
(2,p) = 1ed x,y commutano, essendo G abeliano), in contrasto con 1’assunto
che nessun elemento di G abbia ordine 2p. Conseguentemente, per il teorema
di Lagrange, ogni elemento di G \ {1} ha ordine 2. Datoche2p >2-3=6,in G
esistono almeno due elementi distinti x, y aventi ordine 2, ma allora, essendo
G abeliano, si ha (x,y) = {1,x,y,xy} < G, in contrasto con il teorema di La-
grange (dato che ovviamente 4 { 2p). Conseguentemente in G esiste almeno un
elemento di ordine 2p e G = Zy).

Supponiamo G sia un gruppo non abeliano di ordine 2p, p primo dispari. Per
I'Esercizio 1.7 esiste x € G avente ordine 2. D’altra parte non tutti gli elementi
di G possono avere ordine 2 (altrimenti G sarebbe abeliano), quindi esiste al-
meno un elemento y che non ha ordine 2, da cui segue o(y) = p per il teorema
di Lagrange (se fosse o(y) = 2p si avrebbe G = Z;,, e quindi G ciclico in con-
trasto con l'ipotesi che sia non abeliano). Mostriamo ora che tutti gli elementi
in G\ (y) hanno ordine 2. Supponiamo per assurdo esista z € G \ (y) tale che
0(z) # 2, allora, essendo per ipotesi G non abeliano, per teorema di Lagrange si
ha o(z) = p. Dalla teoria (cfr. Capitolo 3) sappiamo che

quindi

i lmlE]
W& =TT “TwET

per cui | (y) (z) | € {1,p,p?}. Tuttavia {1,y,y?,...y" "1, x} C (y) (z), qumdl
() (2)| > p+1. Dialtra parte (y) (=) € G, quindi| () (z}| < |G| = 2p < p2.
Siamo cosi giunti ad un assurdo, e quindi Vz € G\ (p) : 0(z) = 2. Conseguen-
temente I’elemento xy ha ordine 2, infatti in caso contrario si avrebbe x € (y),
in contrasto con l'ipotesi che o(x) = 2, per cui xyx = y~1. Da quanto visto nel
terzo punto della soluzione dell’Esercizio 5.2 concludiamo G = D).



153

Soluzioni esercizi capitolo 7

Esercizio 7.1.

1. Siha (in notazione additiva) (cfr. Proposizione 27)
|HIK]|
|HNK|

Quindi |H||K| = |H + K||H N K|, dalla quale per definizione deduciamo
|H + K| | [H[|K];

|H+ K| =

2. Segue dal Teorema numerico tenendo conto del fatto che H e K sono anche
sottogruppi di H + K (anch’esso abeliano in quanto sottogruppo di un
gruppo abeliano).

Esercizio 7.2.

* n = 28: Zy X Zj4 € un gruppo di ordine 28 non ciclico (si ricordi che
G1 x G e ciclico se e solo se G e G, sono gruppi finiti aventi cardinalita
coprime);

* n =30:siha30 = 2-3-5, quindi per il lemma di decomposizione primaria
siha G = Zy x Z3 x Zs = Z30, quindi G ciclico;

* n =130: siha 130 = 2-5- 13, quindi come nel caso precedente otteniamo
G = Z130, quindi G ciclico;

* n = 131: si ha che 131 e primo, quindi G = Z;31, e dunque G ciclico.

Esercizio 7.3. Sappiamo che Inn(G) = G/Z(G) e Inn(G) < Aut(G). Dun-
que se Aut(G) e ciclico concludiamo che anche Inn(G) é ciclico (in quanto
sottogruppo di un gruppo ciclico), e quindi anche G/Z(G) lo & (in quanto
isomorfo ad un gruppo ciclico). Conseguentemente esiste ¢ € G tale che
G/Z(G) = (gZ(G)). Siano g1,82 € G, allora per quanto detto poc’anzi esi-
stono n1,n, € NN tali che $1Z(G) = ¢"Z(G) e £2Z(G) = ¢"Z(G), ossia
esistono z1,zp € Z(G) soddisfacenti §7"¢g1 = z1 e g "g» = z», e quindi
Q1 = §"z1 e g = §"zp. Di conseguenza g19> = (§"22)(8"z2) = ¢"(z18™ )z =
8"(g"z1)z = (8"¢")(2122) = (8"¢")(z221) = ¢"(8"22)21 = (8"22)(8"21) =
$281. Dall’arbitrarieta di g1, g2 € G deduciamo che G ¢ abeliano.

Esercizio 7.4 Si presentano due casi: p # q (e quindi G = Z,, x Z, per il lemma
di decomposizione prima) oppure p = ¢; nel secondo caso, a sua volta, dalla
classificazione dei gruppi di ordine p?, si ha G & Z, oppure G = Zy X Zp.
Distinguiamo i tre casi.
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* G = Z, x Zg: Dal teorema di Lagrange si ha che un sottogruppo H di G

pud avere solo ordini {1, p, g, pq}. Mostriamo che esiste uno e un solo
sottogruppo di G di ordine p. L'esistenza é assicurata dal lemma di Cau-
chy. Dimostriamo l'unicita. Siano H e K sottogruppi di G di ordine p,
allora

_[H[K] g
IHNK| ~ [HNK]|

per abelianita di G si ha che HK & un sottogruppo di G, inoltre osservia-
mo che HN K < H, quindi applicando nuovamente il teorema di Lagrange
siha |[HNK]| € {1, p}. Ma osserviamo che tale cardinalita non puo essere
1, dato che in tal caso si avrebbe |HK| = p?, in contrasto con il teorema
di Lagrange (dato che p? | pq, essendo p e g primi distinti). Conseguen-
temente |H N K| = p, dalla quale deduciamo H = K (dato che HNK &
sottoinsieme sia di H che di K ed entrambi hanno cardinalita p per ipote-
si). Analogamente si dimostra che in G esiste esattamente uno e un solo
sottogruppo di ordine q. Dunque G ha esattamente quattro sottogruppi
(a meno di isomorfismi questi sono quello banale, Z,, Z,; e Z, X Z;);

G = Z,: dal teorema di Lagrange si ha che un sottogruppo H di G puo
avere solo ordini {1,p, p*}. Mostriamo che esiste uno e un solo sotto-
gruppo di G di ordine p. L'esistenza segue ancora una volta dal lemma
di Cauchy. Dimostriamo l'unicita. Siano H e K sottogruppi di G aventi
ordine p, allora

[HIIK]

HK| =
IHK] = 1A K]

Dato che H N K < H, per il teorema di Lagrange siha |H N K| € {1, p}. Ma
osserviamo che se |[H N K| = 1, allora si avrebbe che H,K < G (essendo G
abeliano), HN K = {1} e HK = G (dal momento che |HK| = p?> = |G]),
e dunque per il teorema prodotto G = Z, x Z,, in contrasto con l'ipotesi
G = Z, (si osservi che Z3 % Z, x Zp). Dunque |H N K| = p, per cui
H = K. Dunque G ha esattamente tre sottogruppi (a meno di isomorfismi
questi sono quello banale, Z, e Z,»;

G £ Zy X Zy: dal teorema di Lagrange si ha che un sottogruppo H di G
puo avere solo ordini {1, p, p*}. Siano H e K due sottogruppi di ordine
p, allora per il teorema di Lagrange (essendo HNK < H)siha |[HNK]| €
{1,p}. Se [HN K| = p deduciamo H = K, in caso contrario abbiamo che
H e K si intersecano nel solo elemento neutro 1. Conseguentemente in G

2_
si hanno al pitt ;;—_11 = p + 1 sottogruppi di ordine p. Dimostriamo ora
che si hanno esattamente p + 1 sottogruppi di ordine p. Supponiamo per
assurdo si abbiano esattamente Hj, ..., I, con1 < k < p+1, sottogruppi
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di G di ordine p, allora per quanto visto poc’anzi siha |Hy U...UHg| =
(p—Dk+1< (p—1)(p+1)+1=p>—1+1 = p?, dunque (essendo
|G| = p?) si ha che esiste x € G\ (H; U...U H). Dal momento che
x # 1 si ha necessariamente o(x) = p (si osservi che o(x) # p?, dato che
se cosi non fosse si avrebbe G = Z ), quindi (x) & un sottogruppo di G
di ordine p differente da H; per ognii € {1,...,k}. Assurdo. Dunque
G ha esattamente p + 1 sottogruppi di ordine p, e quindi ha esattamente
p + 3 sottogruppi (quello banale, i p 41 di ordine p e G stesso).

Esercizio 7.6. Cominciamo osservando che se ¢ : Z,, X Z,, — Zyy X Zy € un
omomorfismo di gruppi, allora siha ¢ ([x]m, [y]n) = @(([x]m, [0]n) + ([0]m, [¥]n)) =
@([x]m, [0]n) + @([0]m, [v]n) perognix,y € Z. Siano hy : Zy, — Zy X Zn, [X]m —
([x]m, [O]n) € hy : Zyy — Zy X Zn, [Y]m > ([0]m, [y]n) (si osservi che tali appli-
cazioni sono omomorfismi di gruppo). Osserviamo ora che hy : Z;, — Z;; X
Z,, coincide con la coppia di omomorfismi (p; o hy, p2 o hp) e che 'omomorfi-
smo pp o hy : Zy — Z, & banale (ossia ker(py o hi) = Z,,) in quanto Z,, e Z,,
sono due gruppi finiti con cardinalita coprime. Similmente si osserva che 'o-
momorfismo hy : Z,, — Zy X Zy coincide con la coppia (p1 o hp, pa o hy) e che
I’'omomorfismo py o hy : Z,, — Z,, € banale. Consideriamo gli omomorfismi
g1 =p1ohy : Zy — Zye ¢ = prohy : Z,, — Zy. In definitiva, quindi, per
ogni ¥,y € Z si ha g([xln, [Y]n) = @([x]un, [01) + @([0]n [y]) = hn([]) +
ha([yla) = ((p1 0 1) ([(x]m), [01n) + (101, (p2 0 h2) ([y1n)) = (91([x]m), [0]) +

([O]m,t @2([y]n)) = (@1([x]m), @2([y]n)). Conseguentemente ¢ = @1 x @2, come

Esercizio 7.7. Siha (x) = {ax | « € Z} e (y) = {By | B € Z}, per cui
(x)+(y) ={ax+PBy |a,p € Z} = (a, B) = G, dove la penultima uguaglianza
segue dall’abelianita di G. D’altra parte

Gl = 1 (x)+ () | = T,
)l

|
per cui o(x)o(y) = [ (x} | (¥) | = |GI| {x) N (y) |, e quindi |G] | o(x)o(y), dalla
quale deduciamo quanto cercato (p | |G| = p | o(x)o(y) = p | o(y), dove

l'ultima implicazione & conseguenza del fatto che p & primo e p { o(x) per
ipotesi).



